第一篇:提高发电机励磁系统可靠性的几点改进措施(写写帮整理)
提高发电机励磁系统可靠性的几点改进措施
孙启云,宋顺一,陈 田
(深圳妈湾发电总厂,广东省深圳市518052)
摘要:本文总结了妈湾发电总厂4台300 MW汽轮发电机励磁系统的运行经验,对HWTA自动励磁调节器暴露出的若干问题,如调节器稳压电源不可靠,保护及限制回路设计上存在原理缺陷等进行了分析。着重介绍了几点较为成熟的改进措施,并对备用励磁装置的自动投入作出了相应的二次回路设计说明。
关键词:自动励磁调节器;稳压电源;保护及限制;备用励磁自动投入 引言
妈湾发电总厂是20世纪90年代初新建投产的4×300 MW的火力发电厂,发电机均为哈尔滨电机厂生产的QFSN-300-2型汽轮发电机,励磁系统采用三机励磁接线方式,AVR为哈尔滨电机厂引进美国西屋公司技术配套生产的HWTA型自动励磁调节器。备用励磁调节采用400 Hz感应调压器和隔离变压器经二极管全波整流等部件组成。在7年来的运行维护过程中,妈湾电厂励磁系统暴露出的问题主要反应在HWTA型励磁调节器上,见表1。
从上述统计结果不难看出:妈湾电厂发电机励磁系统故障主要出现在励磁调节器上,而AVR稳压电源故障占40%,限制和保护误动作共计40%;针对这些问题我们采取了下列相应的改进措施。稳压电源的改造
2.1 设计不同电源供电
原励磁调节器是由双路400 Hz供电的。稳压电源的输入电压接电源变压器的副边,原边接副励磁机电压,实际上是一路交流供电。如果电源变压器原边或副励磁机的输出故障,励磁调节器将失去工作电压,这是非常危险的。因此笔者将一路直流逆变电源通过二极管与400 Hz稳压电源的输出端并联,从而提高了电源工作的可靠性,见图1,图2。
2.2 选用可靠性高的逆变电源
在#4机组大修中,将原来运行极不稳定的两路电源换成接线简单、性能可靠、由辽宁朝阳电源厂生产的军工级的逆变电源,仍然采用两路供电的方式,一路接400 Hz电源变压器的输出,另一路接厂用220 V直流。从近两年的运行效果来看,更换后的逆变电源运行比较可靠,电压没有任何波动。如图3所示。
2.3 更换稳压电源部分元器件
(1)励磁调节器原稳压电源使用ZL-1A型整流桥,它存在整流功率小,容易发热温升大,性能不稳定等缺点。平均使用寿命不到半年,有时2个月就得更换1只。将其更换成额定电流为3 A性能相对稳定的ZL-3A型整流桥后,平均使用寿命提高3~4倍。
(2)对使用WB-724H型稳压管的电源调节板,在集成块的4号与8号脚之间加一个0.01μF的电容可以滤去直流电压中的谐波成分,保持稳压电源输出电压值平稳,测试结果显示:稳压电源输出的±15V电压加电容后其纹波电压由原来的40 mV下降到3.5 mV,稳压效果明显。
(3)对使用IC-317型稳压管的电源调节板,在其表面加装一块约是其面积2~3倍的金属散热片,可使集成块表面温度下降10℃以上。表2是现场实测的结果。
(4)将稳压电源调节板中可调电阻由原来的100Ω/1.0 W,WX-1.0型换成WX-2.5型,从而消除因可调电阻接触不良、阻值易变化带来的稳压电源输出不稳定的现象。对励磁调节器保护的改进
HWTA励磁调节器具有高起始响应特性,配有过励磁保护、最大励磁电流限制和三级瞬时电流限制保护。原设计为主励磁机的励磁电流达到过励保护定时限整定值或瞬时三段整定值时直接跳开发电机并灭磁。出口跳闸逻辑电路图见图
