第一篇:重磁电标本测量详解
磁性标本的采集及测定
磁性标本采集应在异常和矿化蚀变地段,凡能采到新鲜岩石的地方,必须采集标本。每类岩石标本不少于30块。标本形状尽量接近正方形,体积为4×4×4cm3。
测定标本磁性参数的仪器灵敏度要与磁测总精度相适应,并满足解释的需要。在工区内选择一处磁场较平稳但无人文干扰的地点,架设好仪器及探头,此时梯度读数Tn应在零值左右(或有很小底数)。用仪器的线号健(Line)置入标本编号。用仪器的点号健(Station)按向上盒面的号码(6)和绕Z轴每旋转90°读取数据依次编入601,602,603,604其余各方面向上时也一样,百位上的数字代表轴向,个位上的数字代表同一轴向依次的读数次序数。
安置标本架;可采用高斯第一位置测定,如图C 1 所示,也可采用第二位置测定,使标本架上倾斜板面垂直于地磁场 T。的磁力线,并使标本盒位于探头筒的正东(西)面,盒中心与探头中心等高。
图C1磁测标本安装示意图 根据标本磁性强弱,调节标本盒中心与探头中心的距离(不小于15cm)为保证数据的可靠性,希望标本产生的磁场能引起±1nT的变化。
标本装盒:将待测标本放入标本盒内,用碎布塞紧。并注意使标本中心与盒中心一致。对于定向标本应使其东、北、下方向分别与标本盒X,Y,Z轴正方向一致。
观测:放标本前检查读数为n。(使仪器点号为xC0,其中百位上X表上盒面号码),将标本盒放在标本架上,选择距离r使仪器读数变化较大(》士1nT),记录距离r;按向上盒面的号码依次读数n1、n2„n6。拿出标本后再次检查底数n,0。为减少标本形状不规则、磁性不均匀和标本位置误差的影响,可在每个轴的正、负方向都分别读取四个数(标本盒r方向每旋转读一个数)即平均值进行计算。如
n6=
Th601+Th602+Th603+Th60
44测定标本体积:取出标本用细绳将标本放在水中浸湿,然后轻缓放入装满水的铁筒中,同时用空量简收集被排出的水。待铁筒中水面平静后,放正量筒并读取量筒中水的体积v,此数即为标本体积(cm3),也可用体积秤秤取标本体积。测定要求,距离测量准到0.2cm,体积量准到5cm3。
标本磁性参数测定的质量检查率应达到10%。磁化率和磁化强度的测定质量以平均相对误差为评价标准,计算公式与野外观测质量异常场观测精度计算公式相同。磁化率、剩余磁化强度测定检查工作量不低于10%。质量检查平均相对误差小于20%。
a2a11ni100iaani1 21
式中:η为平均相对误差; ηi为第i件标本的相对误差; a1为原始测量值; a2为检查测量值。
激电岩石标本采集及测定方法技术要求
1、标本采集
在有条件的情况下,争取采集各种岩性的标本,尤其重点采集矿体、矿化体的标本,采集点均匀分布于所研究地质体的露头上,标本具有代表性。本次共采集各种岩性的标本189块。
2、标本测定
本次测定方法用面团法,即面粉加少量的硫酸铜作接触介质,供电及测量电极插在其中,使用WDYX-1岩样测试信号源作为供电电源,用WDJS-2接收机测定视极化率ηs、视电阻率强ρs。标本浸水时间48小时后开始测定。
3、质量检查方法与精度要求
激电参数测定工作的质量评定是采用一种岩性测定的全部标本检查观测结果来衡量。即用基本观测结果统计出来的常见值与检查观测结果统计出来的常见值,其平均相对误差不得超过20%,选作进行检查观测的某一种岩性标本数量,应达到测定标本总数的10%。
重力标本密度测定
1,密度标本测定
① 致密岩石标本的密度值用密度计直接测定,测定方法为水浸法。其时间一般不超过3天,以保持标本的新鲜性。测定时读数准确到0.01g/cm3。
② 第四系大样在采集现场用大秤法测定密度。⑶ 收集前人的物性成果资料
充分收集前人的岩矿石物性成果资料,主要包括研究区及周边地区的区域性重力、磁法勘探成果报告以及大比例尺的地质、矿产、化探成果报告等。2,质量检查与精度评价
质量检查工作随着工作的进展同步进行,质量检查点的选取,时间和空间上均匀分布。
⑴ 重力观测质量检查
