浅谈地基施工中如何应用粉体搅拌法

时间:2019-05-14 22:27:55下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《浅谈地基施工中如何应用粉体搅拌法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《浅谈地基施工中如何应用粉体搅拌法》。

第一篇:浅谈地基施工中如何应用粉体搅拌法

浅谈地基施工中如何应用粉体搅拌法.txt生活,是用来经营的,而不是用来计较的。感情,是用来维系的,而不是用来考验的。爱人,是用来疼爱的,而不是用来伤害的。金钱,是用来享受的,而不是用来衡量的。谎言,是用来击破的,而不是用来装饰的。信任,是用来沉淀的,而不是用来挑战的。浅谈地基施工中如何应用粉体搅拌法

来源:中国论文下载中心 [ 09-07-21 11:34:00 ] 作者:朱大福 编辑:studa20-

摘 要:在软弱土地基上的建筑物往往会出现地基强度和变形不能满足设计要求的问题,因而常常需要采取措施,进行地基处理。作为处理软土地基手段之一的深层粉体搅拌桩,在我国土建工程中,已得到广泛使用。

关键词:粉体搅拌法;地基;施工 粉体搅拌法的特点

1.1 可根据不同加固土的性质和需要达到的桩体要求,选用不同种类不同掺量的固化材料,目前常用的有水泥和石灰等。

1.2 利用固化材料可提高加固土的早期强度,大大缩短工期,由于固结屈服应力很大,故上部承重时,不会产生固结沉降。

1.3 施工机具简单,设备小型便于操作。无振动和噪音对周围土体无挤压作用,可在建筑物、人口密集区邻近施工。

1.4 加工费用低廉,技术效果明显,可用于大范围软基处理。原理

粉体搅拌是以石灰、水泥等粉体固化材料,通过专用的粉体搅拌机械用压缩空气将粉体送到软弱地层中。凭借钻头叶片,在原位进行强制搅拌,形成土和掺和料的混和物。使其产生一系列的物理——化学反映,从而形成柱状加固体,提高土的稳定性能和力学性能一般在掺入15%水泥的情况下,90天龄期的无侧限抗压强度可达20MPa。施工工艺

3.1 施工准备

3.1.1材料

(1)粉体搅拌法目前主要使用的固化剂为石灰粉、水泥以及石膏及矿渣等,也可使用粉煤灰作掺和料。

(2)粉体生石灰桩技术要求。①石灰应该是细磨的,在搅拌过程中,为防止桩体中石灰聚集,石灰最大粒径应小于2mm。②石灰应尽量选取纯净无杂质的,石灰中氧化钙和氧化镁含量至少应为8.5%,其中氧化钙含量最好不低于80%。③石灰的储存期,不宜超过三个月。④石灰的液性指数不低于70%。

(3)石灰桩法(包括块灰灌入法、粉灰搅拌法)常用掺合料是粉煤灰,也可掺入火山灰、钢渣或黏土、采用掺合料后可防止石灰桩软心。

(4)石灰加掺合料比例通常为15%-30%,加大掺合料比例,使桩身强度提高较大,粉体材料为生石灰粉掺入3%,半水石膏适用于地基酸性反应。

(5)掺粉煤灰必然引起减少桩身吸水效果,对不追求石灰吸水胀发作用可增大粉煤灰掺量,最高掺量达80%-90%。

(6)掺入30%细磨石灰粉,提高流塑状轻亚黏土地基的加固效果。

3.1.2作业条件

(1)工作场地表层硬壳很薄时,需先铺填砂、砾石垫层,以便机械在场内顺利移动和施钻,如场内桩位有障碍物,例如木桩、石块等应排除。

(2)机械设备配置:钻机、粉体发送器、空气压缩机、搅拌钻头等。

(3)根据地质资料,通过原位测试及室内试验取得地基土、灰土物理力学及化学指标,选取最佳含灰量,作为设计掺灰量,决定设置搅拌范围,选择桩长、截面及根数。

3.2 操作工艺

3.2.1 粉体喷射搅拌法是在软土地基中输入粉柱体加固材料,通过和原位地基土强制搅拌混合,使地基土和加固材料发生化学反应,在稳定地基土的同时,提高强度的方法。

(1)施工原理:由压缩空气输送的加固材料通过搅拌叶片旋转产生的空隙部位喷出,并随着搅拌叶片的旋转和原位地基土搅拌均匀混合一起,和加固材料分离后的空气,就沿着搅拌轴,由轴与土的缝隙处排出地面。

(2)固结原理:粉体喷射搅拌法使用的固化剂,主要有石灰、水泥,还有石膏及矿渣,可使用粉煤灰作为掺合料。

通过固结反应而形成稳定的石灰粉体,在软土中加入生石灰,生石灰和土中的水分发生化学反应成熟石灰,水分被吸收,起到了胶结作用,并产生热量,柱体消化而产生体积膨胀1-2倍,促进周围土体的固结。

拌入石灰后软土物理性能起了变化,加灰后软土液性指数随含水量增加呈线性递减,含水量小于50%的土加灰后,液性指数从原来流态进入半固态或固态,在稳定压力下压缩量随石灰粉含量增加而递减,压缩量减小达1/3,提高石灰柱体的强度。拌入石灰后增加软黏土的渗透性,石灰柱在不同类型软土中起到排水作用。

3.2.2 粉体搅拌法工艺要求

室内试验:在现场取回土样与加固料均匀搅拌后制备灰土试件,具体按下面原则选择:

①当含水量为天然地基土含水量,养护龄期为7天,28天和90天。②当含水量高于天然地基土含水量,含灰量可取10-15%。③当含水量低于天然地基土含水量,含灰量可取6-10%。

3.2.3 粉体喷射搅拌法施工工艺

粉体喷射搅拌法是以机械强制搅拌土粉混合体,使灰土混合形成加固柱体。

3.2.4 粉体搅拌加固形成(1)制成独立柱状。

(2)连续搭接布置成壁状。

(3)连续纵、横网向搭接成块状。

3.2.5 分体搅拌桩的排列和间距

①根据结构要求的承载力,初步选定间距,从而定出加固范围内搅拌桩的数量以及每平方米内搅拌桩所占的面积。②搅拌桩的排列一般呈等边三角形,也可四方形布置,桩径为0.5-1.5m,桩距约1m。

3.2.6 粉体搅拌法施工顺序

桩体对位——下钻——钻进——提升——提升结束。

3.3 质量标准

3.3.1 保证项目

使用材料的各种指标,包括含灰量、灰液性指数和外加剂品种掺量,必须符合设计要求。

检验方法:材料出厂证明、合格证、试验报告及施工日志。

3.3.2 基本项目

(1)桩径、深度及灰土质量,必须符合设计要求。

检验方法:一般成桩后开挖桩体,测量桩身直径、桩体连续均匀程度,要求黏结牢固,无孔洞、不松散、无裂隙、桩质坚硬、灰体强度高。在开挖出来的桩体中切取100×100×100MM立方体,在正常养护下进行强度、压缩试验。