4、图
5、图6,从中可以看出三极管Q2、Q4的重要性。一个电子元件的损坏就会造成大型发电机与系统解列,这显然是极其不合理的。据了解,不少运行单位和我厂一样也发生过此类Q2、Q4三极管击穿,误跳发电机的事故。
为此,对HWTA的原有回路进行了一定的改进如跳闸出口回路加启动闭锁。根据厂家HWTA资料,一般现场AVR限制保护定值如下:
最大励磁限制MEL=1.05~1.1 pu 过励保护OXP=1.2 pu 瞬时电流限制ⅢICL=2.2 pu
主励转子电流经3个分流器接入AVR的3个DC/DC变送器。根据各保护限制整定值可以看出:当过励保护K22继电器或瞬时电流限制III段K16继电器动作时,K10和K20继电器均先已动作,因此,将K10、K20继电器接点作为闭锁元件接入出口跳闸回路。设计电路如图7所示。
备用励磁装置自动投入回路设计
妈湾电厂4台机组励磁系统的一次接线如图8所示。
工程设计时考虑的运行方式为:发电机并网后AVR正常运行时,41E开关合上,400 Hz备用励磁调节回路交流侧隔离刀闸FK合上,直流输出电压为零,直流侧QF开关断开,备励一路处于热备用状态。当运行人员发现AVR故障先兆时,由运行人员手合QF开关再调节备励输出电压,然后再断开AVR交流侧41E开关。显然,这种人工手动切换方式在多数AVR故障时,难以避免发电机失磁、保证机组连续运行的积极作用。
为了实现“因励磁系统故障引起的发电机强迫停运次数不大于0.25次/年,励磁系统强行切除率不大于0.1%”[1,2]这两项经济指标,笔者认为在提高自动励磁调节器的调试维护水平基础上,应尽量解决备用励磁装置的自动投入问题。解决这一问题的思路是:①AVR正常运行时,备励手动大致跟踪AVR的输出[3];②由发变组失磁保护判别AVR故障先分开41E开关,利用41E控制把手位置不对应来合备励QF开关;③发变组保护动作时跳开发电机,同时跳41开关及QF开关并闭锁备励自投回路;④发变组保护加装发电机过电压保护。
具体接线见图9和图10。
利用发电机带自动励磁调节器的实际转子电压测出对应的备励输出空载电压值,从而得到一条跟踪曲线,如图11所示。运行人员只要参照曲线适当调整即可。结语
(1)我国引进美国西屋公司技术生产的励磁调节器在设计上存在着一些缺陷——例如励磁调节器的公用部分出现故障时低励限制器不能限制等,调节器DC通道运行中发生失磁时低励限制也不起作用,形同虚设。目前这些问题在妈湾电厂4台机组上已作了合理的改进,方法简捷适用。
(2)在没有进行上述各种技术改造之前,妈湾电厂发电机因励磁系统元器件质量问题、安装工艺、设计等方面原因造成机组强迫停机率高达7%,通过改进这项指标已下降到零,取得良好的经济效益。
(3)即使将来将模拟调节器更新换代为微机励磁调节器,仍可沿用上述设计思想及其所取得的成果,使励磁系统运行更加可靠,让失磁保护在保护发电机乃至系统稳定方面发挥它应有而积极的作用。
参考文献:
[1] 大型汽轮发电机自并励静止励磁系统技术条件[S].国家电力行业标准DL/T650-1998.
[2] 发电厂励磁及自动化新技术研讨会论文集[C].武汉恒丰电工有限责任公司,武汉洪山电工技术研究所,1998,11.
[3] 西北电力设计院编.电力工程电气设计手册[Z].