① 采用同点位、不同仪器、不同操作员,不同日期的“一同三不同”原则进行。检查比例大于10%。
② 质量检查观测采用三次读数,均方误差计算公式为:
h2i/2ni1n
式中:δi为i点的原始观测值与检查观测值之差;
n为统计的总点数。
⑵近区地改质量检查 ① 检查比例大于10%,精度要求≤±30×10-8m/s2。② 均方误差计算公式为:
hi1n2i/2n
式中:δi为i点的原始观测值与检查观测值之差;
n为统计的总点数。
(3)物性标本测定质量检查
① 密度参数测定的检查工作量不低于10%。其均方误差不应大于±0.02g/cm3。
密度测定均方误差计算公式为:
hi1n2i/2n
式中:δi为i块的原始观测值与检查观测值之差;n为统计的总块数。
第二篇:磁电复合材料研究进展
《复合材料学》课程论文
题
目: 磁电复合材料的研究进展 学生姓名: 李名敏 学 号: 051002109 学
院: 化学工程学院 专业班级: 材料化学101 电子邮箱: 904721996@qq.com
2013年 6 月
磁电复合材料的研究进展
摘要:本文介绍磁电复合材料的研究现状和合成工艺,讨论了磁电复合材料性能的影响因素,最后提出了其目前存在的问题及对今后的展望。
关键词:磁电 复合材料 铁电相 铁磁相 纳米材料 合成工艺 性能 引言
材料在外加磁场作用下产生自发极化或者在外加电场作用下感生磁化强度的效应称为磁电效应,具有磁电效应的材料称为磁电材料[1]。而磁电复合材料,它由两种单相材料—铁电相与铁磁相经一定方法复合而成。磁电复合材料的磁电转换功能是通过铁电相与铁磁相的乘积效应实现的, 这种乘积效应即磁电效应。磁电复合材料不仅具有前者的压电效应和后者的磁致伸缩效应,而且还能产生出新的磁电转换效应。这种材料能够直接将磁场转换成电场,也可以把电场直接转换为磁场。这种不同能量场之间的转换一步而成,不需要额外的设备,因此转换效率高、易操作。磁电复合材料不但具有较高的尼尔和居里温度,磁电转换系数大等诸多优点,而且还可被用于微波、高压输电、宽波段磁探测,磁场感应器等领域,尤其是在微波泄露、高压输电系统中的电流测量方面有着很突出的优势。此外,磁电复合材料在智能滤波器、磁电传感器、电磁传感器等领域也潜在着巨大的的应用前景[2]。目前, 磁电复合材料作为一种非常重要的功能材料,已成为当今铁电、铁磁功能材料领域的一个新的研究热点。磁电复合材料的研究现状
2.1 磁电复合材料的历史
1894年法国物理学家居里首先提出并证明了一个不对称的分子体在外加磁场的影响下有可能直接被极化,磁电材料概念就此被提出。随后,一些科学家又指出了从对称性角度来考虑,在磁有序晶体中可能存在与磁场强度成正比的电极化以及与电场强度成正比的磁极化即线性磁电效应。直到20世纪80年代,已经发现50多种具有磁电效应的化合物,以及几十种具有此性能的固溶体。虽然发现了一系列具有磁电效应的单相材料,而这类材料虽然既具有铁电性(或反铁电性),又具有铁磁性(或反铁磁性),然而这些材料的居里温度大都远远低于室温,并且只有在居里温度以下这些材料才会表现出微弱的磁电效应。当环境温度上升到居里温度以上时,磁电系数就迅速下降为零,磁电效应也就随之消失。因此,难以利用单相磁电材料开发出具有实际应用价值的器件。这些局限性使得材料科学工作者们又将目光转移到复合材料上,Van Suchtelen首先提出通过复合材料的乘积效应来获得磁电效应,为制备高性能磁电材料开辟了一条新途径。1978年,荷兰科学家采用铁电相与铁磁相复合的方法制备磁电复合材料,讨论了颗粒尺寸、冷却速度和两相的摩尔比对磁电耦合效应的影响。20世纪90年代至今,发展了多层结构和膜结构的磁电复合材料,同时在理论研究方面,也有很大的进展。在复合材料发展的同时,近几年对单相多铁性磁电化合物的研究又重新掀起了热潮[9]。
2.2 磁电复合材料复合工艺概述