(2)经养护后进行载荷试验,试验桩体强度,要符合设计要求。

检验方法:采用十字型钢排架、钢筋砼地锚,用千斤顶加载或用重物加载法。

3.4 施工注意事项

(1)空压机的压力不需要很高,风量不宜过大。

(2)钻机及桅秆安装在载体上,在地面上进行操作,要满足耐压力要求。

(3)石灰(生)使用前一般用水熟化,是碳化作用产生放惹反应,可用下式表示:CaO+H2O→Ca(OH)2+65.31K/mol。生石灰加水后放出热量形成蒸汽,同时体积膨胀增大,体积增大是由于比重减少(生比重3:1,熟比重2:1)和质地变为疏松的粉末状所致。

石灰有次特性,在施工现场要设置石灰池,石灰粉要遮盖,一防止飞粉污染,二防止遇雨水产生化学反应,溅伤皮肤及眼睛,施工人员要配戴防护眼镜。

(4)钻头提升距地面30-50CM应停止喷粉,以防溢出地面。

参考文献 [1

Nagaraj

T.S

Analgsis

of compressibility.ProASCE.J.GED.1990,116(GT1):105~112.[2]徐永福.粉体搅拌桩下沉原因分析及其对策[J].建筑技术.2000.3 P.171-172.[3]JTJ017-96.公路软土地基 路基设计与施工技术规范[M].北京:人民交通出版社,1997.

第二篇:地基处理——粉体搅拌法

地基处理——粉体搅拌法.txt20如果你努力去发现美好,美好会发现你;如果你努力去尊重他人,你也会获得别人尊重;如果你努力去帮助他人,你也会得到他人的帮助。生命就像一种回音,你送出什么它就送回什么,你播种什么就收获什么,你给予什么就得到什么。地基处理——粉体搅拌法 2008-7-28 9:45:00 来源: 添加人: [我来说两句] [字号:大 中 小]核心提示:地基处理--粉体搅拌法

(一)施工准备

1.材料

(1)粉体搅拌法目前主要使用的固化剂为石灰粉、水泥以及石膏及矿渣等,也可使用粉煤灰作掺和料。

(2)粉体生石灰桩技术要求

1)石灰应该是细磨的,在搅拌过程中,为防止桩体中石灰聚集,石灰最大粒径应小于2mm。

2)石灰应尽量选取纯净无杂质的,石灰中氧化钙和氧化镁含量至少应为8.5%,其中氧化钙含量最好不低于80%。

3)石灰的储存期,不宜超过三个月。

4)石灰的液性指数不低于70%。

(3)石灰桩法(包括块灰灌入法、粉灰搅拌法)常用掺合料是粉煤灰,也可掺入火山灰、钢渣或黏土、采用掺合料后可防止石灰桩软心。

(4)石灰加掺合料比例通常为15%-30%,加大掺合料比例,使桩身强度提高较大,粉体材料为生石灰粉掺入3%,半水石膏适用于地基酸性反应。

(5)掺粉煤灰必然引起减少桩身吸水效果,对不追求石灰吸水胀发作用可增大粉煤灰掺量,最高掺量达80%-90%。

(6)掺入30%细磨石灰粉,提高流塑状轻亚黏土地基的加固效果。

2.作业条件

(1)工作场地表层硬壳很薄时,需先铺填砂、砾石垫层,以便机械在场内顺利移动和施钻,如场内桩位有障碍物,例如木桩、石块等应排除。

(2)机械设备配置:钻机、粉体发送器、空气压缩机、搅拌钻头等。

(3)根据地质资料,通过原位测试及室内试验取得地基土、灰土物理力学及化学指标,选取最佳含灰量,作为设计掺灰量,决定设置搅拌范围,选择桩长、截面及根数。



(二)操作工艺

1.粉体喷射搅拌法是在软土地基中输入粉柱体加固材料,通过和原位地基土强制搅拌混合,使地基土和加固材料发生化学反应,在稳定地基土的同时,提高强度的方法。

(1)施工原理:由压缩空气输送的加固材料通过搅拌叶片旋转产生的空隙部位喷出,并随着搅拌叶片的旋转和原位地基土搅拌均匀混合一起,和加固材料分离后的空气,就沿着搅拌轴,由轴与土的缝隙处排出地面。

(2)固结原理:粉体喷射搅拌法使用的固化剂,主要有石灰、水泥,还有石膏及矿渣,可使用粉煤灰作为掺合料。

通过固结反应而形成稳定的石灰粉体,在软土中加入生石灰,生石灰和土中的水分发生化学反应成熟石灰,水分被吸收,起到了胶结作用,并产生热量,柱体消化而产生体积膨胀1-2倍,促进周围土体的固结。

拌入石灰后软土物理性能起了变化,加灰后软土液性指数随含水量增加呈线性递减,含水量小于50%的土加灰后,液性指数从原来流态进入半固态或固态,在稳定压力下压缩量随石灰粉含量增加而递减,压缩量减小达1/3,提高石灰柱体的强度。拌入石灰后增加软黏土的渗透性,石灰柱在不同类型软土中起到排水作用。

2.粉体搅拌法工艺要求

(1)略

(2)略

(3)室内试验:在现场取回土样与加固料均匀搅拌后制备灰土试件,具体按下面原则选择:

1)当含水量为天然地基土含水量,养护龄期为7天,28天和90天。

2)当含水量高于天然地基土含水量,含灰量可取10-15%。

3)当含水量低于天然地基土含水量,含灰量可取6-10%。

3.粉体喷射搅拌法施工工艺

粉体喷射搅拌法是以机械强制搅拌土粉混合体,使灰土混合形成加固柱体。

4.粉体搅拌加固形成(1)制成独立柱状

(2)连续搭接布置成壁状

(3)连续纵、横网向搭接成块状。

5.分体搅拌桩的排列和间距

(1)根据结构要求的承载力,初步选定间距,从而定出加固范围内搅拌桩的数量以及每平方米内搅拌桩所占的面积。

(2)搅拌桩的排列一般呈等边三角形,也可四方形布置,桩径为0.5-1.5m,桩距约1m。

6.粉体搅拌法施工顺序

(1)桩体对位

(2)下钻

(3)钻进

(4)提升

(5)提升结束



(三)质量标准

1.保证项目

使用材料的各种指标,包括含灰量、灰液性指数和外加剂品种掺量,必须符合设计要求。

检验方法:材料出厂证明、合格证、试验报告及施工日志。

2.基本项目

(1)桩径、深度及灰土质量,必须符合设计要求。

检验方法:一般成桩后开挖桩体,测量桩身直径、桩体连续均匀程度,要求黏结牢固,无孔洞、不松散、无裂隙、桩质坚硬、灰体强度高。在开挖出来的桩体中切取100×100×100MM立方体,在正常养护下进行强度、压缩试验。

(2)经养护后进行载荷试验,试验桩体强度,要符合设计要求。

检验方法:采用十字型钢排架、钢筋砼地锚,用千斤顶加载或用重物加载法。

3.允许偏差

检查数量:桩数5%

项目允许偏差(mm)检验方法

桩位中心位置10拉线及尺量检查

凿出浮浆后桩顶标高

桩(墙)体垂直度1H/100吊线检查





(四)施工注意事项

(1)空压机的压力不需要很高,风量不宜过大。

(2)钻机及桅秆安装在载体上,在地面上进行操作,要满足耐压力要求。

(3)石灰(生)使用前一般用水熟化,是碳化作用产生放惹反应,可用下式表示:

CaO+H2O→Ca(OH)2+65.31K/mol

生石灰加水后放出热量形成蒸汽,同时体积膨胀增大,体积增大是由于比重减少(生比重3:1,熟比重2:1)和质地变为疏松的粉末状所致。

石灰有次特性,在施工现场要设置石灰池,石灰粉要遮盖,一防止飞粉污染,二防止遇雨水产生化学反应,溅伤皮肤及眼睛,施工人员要配戴防护眼镜。

(4)钻头提升距地面30-50CM应停止喷粉,以防溢出地面。

第三篇:深层水泥搅拌桩在大型泵站地基处理中的应用

深层水泥搅拌桩在大型泵站地基处理中的应用

摘要: 太浦河泵站工程主泵房建基面在粉质粘土上,土力学强度较低,不能满足泵房对地基的强度和变形要求,必须进行地基处理。经过方案比选,主泵房地基采用水泥搅拌桩处理。检测结果表明,加固后的地基达到了预期的效果。关键词: 地基处理 水泥搅拌桩 单桩承载力 单桩复合地基承载力(1.上海勘测设计研究院,上海,200434;2.太浦河泵站工程建设指挥部江苏 吴江 215224;3.中国水利水电第十一工程局河南 三门峡 472000;)概述 太浦河泵站位于江苏省吴江市太浦河上已建的太浦闸南侧,是太浦河工程的重要组成部分,其修建目的主要是解决枯水年份太湖水位较低时抽取太湖水向下游上海市供水300m 3 /s,以改善上海水质。主泵房内布置6台斜15°单机50m 3 /s的斜轴泵,底板长84.87m,宽(顺水流方向)40.45m,采用二机一缝的布置,泵房底板共分三块,单块底板长度为22.50m。进水侧底板底高程-8.05m,出水侧底板底高程-6.45m,底板厚2m。安装间布置在泵房的北端,在泵房的南端布置一座35kV变电站。主泵房建基面在粉质粘土上,土层物理力学指标较低,天然地基无法满足泵房上部结构对地基的强度和变形要求,必须进行地基处理。2 工程地质条件 场地区地层为巨厚(大于100m)第四纪河湖相、海相及沼泽相等沉积层,无活动断裂构造分布,区域地质构造稳定,地震基本烈度为Ⅵ度。场地区土层的物理力学指标见表1。泵房建基于⑤层土上,⑤层为灰色粉质粘土,标贯击数小于4,压缩系数0.38Mpa-1,地基承载力标准值为105Kpa,且⑤层属高~中压缩性土,天然地基不能满足泵房上部结构对地基的强度和变形要求,由于软土厚度较大,不宜用换(填)土处理。同时对⑥层下伏软弱下卧层需进行强度及变形验算。表1地基土物理力学性质指标 层号 土层名称 土层 厚度 m 湿密度(kN/m 3)天然孔隙比 天然含水量(%)塑性 指数 I P 液性 指数 I L 压缩模量(MPa)地基承载力标准值(KPa)③ 1 粉质粘土 0.4~3.1 20.0 0.74 26.7 19.4 0.36 8.6 255 ③ 2 粉质粘土 0.3~5.1 19.4 0.84 30.5 14.4 0.68 9.4 150 ③ 3 砂壤土 0.9~5.2 19.0 0.88 32.3 9.214.4 120 ④ 1 轻砂壤土 1.5~3.1 19.0 0.90 33.418.9 120 ⑤ 粉质粘土 4.4~7.5 19.0 0.94 34.8 13.9 1.07 5.3 105 ⑤’ 粉质粘土与粉质砂壤土互层18.8 0.96 35.7 9.27.1 110 ⑥ 粉质粘土 4.0~6.5 20.5 0.65 23.5 20.3 0.10 13.7 300 ⑦ 1 重粉质粘土 0.4~3.0 19.6 0.77 27.7 13.5 0.5 12.6 200 3泵房地基处理设计 3.1地基处理方案 泵房地基应力计算以二机一联段作为计算单元,经过计算,控制工况为完建工况,泵房在控制工况时基底应力最大值为198.9 kPa,最小值为135.3 kPa,平均地基应力为167.1kPa,超过⑤层土的地基承载力标准值。对⑤层土进行宽度修正以后的地基承载力标准值为128.96 kPa,亦不能满足设计要求。⑤层下部为⑥层棕黄、灰绿色粉质粘土,该土层厚约5.2m,土质均一,呈硬塑状态,属中压缩性土,其地基承载力标准值为300kPa,是泵房基础较好的浅层持力层。设计考虑了三个方案进行技术和经济比较,方案一:预制钢筋混凝土方桩方案;方案二:灌注桩方案;方案三:水泥搅拌桩方案。方案投资比较见表2。根据规范可知,水泥搅拌桩一般适用于软弱粘性土和粉性土地基,由于受搅拌机械搅拌能力的限制,一般不适用于地基承载力设计值大于120kPa的粘性土和粉性土,而⑤层灰色粉质粘土经宽深修正,其承载力设计值达128.96 kPa,但经过室内水泥土试验,⑤层土经搅拌以后能达到很好的加固效果,可满足设计的要求。经过综合比较,方案三因其投资省、抗渗效果好以及能较好地适应地基变形等优点而被选为推荐方案。表2泵房地基处理方案比较表 方案 名 称 单 位 主要工程量 投资(万元)预制钢筋混凝土方桩 混凝土 m3 1441.4 268.0 钢筋 t 282.8 混凝土灌注桩 混凝土 m3 1950.8 314.4 钢筋 t 160.6 深层水泥搅拌桩 水泥搅拌桩 m3 7729.4 196.4 3.2地基处理设计 水泥搅拌桩桩型采用双头搅拌桩(断面为2个直径0.7m搭接0.2m的复合桩),固化剂采用425 # 普通硅酸盐水泥,水泥掺入量选用15%,设计桩长6.5~

8.1m,进入⑥层持力层0.5~1m。3.2.1水泥搅拌桩单桩竖向承载力标准值 确定 根据《建筑地基处理技术规范》(JGJ79-91),单桩竖向承载力标准值 按下列二式计算,并取其中的较小值。式中,η为强度折减系数; 为室内加固土试块的无侧限抗压强度平均值;Ap为桩的截面积; 为桩周土的平均摩擦力;q p 为桩端天然地基土的承载力标准值;α为桩端天然地基土的承载力折减系数;Up 为桩周长; l 为桩长。根据本工程的“水泥土检测试验报告”,水泥掺量为15%,龄期为90天的水泥土无侧限抗压强度 =2.31MPa,桩长考虑伸入持力层0.8m~1m,经计算,单桩竖向承载力标准值由摩擦桩控制 =322.8kN。