第二篇:提高及改进励磁系统运行可靠性的措施
提高及改进励磁系统运行可靠性的措施
宋顺一,陈启胜
(深圳妈湾发电总厂,广东深圳 518052)
[摘 要] 主要介绍了妈湾发电总厂针对300 MW汽轮发电机“三机”励磁系统运行中暴露出的运行可靠性较低问题所采取的几点技术改进措施,如HWTA稳压电源、保护限制逻辑和备用励磁切换等回路改造方案。
[关键词] 自动励磁调节器;稳压电源;保护及限制;备用励磁自动切换
妈湾发电总厂是90年代初新建投产的4×300MW的火力发电厂,发电机均为哈尔滨电机厂生产的QFSN-300-2型汽轮发电机,励磁系统采用三机励磁接线方式,配HWTA型励磁调节器。备用励磁调节采用400 Hz感应调压器和隔离变压器经二极管全波整流等部件组成。
通过统计7年来的故障情况(见表1),可以看出:我厂发电机励磁系统故障主要出现在励磁调节器上,而AVR稳压电源故障占40%,限制和保护误动作共计40%。针对这些问题采取了改进措施。稳压电源的改造
1.1 设计不同电源供电
原励磁调节器是由双路400 Hz供电的。稳压电源的输入电压接电源变压器的副边,原边接副励磁机电压,实际上是1路交流供电。如果这路电源故障,励磁调节器将失去工作电压,这是非常危险的。因此将1路直流逆变电源通过二极管与400 Hz稳压电源的输出端并联,从而提高了电源工作的可靠性。1.2 选用可靠性高的逆变电源
在4号机组大修中,将原来运行极不稳定的2路电源换成辽宁朝阳电源厂生产的军工级的逆变电源,型号分别为4NIC-QZ45/15V/3A;4NIC-FD45/15V/3A。1路接400 Hz电源变压器的输出,另1路接厂用220 V直流。从近几个月的运行效果来看,更换后的逆变电源运行比较可靠,电压没有任何波动(见图1)。
1.3 更换稳压电源部分元器件
·励磁调节器原稳压电源使用ZL-1A型整流桥,平均使用寿命不到半年,将其更换成整流功率大,发热温升小,性能较稳定的ZL-3A型整流桥后,平均使用寿命提高3到4倍。
·对使用WB-724H型稳压管的电源调节板,在集成块的4-8号脚之间加1个0.01μF的电容后,稳压电源±15 V输出纹波电压由原来的40 mV下降到3.5 mV,稳定效果明显。
·对使用IC-317型稳压管的电源调节板,在其表面加装1块约是其面积2~3倍的金属片散热,可使集成块表面温度从42℃下降到28℃(用红外线测温仪现场实测稳压集成块表面温度)。
·将稳压电源调节板中可调电阻由原来的100Ω/1.0 W,型号为WX-1.0换成WX-2.5型,从而消除可调电阻因接触不良、质量不好带来稳压电源输出不稳的问题。对限制和保护的改进
HWTA励磁调节器具有高起始特性,一般均配有过励磁保护、最大励磁电流限制和三级瞬时电流限制保护。原设计为主励磁机的励磁电流达到过励保护定时限整定值或瞬时3段整定值时直流跳开发电机并灭磁。从原出口跳闸逻辑电路图可以看出Q2、Q4三极管的重要性,其中1个损坏就会造成大型发电机与系统解列。为此,对HWTA的原有回路进行了改进,如跳闸出口回路加启动闭锁。
根据HWTA厂家资料,一般现场AVR限制保护定值如下:
最大励磁限制
MEL=1.05~1.1 pu
过励保护
OXP=1.2 pu 瞬时电流限制Ⅲ
ICL=2.2 pu
主励转子电流经3个分流器接入AVR的3个DC/DC变送器。从各保护限制整定值可以看出:当过励保护K22继电器或瞬时电流限制Ⅲ段K16继电器动作时,K10和K20继电器均先已动作,因此,将K10、K20继电器接点作为闭锁元件接入出口跳闸回路。设计电路如图2,增加K22和K16动作报警信号,判别保护和限制是否处于完好状态。自动投入回路改进方案