磁电复合材料是由铁电相和磁电相复合而成的。所以我们根据铁电相与铁磁相之间复合方式的不同,把磁电材料大致可以分为3大类:一种是磁电颗粒复合,铁磁相和铁电相是以微米级的颗粒形式均匀分布在磁电颗粒复合材料中,其铁电相与铁磁相的耦合发生在宏观和微观之间。另一种是粘合层状复合,在该复合方式中,铁电相和铁磁相以单层的形式交互叠加而成。层状材料是一种叠层结构,类似于MLCC成。不过MLCC每层的材料是同质的,而层状磁电复合材料的每层是异质的。材料中的铁电相与铁磁相的耦合属于宏观耦合。最后一种复合方式,称之为纳米复合,这是因为在纳米尺度范围内表现出来的性质和宏观上的有很大不同[8]。这类材料是最具有前景的一类材料。
2.2.1 颗粒复合材料的合成工艺
颗粒复合材料的合成工艺是将压电相与磁致伸缩相混合起来的一种宏观方法,又称为混相法[3]。混相法主要包括3种具体的实现方式:原位复合法、固相法以及聚合物固化法。
原位复合法应首先确定相元体系和磁电复合材料的生成温度点,然后将原材料放在一起加热至融化成为共融体,再进行同相结晶获得复合材料。原位反应在原子尺度下进行,得到的磁电复合材料具有很好的分散性。该反应产物的键合力很强,因此磁电复合材料的硬度和强度都很高。实际上,原位复合法制备磁电复合材料需要很高的温度以及对温度的精确控制。对两种相同时析晶需要的条件非常苛刻。在高温下原位反应会不可避免地发生一些副反应,生成一些杂质相。
同相烧结法是指将制得的铁电粉末和铁磁粉末经球磨工艺均匀混合,添加适量的助烧剂和粘合剂进行同相烧结得到磁电复合材料的方法。与原位复合法相比,最大的区别就是不需要共融,反应过程中材料呈同态,因此固相反应的烧结温度较低,温度控制比原位复合法更加容易。1978年Boomgaard等[3]通过BaTi()3粉末和Ni(Co,Mn)Fe2 04粉末外加少量Ti02进行固相烧结,获得了磁电复合材料,其磁电电压系数约为80mV/(tin·Oe)。固相烧结法具有许多优点。首先,同相烧结法采用的原料具有多样性,只要固相反应之后能够牛成铁电相和压电相就可以。其次,选定原料之后可以很方便地控制各相的物质的量比,通过控制原料物质的量比可以构建不同的复合结构类型。在烧结过程中还可以控制烧结工艺进而控制磁电复合材料的颗粒尺寸。同相烧结工艺简单,但是,固相烧结中不同相之间可能会发生反应或者出现某蝼原子的扩散,使压电相的压电性或铁磁相磁致伸缩性减弱从而导致磁电效应下降。这时应该尽量控制反应条件[7]。可以采取一些措施如加入烧结助剂来促进烧结或者选择合适的原料以减少烧结过程中铁电相和铁磁相之间的副反应。依据此法制得的磁电复合材料的电阻率和磁导率均较高,因而不容易发热或产生涡流。
聚合物同化法指的是把铁磁性材料的固体颗粒均匀填充到铁电聚合物中形成磁电复合材料的方法。这种方法是南策文等[8]构思并实践出来的。但很遗憾的是通过该方法制备的复合材料在宏观上没有磁电效应。通过这种方法铁磁颗粒可以均匀地混合在铁电相颗粒中,得到的复合材料柔韧性很好.可加工性强,可以随意构造其形状。但是该复合材料中铁电相是有机聚合物,因而材料的抗腐蚀性和抗老化性能不是很好,使用温度不能过高。
2.2.2 粘合层状复合材料的合成工艺
粘合层状复合材料是以层片的方式复合在一起形成的一种叠层结构。该法由Jungho Ryu等首先应用于实践,他们在2层铁磁体(Terfenol—D合金)之间夹l层铁电体(PLZT),然后在层间部位涂上粘结剂得到多层磁电复合材料,其室温下的磁电转换系数dE/dH最大值为4680mV/(cm·Oe),远高于有关文献报道的值[3]。Terfenol—D是稀土合金,制备成本也很高。G.Srinivasan等[7]考虑到Terfenol-D的成本因素,采用NF0和PZT进行双层和多层的层状复合,得到的磁电电压系数为460mV/(cm·0e)(双层)、1500mV/(cm·Oe)(多层)。锰酸盐材料具有较大的磁致伸缩,电导率好,可用作电极。因此G.Srinivasan等,采用流延法制备LSMO—PZT和IA2MO—PZT多层磁电复合材料。