3.2.2复合地基的承载力标准值 确定及桩位布置 根据《建筑地基处理技术规范》(JGJ79-91),复合地基的承载力标准值 由下式计算: 式中,f s,k 为桩间天然地基土承载力标准值;β为桩间土承载力折减系数(本工程取0.1);m为面积置换率。经计算,面积置换率m=41.2%时复合地基的承载力标准值 =196kPa。根据泵房地基应力分析,平均地基应力 kPa <,最大地基应力 <1.2 =235.2kPa,满足规范要求。布置水泥搅拌桩时考虑了群桩横截面的重心和荷载合力作用点一致的原则,在泵房的上游侧,桩中心间距为1.2m×1.4m,在下游侧桩中心间距为1.2m×1.525m。考虑泵房地基的抗渗要求,上、下游侧第一排水泥搅拌桩布置成连续壁状,搭接0.2m,在主泵房地基外围布置了应力扩散桩。桩位布置剖面图见图1。在施工图阶段,对泵房集水井布置进行了优化。集水井由原来的大开挖方案优化为水泥搅拌桩垂直支护方案,集水井采用垂直开挖,一方面节约了土建工程量,另一方面,临近集水井的工作面由斜坡面改为水平面,方便了工程施工。3.2.3下卧层地基验算 因水泥搅拌桩置换率较大且为摩擦桩型,因此按群桩作用的原理,对下卧层地基进行验算。验算时将搅拌桩和桩间土视为一个假想的实体基础,考虑假想实体基础侧面与土的摩擦力,验算假想基础底面的承载力。加固地基的承载力标准值R sp 采用控制工况的平均地基应力167.1kPa,实体基础的水下容重取8.8kN/m 3,经计算假想基础底面的应力Pa =217.35kPa。其下⑥层土的地基承载力标准值R k =300kPa,经修正后的实体基础底面的地基承载力标准值R=348.4kPa,Pa<R,可见在上部荷载作用下下卧土层承载力能满足要求。图1水泥搅拌桩布置剖面图 3.2.4泵房基础地基变形验算 泵房地基最终沉降量由复合土层的压缩变形值S 1 和桩端以下未处理土层的压缩变形值S 2 组成。S 1 按下式计算。式中,p为桩群体顶面的平均附加应力;p o 为桩群体底面土的附加压力;E o 为桩群体的变形模量; 为加固地基的深度。桩端以下未经处理土层的压缩变形值S 2 按下式计算: 式中,e 1i、e 2i 为基础底面以下第i层土在平均自重应力及平均自重应力加平均附加应力作用下由压缩曲线查得的相应孔隙比;h i 基础底面以下第i层土的厚度。经计算,控制工况时S 1 =1.2cm、S 2 =8.22cm,泵房的最终沉降量S ∞ =S 1 +S 2 =9.42cm,小于有关规范建议的沉降量控制范围10~15cm,满足地基的变形要求。4成桩试验 试验的目的是为了进一步了解施工区域的水文地质条件对搅拌桩施工的影响程度,并确定如水泥浆的配合比、搅拌提升速度、复搅深度、注浆压力及电机工作电流等施工参数。4.1水泥土室内配合比试验 通过水泥土室内配合比试验确定水泥土无侧限抗压强度与水泥掺入量及水灰比的关系。试验时,在实地取5层土样和拌和水,按水泥掺入比15%、水灰比0.5、0.6、0.7分别制作70.7×70.7×70.7mm的标准水泥土试块,在标准养护室内养护7天后做水泥土试块抗压试验。试验结果如表2-1示。表中水泥土90d无侧限抗压强度根据经验公式q u,7 =(0.3~0.5)q u,90 推算得到。由表2-1可知,三种不同水灰比的水泥土7d无侧限抗压强度都满足达到90d标准强度2.31Mpa的30~50%(0.69~1.16Mpa)的要求。表3水泥土无侧限抗压强度试验结果统计 序号 水灰比 水泥掺入比 7d强度q u,7(Mpa)q u,7/ q u,90(%)1 0.5 15% 1.3 56.3 2 0.6 15% 1.2 51.9 3 0.7 15% 1.0 43.3 4.2成桩试验 施工机械选用SJB-II型深层水泥搅拌机,水泥掺入比α w =15%,水灰比按0.50、0.55、0.60、0.65分别进行试验。试验桩选择底板外的扩散桩,实际共做试验桩22根,最终确定搅拌桩的施工参数:(1)水泥掺入比α w =15%,单桩水泥用量不小于200kg/m;

(2)浆液比重不小于1.755kg/l,水灰比约为0.65;(3)喷浆提升速度不大于0.5m/min,预搅下沉速度0.6~0.7m/min(不大于2m/min);(4)喷浆口喷浆压力0.4~0.6Mpa;(5)桩尖标高按进入持力层6土层的深度不小于30cm(可根据工作电流的变化判断是否已进入持力层)且不得高于▽-13.1m控制。5深层搅拌桩施工 5.1施工机具及配套机械 共采用6台SJB-II型深层搅拌机同时施工,每台搅拌机配置灰浆搅拌机、灰浆泵、电气控制柜、自动流量计各一台及其他辅助设备。5.2施工工艺

(1)定位:搅拌机就位、对中;(2)预搅下沉:启动搅拌机电机,放松卷扬机钢丝绳,使搅拌机沿导向架切土下沉;(3)制备水泥浆:待搅拌机开始下沉即可开始按成桩试验确定的配合比制备水泥浆;(4)喷浆提升:搅拌机下沉到达最大深度后,开启灰浆泵开始喷浆搅拌提升;第一次喷浆量应控制在单桩总浆量的50%左右;(5)重复搅拌下沉;(6)重复喷浆搅拌提升:搅拌机提升到桩顶标高时,浆液应若有剩余,可在桩身上部1~1.5米范围内重新搅拌喷浆;不得出现搅拌头未到桩顶,浆液已喷完的现象;(7)上下往返复搅一次;(8)关闭机械;(9)重复上述步骤,开始下一根桩施工。6施工质量控制与检验 6.1施工质量控制(1)基础底面以上至少留有50cm厚的土层,以保证喷浆搅拌至少高出基础底板底面高程50cm;(2)施工期间应控制地下水位高程低于