我厂4台机组励磁系统的一次接线如图3所示。
工程设计时考虑的运行方式为:发电机并网AVR正常运行时,41E开关合上,400 Hz备用励磁调节回路交流侧隔离刀闸FK合上,直流输出电压为零,直流侧QF开关断开,备励1路处于热备用状态。当运行人员发现AVR故障先兆时,由运行人员手合QF开关,再调节备励输出电压,然后再断开AVR交流侧41E开关。这种人工手动切换方式,在多数AVR故障时,难以起到避免发电机失磁的作用,应尽量解决备用励磁装置的自动投入问题。解决的思路是:
(1)AVR正常运行时,备励手动大致跟踪AVR的输出;
(2)由发变组失磁保护判别AVR故障先分开41E开关,利用41E控制把手位置不对应来合备励QF开关;
(3)发变组保护动作时跳开发电机,同时跳41开关及QF开关并闭锁备励自投回路;
(4)发变组保护加装发电机过电压保护,具体接线见图
3、图4。
利用发电机带自动励磁调节器的实际转子电压测出对应的备励空载电压值,从而得到1条跟踪曲线,运行人员只要参照曲线适当调整即可。结束语
(1)HWTA型励磁调节器原设计上就存在着一些缺陷,例如励磁调节的公用部分出现故障,低励限制器不能限制;调节器DC通道运行中发生失磁,低励限制也不起作用。这些问题在妈湾电厂4台机组上已作了合理的改进,效果明显。
(2)即使使用微机励磁调节器,仍可沿用上述设计思想。
(3)在没有进行上述各种技术改造之前,我厂发电机因励磁系统元器件质量问题、安装工艺、设计等方面原因造成机组强迫停机率高达7%,通过改进,这项指标已下降到零,取得良好的经济效益。
第三篇:同步电动机静态励磁系统灭磁回路故障分析及改进措施
同步电动机静态励磁系统灭磁回路故障
原因分析及改进措施
赵会东
(神华鄂尔多斯煤制油分公司 检维修中心)
关键词: 同步电动机 励磁系统 灭磁回路
1.前言
大型炼化企业大量往复式压缩机组大量采用增安或隔爆型高压同步电动机拖动,单台容量最大达到8800KW,额定电压普遍采用6-10KV配电系统。
为满足现场防爆条件,机组采用旋转无刷同步电动机。
2.故障现象
2010年9月25日,在变电所值班人员巡检过程中发现2#循环氢同步压缩机(2800KW)停车后,静态励磁系统仍然在工作,当时静态励磁电流表指示为4.5A。励磁系统主机运行指示灯处于熄灭状态。励磁系统原理如下图所示:
3.故障原因分析 3.1.系统工作原理
机组正常启动后,高压断路器DL合闸,其辅助点DL(N.O)闭合,励磁柜内DLJ继电器得电,DLJ一对辅助接点(N.O)闭合,点亮YD电机运行指示灯;DLJ另一对辅助接点(N.O)闭合,送单板机系统,作为励磁系统投励或灭磁条件的判据。
机组正常停机后,高压断路器DL分闸,其辅助点DL(N.O)断开,励磁柜内DLJ继电器失电,DLJ一对辅助接点(N.O)断开,YD电机运行指示灯熄灭;DLJ另一对辅助接点(N.O)断开,送励磁控制系统,励磁控制系统接到DLJ(N.O)断开信号及主回路电流信号小于额定电流2%后,励磁控制系统灭磁继电器MJ得电启动灭磁继电器MCJ,MCJ得电后其常闭点断开,使得励磁接触器LC失电,完成机组励磁系统的灭磁工作。
3.2.系统故障原因分析
故障现象:1.励磁系统主机运行指示灯处于熄灭状态;2.静态励磁系统仍然在工作,当时静态励磁电流表指示为4.5A。
从现象判断,当时机组正常停机后,高压断路器DL却已分闸,其辅助点DL(N.O)已经断开,励磁柜内DLJ继电器已经失电,励磁系统人机界面显示主机电流为2A(属于采用误差),以上条件具备励磁系统应该灭磁。未灭磁的原因只能是励磁控制系统在主机停车过程中,未能正常工作进行灭磁。