粘合层状复合材料的制备主要分为单相层的制备和单相层之间的粘合。层的厚度可以从微观几微米至宏观几毫米,原料一般采用传统陶瓷工艺的固相法来制备。厚度为微米级时,采用流延法、丝网印刷等比较先进的厚膜制备工艺来实现。一旦单相层制备成功,采用合适的粘接剂就能获得粘合层状复合材料。粘合层状磁电复合材料的主要特点是复合材料结构简单,制备简单,磁电转换系数大。但是粘合层状复合材料中层间的有效接合小,铁电体与铁磁体的耦合程度较差,交叉耦合效应没能完全发挥出来。因此,最重要的是要严格控制层间的有效接合,提高铁电体与铁磁体之间的耦合,从而提高层状磁电材料的磁电电压系数。
2.2.3 纳米复合磁电材料的制备工艺
严格的说这类材料的复合与块体复合差不多,其结构很相似,只是复合的尺度大小不同。纳米复合是在纳米尺度范围内的复合,这就造就了纳米复合材料的特殊性能。相比于块体磁电复合材料,纳米复合磁电材料具有一些独特的优越性[4]:
(1)复合材料组分相的比例可以在纳米尺度上进行修改和控制,可以在纳米尺度范围内直接研究磁电效应的微观机理。
(2)块体材料中相之间的结合是通过共烧或者粘接的方式相结合的,其界面损耗是一个不容忽视的问题,而在薄膜中町实现原子尺度的结合,可以有效降低界面耦合损失。
(3)纳米磁电复合薄膜的制备为控制晶格应力、缺陷等方面提供了更大的自由,可获得高度择优取向甚至超晶格复合薄膜,更有利于研究磁电耦合的微观机理。(4)在纳米尺度下研究纳米复合磁电薄膜,其技术町以很容易地移植到半导体工艺中,用于制造集成磁/电器件。
纳米复合材料的连通性主要分为3大类[8],一类是纳米颗粒磁电材料,一种是纳米柱状磁电材料,还有一种是纳米层状磁电材料。随着近年薄膜制备经验和技术的积累。使得制备优质复杂结构的复合薄膜成为可能。由于磁电复合薄膜涉及两相多种成分的复合,比较常见的制备方法是使用激光脉冲沉积法和溶胶一凝胶旋涂法。
激光脉冲沉积(PLD)就是将激光瞬间聚焦于靶材上一块较小面积上,利用激光的高能量密度将激光照射处的靶材蒸发甚至电离,使其原子脱离靶材向基板运动,在温度较低的基板上沉积,从而达到成膜目的的一种手段。由于脉冲激光的高加热速率,晶体膜的激光沉积比其他薄膜生成技术要求的基板温度更低。但是PLD也有一个严重的问题,薄膜容易被溅污。溅射出来的大微粒将阻碍随后薄膜的形成,会影响薄膜的性能[9]。
溶胶-凝胶旋涂法使用得最多的是制备纳米层状磁电薄膜。其步骤是先配好压电材料和磁致伸缩材料的前驱体溶液生成前驱溶胶,然后在基片表面交替旋涂前驱溶胶,最后进行退火晶化。在晶化过程中膜层产生分离重组,最终形成需要的薄膜。溶胶-凝胶旋涂法的优点是可以通过调节溶胶的浓度和旋涂的次数来控制膜层的厚度,缺点是制备出的磁电薄膜的可重复性和稳定性较差。
2.3 磁电复合材料影响其性质的主要因素
2.3.1 合体中的宏观机械缺陷
材料的宏观机械缺陷如孔洞、气泡、裂纹等, 都会对材料的性能产生不良的影响。由于材料中存在着这些缺陷,造成材料的致密度下降,尖端应力集中效应,从而导致材料的机械性能、电学性能、磁学性能下降。所以我们在材料的制备过程中,应尽量减少宏观缺陷,提高材料的致密度。
2.3.2 铁电相与铁磁相的分散性
如果铁电相与铁磁相分散不均,将会显著的影响材料的电磁性能若两相不能很好的分散,有可能导致铁电相或铁磁相的团聚、链接,这样就会降低材料的电阻率和磁导率。电阻率降低容易在材料中产生涡流,从而产生大量的热量。磁导率的降低,可以导致材料对磁场变化不能灵敏地响应,同时还容易产生泄漏电流,从而导致磁效应降低。所以我们需要的材料的电阻率、磁导率应尽可能的高,这就要求在混料时尽可能使铁电相与铁磁相混合均匀。
2.3.3 铁电相与铁磁相之间的相反应
铁电相与铁磁相之间的相反应,可以使铁电相的压电性质和铁磁相的磁致伸缩性质下降,从而导致复合材料的整体性能下降。因而,材料制备过程中应控制反应条件,尽量避免铁电相与铁磁相之间的相反应发生。存在问题及展望