操作面2米以上;(3)预搅充分,以利于土和水泥浆均匀搅拌;(4)严格按预定配合比配置水泥浆液,并定期抽查;(5)保证足够的注浆压力;必须使用自动流量计控制实际喷浆量;(6)控制喷浆搅拌提升速度,段浆量(l/m)要均匀;(7)考虑到桩顶与基础底板接触部分受力较大,因此对桩顶1~1.5米范围应加强搅拌,确保桩头的均匀密实;(8)连锁桩施工时,相临桩的施工间隔不得超过24小时。6.2质量检验(1)轻便触探试验 按2%的比例共做了40组桩身7天强度的验,试验指标N10击数100mm都在30击以上,大于原状土平均击数14.6击的两倍,表明搅拌桩的现场强度达到了设计要求。(2)静载荷试验 采用慢速荷载维持法共做了7组单桩静载荷试验和6组单桩复合地基静载荷试验。试验结果显示:(1)单桩极限承载力标准值不小于667KN,大于设计要求的660KN;(2)单桩复合地基承载力大于设计要求的最大加荷量380Kpa。表4单桩静载荷试验成果汇总表 序号 最大加载量(KN)最大沉降(mm)回弹量(mm)回弹率(%)极限承载力(KN)1 660 17.06 5.15 30.19 ≧660 2 660 24.47 8.23 33.63 ≧660 3 660 9.03 3.49 38.65 ≧660 4 660 8.34 3.99 47.84 ≧660 5 660 39.33 6.74 17.14 ≧660 6 660 61.91 11.16 18.03 ≧660 7 792 19.16 5.61 29.28 ≧792 表5单桩复合地基静载荷试验成果汇总表 序号 最大加载量(KN)最大沉降(mm)回弹量(mm)回弹率(%)极限承载力(KN)1 700 17.50 8.20 46.86 ≧700 2 640 13.90 6.45 46.40 ≧640 3 700 12.31 5.91 48.01 ≧700 4 700 24.27 7.11 29.30 ≧700 5 640 37.36 8.52 22.44 ≧640 6 640 9.04 7.21 79.76 ≧640 注:

1、底板上、下游单桩承载面积分别为1.4m×1.2m和1.525m×1.2m,设计要求最大加载量为380Kpa,经换算得上下游最大加载量分别为640KN和700KN; 7结束语 太浦河泵站目前为国内总流量最大的斜轴伸泵泵站,水泥搅拌桩经单桩和复合地基载荷试验,满足设计要求,施工期初步观测表明,地基沉降在允许范围以内,可见水泥搅拌桩的地基处理方式是合适的、可行的,同时对地基承载力设计值比较大的粘性土和粉性土,可通过加强施工成桩试验,合理调整施工机械和有关参数,加强水泥用量的计量,可以确保水泥搅拌桩的质量。总之,水泥搅拌桩在太浦河泵站工程中的成功应用,为今后的类似工程提供了借鉴。

第四篇:粉体技术在无机材料领域的应用

粉体技术在无机材料领域的应用

摘要:以玻璃、水泥、陶瓷为主的传统无机材料已经满足不了时代的需求,新兴的粉体技术给无机材料的应用注入了新的活力。本文主要总结了粉体技术对传统无机材料性能的改善以及在矿物加工方面的影响,特别是纳米粉体拓宽了无机材料在能源、环保、催化方面的应用。

关键词:矿物加工水泥粉体精细陶瓷纳米粉体

Abstract:Mainly glass, cement, ceramic traditional inorganic material already can't satisfy the demand of The Times, the emerging technology of powder to the application of inorganic materials has injected new vitality.This paper mainly summarizes the to improve the performance of powder technology in the traditional inorganic materials and the influence of the mineral processing, especially nano widened the inorganic materials in energy, environmental protection, catalytic applications.Key words:Mineral processing cement powder fine ceramic nano powder

引言

粉体技术是随着近代科技的发展而发展起来的一门新兴科学技术,它是物理、化学、化工、机械、冶金、材料、生物、信息控制等学科的交叉学科。无机材料的应用历史也很久远,传统的无机材料仍有用武之地,但生产过程中的污染及优良性能的单一这些缺点显而易见。对于任何一项技术或工业过程,其经济性和实用性是决定其存在的根本因素。对于无机材料,将粉体的制备工艺、微观结构、宏观物性、工业化生产和应用技术等有机的结合起来,作为系统工程对粉体的制备过程机理进行深入的研究,增强对微粒的形状、分布、粒度、性能等指标的控制技术,并不断完善粉体的性能测试、表征手段,都从而促进粉体技术在无机材料领域的发展。

1.矿物加工

矿物经粉碎分级后直接用于农业、化工、造纸、塑料、橡胶、涂料等产品中。造纸涂布级高岭土希望在超细粉碎的同时保持片状矿物的特性,提高粉料的涂布遮盖能力。在粉碎工艺上尽量选择剥片原理的粉碎方式和设备,从粉碎机理上来说,强化外力能加强对高岭土的强力剪切。同样是造纸涂布级的超细膜重质碳酸钙,其原始结晶多为立方多面体,为了达到超细粉碎的目的,则需要强化矿物颗粒的体积粉碎和表面的研磨。复合材料增强用的硅灰石在粉碎时应尽量保持它原始的针状结晶状态,是产品成为天然的短纤维增强材料。强力冲击式粉碎机能够在矿物颗粒内部短时间内形成较强的内应力,使颗粒内部沿着解理面形成裂纹,逐渐扩大直至最后分离形成细小的针状颗粒。云母由于它的多层结构多被用作电介质材料和珠光颜料,粉碎加工过程中应尽可能保证所得颗粒的径厚比一定。作为珠光颜料的云母粉体,其表面不能有太多的划伤,否则会影响其光学效果。在粉体设备的选择上应尽量选用高压射流式粉碎机,利用颗粒内部层间的膨胀压力而将将颗粒剥离,达到预期的粉碎效果。

重质碳酸钙是由方解石或大理石经粉碎分级而成,它的硬度较低,加工过程中要求有较高的白度。众多的粉碎设备中没几乎都可以用于重质碳酸钙的生产。由于其单位重量售价低,因此比轻质碳酸钙用量大,关键是如何无污染、低成本地达到加工目的是设备和工艺选择的重要问题。目前常用的雷蒙磨和球磨机或振动磨与分级机结合的冲击加超细研磨的方式。这种方式得到的粉体中细粉含量较高,常用于一些聚合物的填充从而得到优异性能的复合材料。

锆英砂的主要成分为硅酸锆,原料中常含有铁、钛等杂质。它的性质稳定,耐研磨,其微粉作为陶瓷行业釉料的乳浊剂,具有遮盖力强,乳浊效果好等特点。然而,锆英砂的超细粉碎过程是一个耗能大、设备磨碎严重、产品易污染的复杂过程。为实现低成本生产、必须综合分析加工工艺,优化设备组合,在能耗和其他消耗尽可能低的条件下产生高质量硅酸锆粉体。为了高细度,尽可能采用搅拌研磨的方式。为了保证产品的纯度,还需要配合酸洗等提纯措施。

2.水泥粉体

水泥是常用的建筑材料,在生产过程中需要对原料和成品进行两次研磨粉碎。随着对混凝土制品强度要求的提高,水泥的细度也在逐渐增加。原料细度的提高有利于改善原料各组分的混合均匀度。降低游离氧化钙的含量。水泥熟料的硬度较大,而细粉含量的高低在一定程度上决定了混凝土早期强度的高低。水泥的粒度分布对混凝土在不同龄期的强度有着决定性的影响。为了改善混凝土强度降低水化热和减小收缩,近年来磨细矿渣、磨细粉煤灰等混凝土掺合料的用量逐年增加。这类产品的生产设备主要是大型的球磨机振动磨、高效分级机等。