4.改进措施 4.1.软件系统升级
励磁制造厂家将软件进行升级,优化采样逻辑,消除采样回路的干扰。
4.2.电气控制回路改进
1.在电气回路中增加辅助灭磁回路,在主机停车后,确保延时(2秒,可调)后,灭磁回路可靠动作灭磁。此回路还具有防止DL辅助点抖动,而误动灭磁的功能。
2.增加直流系统控制电源监察回路JQ2、JQ4及储能回路C,在正常情况下,直流电源通过二极管D及充电限流电阻R向储能电容C充电。在2路直流控制电源同时失电后,JQ2、JQ4失电,储能电容C通过JQ2、JQ4常闭点向保护出口继电器TCJ放电,TCJ继电器得电动作后(储能电容C的能量确保TCJ继电器励磁1S以上),其常开点送高压柜跳开主机断路器,避免同步机失磁后长期异步运行。
改进后的原理如下图:
5.结束语
改进后的励磁控制回路,经多次模拟试验,达到了预想的功能,消除了故障隐患,为大机组安全平稳运行提供了有力的保障。
姓名:赵会东
单位:神华鄂尔多斯煤制油分公司 检维修中心
联系地址:内蒙古鄂尔多斯市伊金霍洛旗乌兰木伦镇 邮编:017209 联系电话:0477-8283493
*** E-mail: hdongzhao@163.com
第四篇:发电机的励磁方法及工作原理
.发电机的励磁方法及工作原理
同步发电机为了实现能量的转换,需要有一个直流磁场而产生这个磁场的直流电流,称为发电机的励磁电流。根据励磁电流的供给方式,凡是从其它电源获得励磁电流的发电机,称为他励发电机,从发电机本身获得励磁电源的,则称为自励发电机。
一、发电机获得励磁电流的几种方式
1、直流发电机供电的励磁方式:这种励磁方式的发电机具有专用的直流发电机,这种专用的直流发电机称为直流励磁机,励磁机一般与发电机同轴,发电机的励磁绕组通过装在大轴上的滑环及固定电刷从励磁机获得直流电流。这种励磁方式具有励磁电流独立,工作比较可靠和减少自用电消耗量等优点,是过去几十年间发电机主要励磁方式,具有较成熟的运行经验。缺点是励磁调节速度较慢,维护工作量大,故在10MW以上的机组中很少采用。
2、交流励磁机供电的励磁方式
代大容量发电机有的采用交流励磁机提供励磁电流。交流励磁机也装在发电机大轴上,它输出的交流电流经整流后供给发电机转子励磁,此时,发电机的励磁方式属他励磁方式,又由于采用静止的整流装置,故又称为他励静止励磁,交流副励磁机提供励磁电流。交流副励磁机可以是永磁机或是具有自励恒压装置的交流发电机。为了提高励磁调节速度,交流励磁机通常采用100——200HZ的中频发电机,而交流副励磁机则采用400——500HZ的中频发电机。这种发电机的直流励磁绕组和三相交流绕组都绕在定子槽内,转子只有齿与槽而没有绕组,像个齿轮,因此,它没有电刷,滑环等转动接触部件,具有工作可靠,结构简单,制造工艺方便等优点。缺点是噪音较大,交流电势的谐波分量也较大。
3、无励磁机的励磁方式:
在励磁方式中不设置专门的励磁机,而从发电机本身取得励磁电源,经整流后再供给发电机本身励磁,称自励式静止励磁。自励式静止励磁可分为自并励和自复励两种方式。自并励方式它通过接在发电机出口的整流变压器取得励磁电流,经整流后供给发电机励磁,这种励磁方式具有结简单,设备少,投资省和维护工作量少等优点。自复励磁方式除没有整流变压外,还设有串联在发电机定子回路的大功率电流互感器。这种互感器的作用是在发生短路时,给发电机提供较大的励磁电流,以弥补整流变压器输出的不足。这种励磁方式具有两种励磁电源,通过整流变压器获得的电压电源和通过串联变压器获得的电流源。
二、发电机与励磁电流的有关特性