磁电复合材料在经过几十年的发展中,人们不断地发现问题和解决问题,但是新的问题还在不停地涌现,还需要人们不断的探索和创新,制备方法也需不断改进。就目前而言,磁电复合材料还存在诸多的问题:
(1)制备方法还不够完善,粒子尺度上还需减小。(2)制备过程中不可避免的产生宏观机械缺陷。
(3)压电相与磁致伸缩相之间存在扩散和电流泄漏,界面耦合度不高,缺乏对磁电复合材料微观合成机理的深入研究。
(4)对磁电复合材料磁电效应的精确测试还不准确。
(5)磁电复合材料的研究还处在起步阶段,其中的物理机制仍不清晰,寻找室温下具有强磁电耦合的材料及其潜在应用都是巨大的挑战。
(6)磁电电压系数依然较低和材料难以重复应用。
对此,磁电复合材料的制备应该主要集中在以下几个方面:
(1)加强对制备工艺过程的深入研究,对当前的制备技术进行适当改进,不断创新,用新的制备方法代替旧的不成熟的方法。以实现更小尺度的复合。
(2)研究改进磁电材料的复合方式,探索新型的磁电复合结构;
(3)加强磁电复合微观机理的研究,利用新的理论来指导磁电材料的制备。(4)加强界面、微观结构和应力对磁电性能影响的研究
目前国内磁电材料的研究也很多,研究力度也在不断加大。相比之下,国外对于磁电复合材料的实验和理论研究更为深入,试验选材以及合成的磁电产品较为丰富,磁电效应更高。块体磁电复合材料在国外已有了初步的应用,在传感器、换能器等方面也有了器件原型。相信随着研究的深入,高性能的磁电复合材料将在电子工业中显示出更为重要的作用。
参考文献
【1】.Srinivasan G;Rasmussen E T Magnetoelectric effects in bilayers and muhilayers of rnagnetostrictive and piezoelec-tric perovskite oxides 2002 【2】.国家计划委员会科技司.未来十年中国经济发展关健技术【M】.北京:石油工业出版社,2008
【3】.沈仁发.磁致伸缩/压电层状复合材料的磁电效应研究【D】.长沙:国防科学技术大学,2004
【4】.何泓材,林元华,南策文.多铁性磁电复合薄膜【J】.科学通报,2008,53(10):1 136
【5】.张辉,杨俊峰,方亮等.铁电一铁磁复合材料的研究现状及发展趋势【J】.材料导报,2003,17(6):64 【6】.吴人洁,复合材料【M】.天津:天津大学出版社,2000,151 【7】.陈德顺,丘其春,熊茂仁.混合烧结磁电复合材料的研究【J】.华南理工大学学报,1996,24(3):111
【8】.熊锐,周忠坡.发展中的磁电材料【J】.信息记录材料,2006.【9】.刘小辉,屈绍波,陈江丽,徐卓.磁电材料的研究进展及发展趋势【J】.稀有金属材料与工程,2006.
第三篇:重砂测量找矿方法总结2017
重砂测量找矿方法总结
重砂测量是一种经济、简便、有效的找矿方法。重砂测量进行找矿时,主要是通过对矿床或含矿岩石中某些有用矿物及伴生矿物在风化、搬运、沉积和富集的地质作用过程中,在残坡积层中形成的重砂矿物的分散晕;在水系沉积物(冲积层)中形成的重砂矿物的分散流中的重矿物的鉴定分析达到发现矿床的目的。重砂矿物分散晕(流)的富集分布具有以下规律: a.重砂矿物分散晕(流)的形态与矿源母体的形态、产状及其所处的地形位置有直接关系,等轴状矿体所形成的分散晕呈扇形;脉状及层状矿体顺地形等高线斜坡分布,形成梯形的重砂分散晕;与地形等高线垂直,则形成狭窄的扇形重砂分散晕。
b.重砂矿物分散晕(流)中重砂矿物含量,距矿源母体较近,重砂矿物含量高,距矿源母体较远,则重砂矿物含量低。
c.重砂矿物分散晕(流)中重砂矿物的粒度及磨圆度,与其原始的物理性质及迁移距离有关。矿物稳定性越强,迁移距离越小,则矿物颗粒较大,磨圆度差,呈棱角状。反之,粒度小,呈浑圆状。
(1)重砂测量法的野外工作方法:重砂测量的野外工作主要包括重砂(样品采集)和重砂样品的淘洗与编录二个方面。