有人利用SEM、XRD、TG-DTA、IR、激光粒度仪、微量热仪、比表面积及孔隙度分析仪等现代分析测试手段研究了微纳粉体对硅酸盐水泥和硫铝酸盐水泥物理力学性能的影响及机理。在此基础上,进一步探讨了超微细矿渣、超微细粉煤灰对水泥物理力学性能的影响,探讨了利用矿渣、粉煤灰、石灰石制备绿色高性能复合超细矿粉的适宜配方和适宜的生产工艺。他们的研究结果表明:纳米SiO2和硅灰对水泥的强度都有较大幅度的提高,在三天以后,掺纳米SiO2的水泥试样强度明显高于掺硅的。这主要是由于纳米SiO2的粒径比硅灰的粒径小,纳米SiO2具有更大的表面能,纳米SiO2中[SiO4]4-离子团聚合程度低,导致了纳米SiO2的火山灰活性比硅灰的火山灰活性要高得多。掺有纳米SiO2的水泥试样中熟料矿物水化反应程度更高,CSH凝胶数量增长更快,结晶态Ca(OH)2含量更低。从而使掺有纳米SiO2的水泥浆体内比表面积和总孔体积。

3.精细陶瓷

精细陶瓷的应用目前,国外精细陶瓷主要被发达国家所垄断,特别是日本、美国和西欧等发达国家的精细陶瓷生产量和应用量是全世界最大的。日本和美国精细陶瓷产量约占全世界市场份额的80%以上。我国精细陶瓷的起步较晚,但改革开放以来,一些外资和中外合资精细陶瓷生产企业的逐渐发展壮大,促使我国的精细陶瓷产业已初具规模,但与日本和美国等发达国家相比,尚属起步阶段。目前,我国精细陶瓷的生产规模仍较小,由于缺乏行业的统计资料,还难于定量描述。但从其结构和功能来区分,我国精细陶瓷的发展趋势仍与国外精细陶瓷的发展趋势基本一致,主要是以电子陶瓷为主。精细陶瓷主要应用于电子、通信、化工、冶金、机械、汽车制造、能源、航空航天等空间技术装备以及国民经济各部门。陶瓷工业的原料制备过程中需要对物料进行粉磨和混合。为了后续的挤压成型,多采用湿法的批次粉磨工艺。主要粉磨设备为批次球磨机。原料取决于浆料的粉磨效果好坏,直接影响着泥坯的流变性和成型烧结质量。研磨过程中要避免金属物的污染。所使用的衬板多为燧石、橡胶或聚氨酯等非金属材料。研磨介质采用球石或陶瓷磨球。

在精细陶瓷生产过程中、原料超细研磨更为需要。无论是功能陶瓷还是结构陶瓷。都是多种原料固相反应的产物。若原料粉碎得越细,多种原料的混合度就越高,固相反应也就越均匀彻底,产品性能也就越好。达到纳米级的陶瓷微纳米陶瓷,通过其小尺寸效应,希望克服陶瓷材料的脆性,使陶瓷具有像金属一样的柔韧性和可加工性。若能解决单相纳米陶瓷的烧结过程中抑制晶粒长大的技术难题,则它将具有高硬度、高韧性、低温超塑性、易加工等优点。在制备纳米粉体的工艺上,除了保证纳米粉体的质量,做到尺寸和分布可控,无团聚,能控制颗粒的形状,还要生产量大。

3.1结构陶瓷

高温、高强、超硬、耐磨、抗腐等机械力学性能为其主要特征。例如,纳米级ZrO2陶瓷,烧结温度为1250℃,施加一不大的力有400%的形变,类似金属的延展性。室温下进行拉疲劳试验,断裂后表层晶粒间同样表现为塑性形变。不仅离子型物质如此,共价型的SiCl4也有微小超塑性行为。美国一科学家用CaF2纳米材料在室温下可大幅度弯曲不断裂。纳米TiO2陶瓷度达95%,高硬度,耐高温,若用于改善发动机系统,将大大改善其性能。降低烧结温度制成小晶粒,用于电子陶瓷制备,例如广东肇庆风华集团已采用纳米钛酸钡颗粒烧结来提高片式电容器和片式电感器的各项指标性能。

3.2功能陶瓷

以电、磁、光、声、热、力等性能及相互转换为主要特征。例绝缘陶瓷、介电陶瓷、铁电陶瓷、压电陶瓷、半导、导电、超导陶瓷。有的学者基于过渡液相烧结机制的高性能压电陶瓷材料具有低烧结温度、高压电常数和低介质损耗等诸多优点。低烧多层压电变压器(MPT)以其低驱动电压、小体积、高升压比、薄型片式化等优点在液晶显示背光电源等方面获得应用。多层压电变压器及其背光电源具有高功率密度、高转换效率、薄型化和低成本等特点。基于缺陷化学原理和无晶粒长大的致密化烧结动力学,制备了亚微米/纳米晶钛酸钡基陶瓷及其薄层化贱金属内电极MLCC。研制了低烧铁氧体材料及其片式电感器。

3.3仿生陶瓷

有些研究者应用化学沉淀法制备了粒径约100nm的β-磷酸三钙(β-TCP)超细粉体,并采用放电等离子烧结技术烧结β-TCP,在875℃的烧结温度、150℃/min的升温速率和40MPa的烧结压力下,保温2min,制备得到透明的β-TCP生物陶瓷。XRD、FESEM、密度和透光性能分析结果表明,制备得到的β-TCP生物陶瓷纯度高、结构致密、晶粒平均尺寸约250nm具有良好的透光性能。细胞相容性研究的结果表明,透明β-TCP生物陶瓷对骨髓间质干细胞的增殖作用明显高于常规的通用聚乙烯培养板。

4.纳米粉体

纳米粉体材料作为一种特殊的精细化工产品,越来越受到人们的关注。纳米粉体的尺度处于原子簇和宏观物体交界的过渡域,是介于宏观物质与微观原子或分子的过渡亚稳态物质,它有着不同于传统固体材料的显著的表面与介面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应,并且表现出奇异的力学、电学、磁学、光学、热学和化学等特性。

4.1能源方面的应用

用于镍-碱性电池,制成纳米Ni(OH)2;锂离子在电池中的应用Cd-Ni,Zn-Ni 在电池中运用锰钡矿、MnO2纳米纤维、纳米管、聚硅氧烷。在太阳能电池方面的应用,例如在市场上占有极大份额的晶硅电池板。第三代电池——染料敏化太阳能电池(DSSCs)的多孔纳米晶TiO2薄膜电极。

4.2环保方面的应用

目前,国内外对层状硅酸盐矿物在废水处理领域中的应用研究主要集中在对其有机改性后对废水中有机污染物的吸附去除,而关于无机粉体改性土对无机污染物特别是有害重金属离子的吸附去除研究较少。层状硅酸盐中的膨润土进行改性,缩小粒径,增大吸附能力,吸附含 Cr6+重金属离子废水。

4.3催化方面的应用

锐钛矿型的TiO2作为催化剂,可以与卤代脂肪烃、卤代芳烃、有机酸类、酚类、硝基芳烃、取代苯胺反应,还可除去空气中的丙醇等有害污染物。类似粉体还有Fe2O3、CdS、ZnS、PbS、PbSe、ZnFe2O4。TiO2经过Cu+、Ag+表面修饰可以杀菌;经Pb化可以使丙炔与水蒸气反应生成甲、乙、丙烷;经Pt化可以分解醋酸为甲烷和二氧化碳;催化甲醇水溶液制取氢气。

参考文献

[1] SumioIijima.Helical Microtubules of Graphitic Carbon[J].Nature, 1991, 354: 56-58 [2] Wong E W,Sheehan P E,Lieber C M.Nanobeam mechanics:elasticity,strength,and toughness of nanorods and nanotubes[J].Science,1997,277:1971-1975.