1、电压的调节
自动调节励磁系统可以看成为一个以电压为被调量的负反馈控制系统。无功负荷电流是造成发电机端电压下降的主要原因,当励磁电流不变时,发电机的端电压将随无功电流的增大而降低。但是为了满足用户对电能质量的要求,发电机的端电压应基本保持不变,实现这一要求的办法是随无功电流的变化调节发电机的励磁电流。
2、无功功率的调节:
发电机与系统并联运行时,可以认为是与无限大容量电源的母线运行,要改变发电机励磁电流,感应电势和定子电流也跟着变化,此时发电机的无功电流也跟着变化。当发电机与无限大容量系统并联运行时,为了改变发电机的无功功率,必须调节发电机的励磁电流。此时改变的发电机励磁电流并不是通常所说的“调压”,而是只是改变了送入系统的无功功率。
3、无功负荷的分配:
并联运动的发电机根据各自的额定容量,按比例进行无功电流的分配。大容量发电机应负担较多无功负荷,而容量较小的则负提供较少的无功负荷。为了实现无功负荷能自动分配,可以通过自动高压调节的励磁装置,改变发电机励磁电流维持其端电压不变,还可对发电机电压调节特性的倾斜度进行调整,以实现并联运行发电机无功负荷的合理分配。
三、自动调节励磁电流的方法
在改变发电机的励磁电流中,一般不直接在其转子回路中进行,因为该回路中电流很大,不便于进行直接调节,通常采用的方法是改变励磁机的励磁电流,以达到调节发电机转子电流的目的。常用的方法有改变励磁机励磁回路的电阻,改变励磁机的附加励磁电流,改变可控硅的导通角等。这里主要讲改变可控硅导通角的方法,它是根据发电机电压、电流或功率因数的变化,相应地改变可控硅整流器的导通角,于是发电机的励磁电流便跟着改变。这套装置一般由晶体管,可控硅电子元件构成,具有灵敏、快速、无失灵区、输出功率大、体积小和重量轻等优点。在事故情况下能有效地抑制发电机的过电压和实现快速灭磁。自动调节励磁装置通常由测量单元、同步单元、放大单元、调差单元、稳定单元、限制单元及一些辅助单元构成。被测量信号(如电压、电流等),经测量单元变换后与给定值相比较,然后将比较结果(偏差)经前置放大单元和功率放大单元放大,并用于控制可控硅的导通角,以达到调节发电机励磁电流的目的。同步单元的作用是使移相部分输出的触发脉冲与可控硅整流器的交流励磁电源同步,以保证控硅的正确触发。调差单元的作用是为了使并联运行的发电机能稳定和合理地分配无功负荷。稳定单元是为了改善电力系统的稳定而引进的单元
。励磁系统稳定单元
用于改善励磁系统的稳定性。限制单元是为了使发电机不致在过励磁或欠励磁的条件下运行而设置的。必须指出并不是每一种自动调节励磁装置都具有上述各种单元,一种调节器装置所具有的单元与其担负的具体任务有关。
四、自动调节励磁的组成部件及辅助设备
自动调节励磁的组成部件有机端电压互感器、机端电流互感器、励磁变压器;励磁装置需要提供以下电流,厂用AC380v、厂用DC220v控制电源.厂用DC220v合闸电源;需要提供以下空接点,自动开机.自动停机.并网(一常开,一常闭)增,减;需要提供以下模拟信号,发电机机端电压100V,发电机机端电流5A,母线电压100V,励磁装置输出以下继电器接点信号;励磁变过流,失磁,励磁装置异常等。
励磁控制、保护及信号回路由灭磁开关,助磁电路、风机、灭磁开关偷跳、励磁变过流、调节器故障、发电机工况异常、电量变送器等组成。在同步发电机发生内部故障时除了必须解列外,还必须灭磁,把转子磁场尽快地减弱到最小程度,保证转子不过的情况下,使灭磁时间尽可能缩短,是灭磁装置的主要功能。根据额定励磁电压的大小可分为线性电阻灭磁和非线性电阻灭磁。