1)重砂样品的采集:重砂取样是重砂测量的重要一环,取样质量的好坏直接影响到重砂测量的效果。根据重砂取样的种类、目的、任务及地形地貌特征,重砂取样总体布置分为3种。
a.水系法:是目前应用较广的一种重砂取样布置方法。通常对调查区二级以上水系进行取样。样点的布置可依照下述原则:
①大河稀,小河密,同一条水流则上游密下游稀,越近源头,取样密度越大; ②河床坡度大,跌水崖发育,流速大流量小的溪流应密,反之应较稀; ③主干溪流的两侧支沟发育且对称性好,则样点可放稀,反之应加密; ④垂直岩层主要走向的溪流应密,而平行岩层主要走向的溪流可放稀; ⑤对矿化、围岩蚀变发育地段,岩体接触带,岩性发生重大变化处的溪流冲积层应加密取样。
b.水域法:水域法是按着汇水盆地中各级水流的发育情况进行布样。取样前应对汇水盆地的水域进行划分,然后将取样点布置在各级水域中主流与支流汇合处的上游,以控制次级水域中有用矿物含量和矿物组合特征。
取样时应逆流而上,对各级水域逐一控制,对没有出现有用矿物的水域逐个剔除,对出现有用矿物的水域逐级追索,直至最小水域,达到追索寻找矿源母体的目的。水域法取样每个样品的控制面积视地质构造复杂程度和地貌条件而异。地质构造复杂,成矿有利地段,四级支流和微冲沟的每个样品控制在1.5-2Km2为宜,地质条件中常地区,三级支流中每个样品控制面积可为3-4 Km2,地质条件简单地区每个样品控制面积可为5-8 Km2。
c.测网法:是以重砂取样线距和点距组成纵横交叉的网格,样点布在“网格”的结点上。测网法取样目的是为了圈定有用矿物的重砂分散晕,进而寻找原生矿床,或者为了对砂矿进行勘查,从而进行远景评价。取样时线距应小于晕长的一半,点距应小于晕宽的一半。
由于重砂样品采取的对象不同,可有下述方法:
①浅坑法:它是以冲积物、坡积物和残积物为采取对象。以寻找原生矿床为主要目的。目前多采用在一个取样点运用“一点多坑法”的方式进行采样,以增强样品的代表性。取样深度视取样对象而定,一般对冲积层取样深度以100-50cm为宜;坡积层取样深度可在腐殖层以下20-50cm;残坡积层取样深度决定于残积层厚度,样深均应达到基岩顶部。取样原始重量要求为20-30kg,以保证获得20g灰砂为准。
②刻槽法:主要用于阶地重砂取样,在阶地剖面上进行,首先要除去表面的松散物质,然后从顶部到基岩垂直其厚度,以50cm长的样槽按层分段连续取样,样槽规格以保证取得一定数量的原始样品重量为准。
③浅井法:当冲积层、坡积层、残积层及阶地等松散沉积物厚度较大时采取的取样方法,目的是勘查现代砂矿或古砂矿。在浅井施工过程中,用刻槽、剥层或全巷法采集样品。其中剥层法应用较多,它是沿砂矿可采部位将整个剖面取样,开采时沿掌子面取样。剥层规格为:深度5、10、15、20cm不等,宽度一般为0.5-1cm。
④砂钻法:在松散沉积物很厚时采用,主要用于砂矿勘探。将钻孔中所取得的砂柱作为样品,样品长度0.2-1m不等,应视具体矿产种类而定。如砂金矿以0.2-0.5m为好,砂锡矿以0.5-1m为好。砂钻法取样主要运用大口径冲击钻。
2)重砂样品的淘洗与编录: a.重砂样品的淘洗:是重砂测量工作方法中的一道重要工序。淘洗质量的好坏,直接关系到重砂法找矿的效果。原始重砂样品一般在野外就地淘洗。原始重砂样品一般淘洗至灰色为止,重量应在10-15g左右,以满足对样品分析的要求。若淘至黑砂,会使浅色的相对密度大的一些重要矿物如黄玉、锆石、磷灰石等,因淘洗过分而流失。为保证与提高回收率,可先在野外粗淘,回室内再精淘。原始重砂样品淘洗时应注意的几点要求:
①对于含泥质较多的样品,在淘洗时,应先将泥洗净,以免重砂随泥浆漂走。②风化壳砂矿及某些残坡积砂矿中,有用矿物常与其他矿物胶结在一起,为了避免有用矿物在淘洗时被其他矿物带走,应先把样品中各种胶结的碎块搓碎,使重砂矿物和其他矿物分离开来。
③硬度小的矿物,粒细容易流失,呈片状的以及解理发育的矿物,容易漂走,淘洗时动作要轻要慢。
在重砂测量工作中,应当对重砂矿物进行野外鉴定。初步鉴定时应注意发现指示性的有用重砂矿物,并掌握其粒度、晶形、磨圆度的变化和重砂矿物组合的大致情况。