[3] Kim P,Shi L,Majumdar A,et al.Thermal transport measurements ofindividualmultiwalled nanotubes[J].Physical Review Letters,2001,87:215-221. [4] Cornwell C F,Wille L T.Elastic properties of single-walled carbonnanotubes in compression[J].Solid State Communications,1997,101:555-558.

[5] Robertson D H,Brenner D W,Mintmire J W.Energetics of nanoscalegraphitic tubules[J].Physical Review,1992,B45:12592-12595.

[6] Lu J P.Elastic properties of carbon nanotubes and nanoropes[J].PhysicalReview Letters,1997,79:1297-1300.

[7] Yakobson B I,Brabec C J,Bernholc J.Nanomechanics of carbon tubes:instabilities beyond linear response[J].Physical Review Letters,1996,76:2511-2514.

[8] 辛玲,张锐,石广新,等.碳纳米管性能及应用[J].中国陶瓷工艺,2005.12(3):39-42.[9] A jayan P.M, Stephen O, Colliex C, et al.Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite[J].Science, 1994,(265): 1212-1216.[11] Xu X J,Thwe M M,Shearwood C,Liao K.Mechanical properties andinterfacial characteristics of carbon-nanotube-reinforced epoxy thinfilms[J].Applied Physics Letters,2002,81:2833-2835. [12] Lau K T,Shi S Q,Cheng H M.Micro-mechanical properties andmorphological observation on fracture surfaces of carbon nanotube compositespre-treated at different temperatures[J].Composites Science and Technology,2003,63:1161-1164.

[13] Jin Z X,Pramoda K P,Xu G Q, et al.Dynamic mechanical behavior ofmelt-processed multi-walled carbon nanotube/poly(methyl methacrylate)composites[J].Chemical Physics Letters,2001,337:43-47.

[14] 贾志志, 王正元, 等.PA6/碳纳米管复合材料的复合方法的研究,材料工程,1 998, 9 :3)

[15] Ma R Z, Wu J , Wei B Q , et al.Processing and properties of carbon nanotubes-nano-SiC ceramic[J ].J Mater Sci, 1998, 33: 5243-5246.[16] 马仁志, 朱艳秋.铁-巴基管复合材料的研究[J ].复合材料学报, 1997,14(2):92-96.[17] 董树荣, 张孝彬.纳米碳管增强铜基复合材料的滑动磨损特性研究[J ].摩擦学学报, 1999, 19(1)∶1-6.[18] Kuzumaki T , Miyazawa K, Ichinose H, et al.P rocessing of carbon nano tube reinforced aluminum composite[J ].J Mater Res, 1998, 13(9): 2445-2449

第五篇:浅谈水利水电工程中地基施工技术

浅谈水利水电工程中地基施工技术 摘 要: 水利水电工程中的地基建立的好与坏影响着整个工程质量,地基施工在水利水电工程中有着举足轻重的地位,首先介绍了水利水电工程地基施工的要求和方法,然后在此基础上阐述了透水层防渗技术、土层板块移动预防技术和软土地基施工技术等针对不良地基的处理技术。在项目施工过程中,一定要不断地总结施工经验,在确保安全施工的前提下,使水利水电工程顺利完工并实现施工技术的突破和创新。

关键词: 水利水电工程;地基;施工技术;软土地基;创新 0 引 言

改革开放后,伴随着中国经济的高速增长,对水利水电资源的需求越来越多,现有的水利资源已经跟不上经济发展需求的节奏,因此,为了跟上社会主义现代化的脚步,需要建设更多的水利水电基站。水利水电工程中的地基建立的好与坏影响着整个工程质量,而且为适应我国各种各样的土地类型,需要创新出更为先进的施工技术,必须掌握先进的施工技术以保证水利水电工程的质量。地基的定义是承受建筑物或构筑物载荷影响的那部分土体。从地基的来源可以分为天然地基和人工地基。所谓天然地基,正如其名称所示,是利用天然土层或岩层,作为建筑物或构筑物直接承受的基础。而人工地基,则是通过人为动工进行加固后再作为建筑物或构筑物直接承受的基础。总的来说,地基需要承受建筑物或构筑物的全部载荷,因此,地基的牢固与否直接影响着建筑物的稳定,但是,虑到经济成本因素以及主观需要,很多水利水电工程不得不将工程地点选择在土地松软的地方,为保证这些工程的顺利完工以及保证工程的安全性,必须运用新颖的地基施工技术。基于此,本文对水利水电工程地基施工的要求、方法和技术进行了总结与探讨。水利水电工程地基施工要求

在进行工程建设之前,必须对地基施工要求进行掌握,工程施工之前需要进行以下工作:

1)工程施工前,要对施工区域的状况有一个充分的了解,要掌握区域的地质条件,根据该地区的地质勘察报告确定具体施工方案,考虑地质特性,如果施工地点地形复杂,应该把周围不稳定因素考虑进来,如地震带、水源、空气等是否允许开工动土;若施工地点在山区,还应充分考虑地质构造、地形、岩层和地貌等,避免因可能发生的泥石流事故造成的人员伤亡。土地开挖前若遇到如公路、沟壑、树林、管道、建筑物、农田等阻碍施工,应该妥善处理,选择避开或进行拆除并补偿占有者一定金额。对施工区域的装卸区、桥梁、道路等进行加固、加牢和加宽,以保证交通工具和施工机械顺利安全通行以及装卸货物空间的安全性。

2)土地开挖过程中,经常会有滑坡、塌崩和危岩等情况产生,应及时采取应对措施。对定位桩、定位线,标高、基准点和基槽等进行二次放线测量,进行校验检测,并记录校验数据看其是否仍然符合设计要求,一旦出现问题,立即解决。施工过程中,对施工区域的环境也应该按照设计要求进行整理,设计合理的坡度,合理设计排水坡度

和构造给水与排水设施,当设计没有特别的要求时,排水坡度应该≤3%。如果开挖的土地基准点低于地下周围水位的基槽,根据准备工作中的地质勘察资料这个重要依据,采取有力措施下降地下周围水位的基准线,通常情况下,开挖的土地基准点应当高于周围水位的基槽 0.5 m 以上,才可继续后续的施工。水利水电地基施工方法

近些年,主要从两方面对水利水电工程地基的施工方法进行展开:

1)如果地基施工区域是浅基础,那就可以运用以线带面的方法,先以基准线为参照,分割一条基槽轮廓线,以该轮廓线为基点,根据大致施工区域,扩大周围作业面积,进而顺利开展后续工作。在地下周围水位基准线降低和建造给水与排水设施这两个工程中,必须充分考虑到施工区域的状况,从当地地质特性和以前施工经验出发,摸索有效方法防止地基结构被损坏。