近十多年来,由于新技术,新工艺和新器件的涌现和使用,使得发电机的励磁方式得到了不断的发展和完善。在自动调节励磁装置方面,也不断研制和推广使用了许多新型的调节装置。由于采用微机计算机用软件实现的自动调节励磁装置有显著优点,目前很多国家都在研制和试验用微型机计算机配以相应的外部设备构成的数字自动调节励磁装置,这种调节装置将能实现自适应最佳调节。
获得励磁电流的方法称为励磁方式。目前采用的励磁方式分为两大类:一类是用直流发电机作为励磁电源的直流励磁机励磁系统;另一类是用硅整流装置将交流转化成直流后供给励磁的整流器励磁系统。现说明如下:
.直流励磁机励磁
直流励磁机通常与同步发电机同轴,采用并励或者他励接法。采用他励接法时,励磁机的励磁电流由另一台被称为副励磁机的同轴的直流发电机供给。
.静止整流器励磁
同一轴上有三台交流发电机,即主发电机、交流主励磁机和交流副励磁机。副励磁机的励磁电流开始时由外部直流电源提供,待电压建立起来后再转为自励(有时采用永磁发电机)。副励磁机的输出电流经过静止晶闸管整流器整流后供给主励磁机,而主励磁机的交流输出电流经过静止的三相桥式硅整流器整流后供给主发电机的励磁绕组。
.旋转整流器励磁
静止整流器的直流输出必须经过电刷和集电环才能输送到旋转的励磁绕组,对于大容量的同步发电机,其励磁电流达到数千安培,使得集电环严重过热。因此,在大容量的同步发电机中,常采用不需要电刷和集电环的旋转整流器励磁系统。主励磁机是旋转电枢式三相同步发电机,旋转电枢的交流电流经与主轴一起旋转的硅整流器整流后,直接送到主发电机的转子励磁绕组。交流主励磁机的励磁电流由同轴的交流副励磁机经静止的晶闸管整流器整流后供给。由于这种励磁系统取消了集电环和电刷装置,故又称为无刷励磁系统。
第五篇:如何提高调度监控运行的可靠性及改进措施
如何提高调度监控运行的可靠性及改进措施
【摘要】随着国家电网大运行体系的建设发展,各级调控中心在承担原有调度业务的同时,开展了以变电站设备为主要目标的实时集中监视控制工作,要求监控运行人员、管理人员注重对变电站一/二次设备的深入了解和对远程获取监控数据的准确分析、判断、处置。实时监控运行是迅速处理电力事故的有效措施,是电力系统安全运行的重要保障,本文将通过分析电力系统调度监控的重要性以及对电力系统调度运行监控可靠性的完善进行相关探讨。
【关键词】电力系统调度监控可靠性
随着电力系统的不断进步和发展,电网的组成也越来越复杂,这就需要通过合理的电力调度工作来保障电网的运行顺畅。电力系统的结构复杂型、技术密集型等特点决定了调度工作的难度,电力体制改革的不断深入促进了电网技术水平以及设备水平的提高,电网的运行安全以及可靠就需要电力调度工作的顺利进行,如何保障电力调度工作的有效性和可靠性就需要调度监控工作为基础,在调度管理工作中要充分发挥调度工作的作用,加强安全管理和技术管理,从多方面保障电网调度监督工作,提高系统稳定性,促进电网的安全顺利运行。
1调度监控运行的重要性
随着当前科学技术的高速发展,对电网的升级与改革也起到了相当大的促进作用,就目前来说,我国关于智能电网的覆盖率已经遍布全国各地的各个角落。所谓智能电网,就是把电网工作与一些先进的科学技术进行结合,用以形成高度集成的与电网基础设备相配套的现代化的电网运行模式。与传统电网系统的运行相比,智能电网在在许多方面都具有更多更明显的优势。坚强性就是众多优势中最为重要的一点,其主要功能是,当电网发生异常或者出现故障的时候,对于故障范围以外的用户还能提供基本的供电需求,避免因发生大面积的停电情况,而影响人们正常的生产生活,并且在天气状况极差甚至是出现自然灾害的情况下仍然能够为电网的稳定运行提供强有力的技术保障,智能电网还可以实时的分析和评估电力信息,从而保证电力信息的安全性,有效的预防可能出现的安全隐患问题,并性系统的进行自我诊断和修复工作,将事故可能产生的影响降到最低。