(2)重砂样品鉴定与重砂资料整理: 1)重砂样品鉴定:野外淘洗的重砂样,一般都含几种或几十种不同矿物,但有用矿物只占很小部分。因此,在镜下鉴定之前,样品必须按一定的流程进行分离,以利于有用重矿物的分析与鉴定。常用的分离方法有:精淘、重液分离、重熔分离、浮选法等。
重砂矿物的室内鉴定,其目的一般是为了确定重砂矿物的名称和含量、矿物的共生组合与标型特征,通常采用的鉴定方法有:
a.双筒显微镜鉴定:将砂矿物放在双目镜下直接观测矿物外部特征与某些物理性质,是常用的最基本的鉴定方法。鉴定内容包括:矿物晶体形态、砂矿物的表面特征、砂矿物的颜色、条痕、光泽、透明度、硬度、磨圆度、解理与断口、延展性,包体与连生体等。
b.油浸法:主要用浸油来测定透明及半透明砂矿物的光性和折光率。c.微化分析:应用化学分析的某些原理和方法,用1-2粒砂矿物和少量试剂,迅速确定矿物中某些特征元素是否存在。
d.反光镜鉴定:将砂矿物磨成砂光片,测不透明矿物的反光性、反射率等。e.发光分析:利用某些砂矿物在外能作用下产生一定强度和颜色的光(磷光和荧光)的发光性,来鉴别某些矿物。
2)重砂资料整理:重砂资料整理就是根据重砂样品的详细鉴定成果,按矿种或矿物组合以不同方式编制成图,结合地质地貌特征圈定重砂异常区,编绘重砂成果图。重砂成果图的底图应采用同比例尺或较大比例尺的地形地质图或矿产地质图。重砂成果图表示方法有圈式法、符号法、带式法及等值线法4种。
(3)重砂异常的解释评价与检查: 1)重砂异常的解释评价:目前常从以下几方面评价异常区。
a.有用矿物含量:它是评价异常区的基本依据。它表明重砂异常的强度。连续的高含量点的出现,表明异常不是偶然的,由矿化引起的可能性极大;而那些孤立高含量点则很可能是由偶然因素引起的。考虑高含量时必须研究一切可能影响含量的因素:矿源母体中的该矿物含量特征、取样处疏松沉积物类型、取样点所处的地质条件和地貌特征及矿床类型和产状等。
b.重砂矿物标型特征:矿物标型特征能反映矿物及其“母体”形成时的物理和化学条件,表现在形态、成分、物理性质、化学性质、晶体结构等方面的特点。重砂矿物的标型特征对评价异常区具有特殊意义。它可提取一些难得的成矿信息,特别对判断原生矿床的成因类型更能提供可靠依据。
c.重砂矿物共生组合:从找矿角度出发,利用重砂矿物共生组合可分辨真假异常及作为找矿标志。还可利用重砂矿物共生组合判断原生矿的成因类型。
d.重砂矿物搬运的距离:分析重砂矿物搬运的距离,对于确定原生矿床的位置及评价砂矿床具有重要意义。影响重砂矿物搬运距离的因素,一方面是重砂矿物的稳定程度,另一方面是迁移环境,根据经验数据,锡石砂矿距原生矿床一般不超过5-8Km,自然金搬运距离可达数百千米,但具工业意义的砂金矿富集在距原生矿床不远的地方。在判断重砂矿物搬运距离时,必须注意其磨圆度及矿物的形态特征。
e.重砂矿物空间分布特征:重砂矿物的空间分布严格受区内各地质体控制,在进行异常区评价时,应将重砂矿物的分布与成矿的地质、地貌条件联系起来,以便追索寻找原生矿。
2)重砂异常的检查:重砂异常检查的目的在于检查分析引起“异常”的原因,对“异常”的找矿意义做出评价。它是在异常区评价的基础上,采用必要的技术手段,进一步实地进行的地质调查工作。具体做法有以下几种:
a.对异常区加密重砂取样:取样密度视工作目的要求而定,可以是20-50m,50-100m,也可以是100-100m。
b.采集人工重砂:为了查清有用矿物的矿源母体,对异常区的各种岩石和矿化蚀变等地质体,采取一定数量的人工重砂样品。
c.残坡积层的重砂取样:当发现有用矿物的高含量带且其粒度、形态及伴生矿物等方面都具有接近原生矿床的特征时,应在取样点附近施以剥土或布置槽、井探工程,进而查明异常的空间分布,圈定原生矿体的范围。
当经过调查研究而判断是由矿体或与矿体有关的地质体所引起的异常时,应对此有希望地段采用必要的钻探或坑探工程进行揭露、验证,查明有用矿物在垂直方向上的变化规律及与原生矿床的关系。