2)地基的作用是承受建筑物或构筑物载荷,要求地基需具有足够的牢固度,能承担建筑物的全部重量,确保地基具有防护潮湿侵蚀、抵抗低温、耐腐蚀等能力。同时对地基的耐久性也有很高要求以确保地基的牢固,为使地基足够稳固,应该确保地基受力面充分够用,这样,可以预防地基的变形值在允许的安全范围内,确保建筑物不出现倾斜、下沉、塌方等情况,确保建筑物或构筑物在地基上的安全性。不良地基处理技术

由于我国国土面积广袤辽阔,而且从西至东,地形地貌种类众多,因此在水利水电工程选址中,很难确保地基都能选择在地质条件好的区域。受天然因素影响,建设水利水电工程时,经常会遇到不良地形地貌,即不良地基,这种不良地基难以使水利水电工程建筑物保持稳定。从成因和特点看主要将不良地基分为以下 3 类:

1)软弱黏性土,俗称软土,主要由淤泥和压缩性高的淤泥质土组成,压缩层主要是黏性沉淀物,承受载荷能力低,主要出现在江河冲刷地区。

2)杂填土,主要由工业生产垃圾土、建筑垃圾土和生活垃圾土堆积组成。主要出现在我国传统居民区和传统矿区。

3)湿陷性黄土,由于其较强的亲水性,加上黄土本身自重应力较其他土质大,所以导致黄土含水率较高,容易导致沉降,广泛分布在我国黄土高原地区。下面详细分析 3 种不良地基的施工技术。

3.1 透水层防渗技术

透水层的定义为土体中能透过水的土层。透水层控制的好与坏直接影响整个工程的品质,更是水利水电工程地基施工技术的重要环节。如在湿陷性黄土土层进行施工,由于其较强的亲水性和较大的自重应力,使得很有可能造成透水层大量吸取水份,严重则会造成渗透型管涌,影响地基承重能力,轻则存在安全隐患,重则造成建筑物的安全事故。解决透水层问题,目前主流方法是将水玻璃高压加载,向混凝土进行高压渗透喷射,用该混凝土构筑水泥墙进行防渗。

3.2 土层板块移动预防技术

像杂填土这样的土质,由于其土层黏性弱,在大陆板块自身运动作用下,导致土层失稳移位和地基下沉,由于土质压缩层孔隙变大导

致抗弯强度减弱,影响整体工程的安全。针对土层板块移动的特点,为了防止它继续向周围移动,波及到更广的范围,可以用混凝土将其四周墙体封实。然后使用灰土挤密桩法,所谓灰土挤密桩法,是指将土层爆破出孔,在孔内注入灰土,然后用夯锤夯实,使土质变得密实。

3.3 软土地基施工技术

由软弱黏性土构成的地基称为软土地基,由于其主要由淤泥和压缩性高的淤泥质土组成,压缩层主要是黏性沉淀物,导致其空隙大、抗剪强度低,透水性强的特点,因此它承受载荷能力低。在施工过程中,为提高其承受载荷的能力,需要对软土地基进行处理,其施工技术主要有:

1)强夯法。用几十 t 的重锤,起吊到高处,让重锤做自由落体运动,反复对地面进行夯实。可使其承重能力提高到 5倍以上。

2)加筋法。在软土地基中加入抗剪能力强的物质,提高土壤的韧性和强度。

3)硅化加固法。将硅酸钠溶液与氯化钙溶液加入土中,由于化学作用,产生胶凝物质,使土质更为牢固。此外,软土地基施工中的常用技术还有排水固结法、旋喷法、振动水冲法、土工合成材料加筋加固法、桩基法、灌浆法等。结 语

为支撑我国经济建设和提高人民生活水平,需要建设更多的水利水电工程,而地基工程又是整个工程施工的基础。在地基施工的过程中,不仅要注意质量管理,而且要掌握好一些施工技术,以确保水利

水电地基工程的顺利完成。

参考文献:

[1] 冯秋,曹国刚. 水利水电不良地基的处理方法[J]. 科技创新导报,2009(10): 187 -188.

[2] 葛云燕,霍亮. 水利水电工程中不良地基的基础处理方法探讨[J]. 黑龙江科技信息,2007(03): 66 -67.

[3] 弃文英,李宝英,魏长宏. 水利水电基础工程与地基处理技术的现状和展望[J]. 机械工程与自动化,2009(03): 167 -168. [4] 刘间德.水利水电工程中地基施工的新技术[J]. 陕西水利,2011(06): 51 - 52.

下载浅谈地基施工中如何应用粉体搅拌法word格式文档
下载浅谈地基施工中如何应用粉体搅拌法.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    浅谈用深层搅拌法对房屋地基沉降的处理论文[最终版]

    论文关键词:地基沉降;深层搅拌法论文摘要:深层搅拌法具有造价低、施工简单和效益好的优点,在条件适宜时应优先采用。本文介绍了深层搅拌法加固地基的原理,并结合实际工程介绍了......

    浅谈地基处理中的换土垫层法的设计

    浅谈地基处理中的换土垫层法的设计 作者:梁建全(江门市市政工程设计院) 发布时间:2011-10-17 摘要:软弱地基通常要经过人工处理才能满足地基承载力的要求。文章就地基处理的概念......

    强夯法加固地基的机理及施工要点

    强夯法加固地基的机理及施工要点 摘 要:对地基稳定性造成影响的因素有很多种,其中主要包括:碎石土、沙土、黏性土以及湿陷性黄土等,这会在一定程度上对建筑物结构造成破坏,严重时......

    2010093015103832第十七届“粉体杯”中星杯”竞赛

    校团发[2010]32号 关于举办我校第十七届“粉体杯”暨第十三届“中星杯” 大学生课外学术科技作品竞赛的通知 东校区团工委、各分团委(总支)、研究生会、学生会、学生社团: 想政......

    高能球磨法在超微粉体制备中的应用

    高能球磨法在超微粉制备中的应用 宗泽宇 (南京工业大学, 材料化学工程国家重点实验室,210009)摘要:简述分别通过高能球磨法制备氧化锆-硬脂酸材料, 纳米氧化亚铜材料 , 纳米WC/Mg......

    综合扫线法在动火施工中的应用

    综合扫线方法在动火施工中的应用 油建二公司第十二工程处 刘明秦 李波 何永贤 摘 要 为保障油田场站及集输管线施工改造工程管线动火连头的安全进行,介绍几种扫线方法及其特......

    混凝土搅拌站在中小型水利水电工程中的应用

    混凝土搅拌站在中小型水利水电工程中的应用 [摘 要] 介绍国产混凝土搅拌站在中小型水利水电工程中的应用和选型方面的问题, 提出了国产混凝土搅拌站在中小型水利水电工程中......

    超细粉体在水泥中的应用

    沈阳理工大学学士学位论文 超细粉体在水泥中的应用 学院:材料科学与工程学院 专业:粉体材料科学与工程 学号:1105050109 姓名:罗雪 2014年04月14日 I 沈阳理工大学学士学位论文......