此外,智能电网还可以与用户进行沟通和互动,及时处理用户提出的问题并进行反馈。从而降低电力资源不必要的消耗,并提升对能源的利用率,为现代化、数字化管理的实现提供了技术性的支持。现如今,我国的智能电力系统已经进入了一个高速发展的阶段,在很大程度上实现了信息化、数字化的普及与发展。然而,在复杂的国家电网的运行过程中,只有进行规范的操作、合理的调配,才能实现国家电网调度工作的稳定发展。
2调度监控可靠运行的措施及保障
2.1提高电力工作人员的技能及素养
电力相关部门应多组织各项技能培训,以此来提高调度人员和监控人员的专业技能,从而提升调度人员和监控人员之间的协作能力,加强各部门之间的团队意识以及团队协作能力,适当的缩短不必要的中间环节,使调度及管理人员能够及时的掌握电网运行的状态,加强电网对于事故的处理能力,提升处理效率,为安全、稳定的生产提供保障。另外,为保证调度及时准确,同时兼顾不影响重点企业客户正常生产,该公司还着重组织调度对象包括协议用户的培训和交流,确定有权接受调度指令人员,促进调度、监控、运维之间以及调度与用户之间的协同配合。
2.2电网的升级和改造工程
国家电网的升级与改造,是为了适应当代科技与经济的快速发展,在严谨的理论基础下展开对国家电网调度中心系统的升级和改造工作。调度中心核心的任务是每天给各发电厂传达相应的发电指令,并实时监测电网运行过程中的状态及可能出现的各类问题,对于用户的报修能及时响应并作出处理,保障人民的生产生活能够正常进行,并不受电力故障的影响。
2.3完善的制度保障
合理的电网调度管理制度的制定,是整个电力系统能够安全稳定运行的基础和保障,只有建立完善的制度才能规范的执行今后的工作,让工作的过程有合理而完善的制度作为依据,增强国家电网的风险预防及问题解决能力。建立并执行完善的规章制度,可以从根本上对电力系统的监控、调度工作规范化,从而加强电力系统对于问题检测、发现以及解决的能力,很大程度上消除了电力工作当中的安全隐患,为国家电网系统的安全、稳定的运行提可靠地技术保障。对电压调整、电网运行方式、电力设备维修规则等进行明确的规定,规范管理制度,消除安全隐患,从而提高电力系统运行的安全性、稳定性以及可靠性。
2.4深化改革创新
在调度专业管理的工作中,调度管理协同工作机制的建立以及实时工作的监督机制建立是一项非常重要的工作,深化调度运行的工作需要以科学技术为基础而不断推动,对调度运行的全过程中的设备运行情况以及调度运行信息进行实时监控和了解,从而在数据基础上更好的指导调度精益化,对调度系统要加强更新维护管理,在整个系统的设计、软件支持、数据分析等全方位进行控制和完善,让系统的运行能够顺畅科学,消除人为因素造成的安全隐患,对于一些站所要进行更新改造,从而保障系统的整体性发展,避免数据信息的传输出现问题造成的系统调度的故障。
3结语
影响电网调度系统的因素是多方面的,要提高系统的安全运行,可以通过对电网调度系统进行针对性的加强和提高,加强系统的安全性,保证电力调度的安全和电力系统的正常运行。
参考文献:
[1]史利春.如何提高调度监控运行的可靠性及改进措施[J].中小企业管理与科技(下旬刊),2015,09:274-275.[2]赵亮.地区电网智能调度理论与管理模式研究[D].华北电力大学,2012.[3]邹必昌.含分布式发电的配电网重构及故障恢复算法研究[D].武汉大学,2012.