(4)重砂测量报告的编写及应用
1)重砂测量报告的编写:通常重砂测量报告的基本内容如下: a.工作的目的与要求,完成任务情况: b.工作区的地质概况:简述区内主要岩石类型,矿化蚀变特征、构造、接触带、地形和地貌、水系分布等。
c.工作概述:应包括工作方法(野外及室内),样品的分离流程,工作成果简述等。
d.有用重砂矿物组合及特征:包括矿物组合及其特征变化、有用矿物的种类、物理化学特征及含量变化等。
e.对重砂矿物异常的解释与评价意见:包括有用矿物异常的特征、异常下限值的确定、对重砂矿物异常或分散晕特征的认识等。初步指出有用矿物的来源,原生矿床的可能类型,工程检查验证情况,明确寻找原生矿床和砂矿床的方向。
2)重砂测量的应用:重砂测量最适用于寻找金属和稀有金属(包括分散元素及其有关的矿产)。如:金(自然金)、铂(自然铂)、锡(锡石)、钨(黑钨矿、白钨矿)、汞(辰砂)、钛(钛铁矿、金红石)、铬(铬铁矿)、钽(钽铁矿)、铌(铌铁矿)、铍(绿柱石)、锆(锆石)、铈(独居石)、钇(磷钇矿)等;也可用于寻找某些非金属矿产,如:金刚石、刚玉、黄玉、磷灰石等。有时在条件有利的情况下,还可为寻找铜、铅、锌等有色金属矿产提供线索。
重砂测量不仅可以追踪原生矿床,而且可以寻找砂矿床(包括风化壳型矿床)。根据重砂矿物的特征、矿物共生组合,可以预测矿床的类型和岩石的分布及追索圈定与成矿有关的侵入体等,直接或间接地指导找矿。
第四篇:HZ60磁电转速传感器使用说明书
磁电转速传感器使用说明书
一、概述:
HZ60磁电转速传感器,能将转角位移转换成电信号供计数器计数,只要非接触就能测量各种导磁材料如:如齿轮、叶轮、带孔(或槽、螺钉)圆盘的转速及线速度。
传感器具有:体积小、结实可靠、寿命长、不需电源和润滑油等优点,与一般二次仪表均可配用。
二、技术参数
1、输出波形:近似正弦波(≥50r/min时)
2、输出信号幅值:
50r/min时≥300mv 传感器铁芯和被测齿轮齿顶间隙 δ=0.5~1.2mm
被测齿轮模数 m = 2
齿轮
Z = 60
材料
电工钢
信号幅值大小,与转速成正比,与铁芯和齿顶间隙的大小成反比。
3、测量范围:20~10000Hz
4、使用时间:连续使用
5、工作环境:温度-20~+180℃
6、输出形式:X12K4P四芯插头
7、外形尺寸:外径M16×1;M18×1.5总长80mm
8、重量:约120g(不计输出导线)
三、外形图:
插头端子1、4接信号输出线
四、使用注意事项
1、安装时传感器外壳M16×1螺纹不得损伤,六角螺母旋转应自如,六角螺母并紧后,不得有松动现象。
2、安装时应以被测齿轮不与传感器接触为宜。并希望能尽量减少间隙δ以提高输出信号幅值。
五、单机成套
1、磁电转速传感器
1只
2、电缆线 2米
3、说明书
1份
4、合格证
1份
第五篇:教案标本
《xxxx》教案
教学内容:人教版x年级歌曲 课程类型:歌曲学唱课 教学目标:
1、情感态度价值观:
2、过程与方法:
3、知识与技能: 教学重点:
1、2、教学难点: 教学过程:
一、创设情境、xx导入(教师播放《》)
二、节奏练习
三、学唱歌曲
师:下面请同学们先听一遍这首歌曲,教师播放《》(播放幻灯片7)师:听完歌曲我们跟着钢琴唱一下歌曲的旋律
师:好,下面我们开始学唱这首歌曲,老师先唱一句,同学们跟着唱一句。(播放幻灯片)师:同学们唱的很好,但是还要注意几个地方。好,下面根据老师说的,我们再完整的演唱一遍。
师:同学们已经唱的很好了,但是感情方面呢还可以再提高一下。大家认为这首歌曲表达了什么样的思想感情呢? 生:
师:说得真好!老师来说一下,让我们带着这种情绪一起来唱一遍歌曲。师:同学们的情绪表现的非常好,下面呢老师就请一位男生和一位女生上讲台来演唱一下这首歌曲,有谁愿意请举手!
四、四、拓展与延伸
五、小结 师:
六、作业
师:最后布置一个作业,有感情的背唱歌曲 七:板书设计