第一篇:一起因轴振大导致小汽轮机跳闸事故的分析与处理
一起因轴振大导致小汽轮机跳闸事故的分析与处理
摘要:随着现代火力发电机组容量的不断增加,汽动给水泵已逐渐代替电动给水泵,成为主给水泵,承担着向锅炉连续提供具有足够压力、流量和相当温度的水的重任。而小汽轮机(以下简称小机)作为汽动给水泵的驱动设备,其能否安全可靠地运行,直接关系到锅炉设备及整个发电机组的安全运行。茂名臻能热电有限公司#7机组A小机在冲转时,因轴承振动超过极限值,导致A小机在两次冲转过程中均发生跳闸事故。该文针对此次跳闸事件进行分析,并提出相应处理及整改措施。
关键词:小汽轮机 冲转 轴承振动 跳闸
中图分类号:TM73 文献标识码:A 文章编号:1674-098X(2015)02(b)-0064-02
设备概况
茂名臻能热电有限公司#7机组汽轮机为东方汽轮机厂引进日立技术生产制造的超临界压力、一次中间再热、冲动式、单轴、三缸四排汽、双背压、抽汽凝汽式汽轮机,型号为:CC600/523-24.2/4.2/1.0/566/566,最大连续出力为662MW,额定出力为600 MW。其中给水泵组系统包括两台50%容量的汽动给水泵及其驱动小汽轮机;汽动给水泵前置泵及其驱动电机;30%容量的电动给水泵。汽动给水泵组中小汽轮机的设计参数如表1。事件经过
2014年6月5日3时39分57秒,#7机组跳机,经检查是电气方面的原因引起的,处理好故障后,重新开机。
12时44分22秒,开始冲转A小机,设置升速率150r/min,冲到800 r/min时,停留5min,接着再次设置升速率150 r/min,设置目标转速1800 r/min。
12时57分47秒,转速为1316 r/min时,A小机跳闸,跳闸首出为“A小机轴振大停机”。查得A小机前轴振动X向为184 μm,超出极限值175 μm。
全面检查DCS参数及就地无异常后,13时03分23秒重新开始冲转A小机,升速率300 r/min,目标转速1800 r/min。
13时07分35秒,转速为1454r/min时,A小机再次跳闸,跳闸首出依然是“A小机轴振大停机”。查得A小机前轴振动X向为181μm。
两次冲转过程A小机转速和轴振趋势如图1。事件原因分析
(1)对润滑油油压、油温检查,A小机润滑油母管油压0.374 Mpa一直不变,油温在45 ℃左右,油质正常,因此判断润滑油不是影响轴振大的因素。
(2)冲转前,A小机汽缸上半温度220 ℃,汽缸下半温度190 ℃,绝对膨胀值为3.5 mm。上下缸温度均在热态启动参数范围内,膨胀值也正常,因此无须中低速暖机,所以排除暖机不充分的因素。
(3)查DCS记录,冲转前及冲转后在偏心仪退出前偏心值一直在42 μm左右,属正常值,说明轴振大不是由于大轴过度弯曲造成的。
(4)冲转前已经对A小机高低压进汽管道进行充分疏水暖管,冲转后A小机低压主汽门前蒸汽温度一直维持270 ℃左右,A小机调节级后蒸汽温度235 ℃左右,蒸汽压力1.0 Mpa,蒸汽温度和压力都没有大幅度波动,蒸汽过热度达55 ℃以上,因此判断A小机轴振大是由于发生水冲击的可能性较小。
(5)对轴承进行检查,发现各轴瓦温度在45~48 ℃之间,且就地用听针听各轴承位置声音比较清脆、规律,无太多的嘈杂声,所以分析因轴承损坏导致轴振大的可能性也较小。
(6)排汽温度过高会导致汽缸变形,使转子偏离中心线,造成动静摩擦,也是诱发轴振大的一个因素。经查,A小机排汽温度一直在42 ℃上下,就地检查汽缸外形及排汽管并无变形,与汽缸相连接的部件也没有发生蠕变现象,所以排除排汽温度高对A小机轴振大的影响。
(7)最后在就地反复检查,发现就地新装设的小机排汽缸减温水手动门开度很大,几乎全开。由于小机在设计时没有减温水管设计,为了防止小机冲转时因蒸汽量少导致排汽温度过高,后来在排汽缸加装了排汽缸减温水管及一个手动门。减温水喷头装设的位置较高,分析是因为减温水手动门开度过大,导致过量的减温水未经雾化直接喷射在小机转子叶片上,使转子受力不均,最后导致小机轴振大停机。处理及整改
(1)分析出是减温水手动门开度过大后,即派人先把门全关,重新开始冲转A小机,待排汽温度升高到80 ℃以上时,才稍开一点减温水手动门。经处理,A小机在冲转至前两次跳闸转速(1316 r/min、1454 r/min)时,轴振最大值处分别为10.7 μm、13.7 μm,振动明显比前两次小,最后A小机于17时21分48秒成功冲转至3100 r/min(正常运行时最低转速),检查排汽温度为45.4℃,在正常范围内。关小减温水手动门前后A小机轴振最大处数值比较如表2。
(2)打开减温水手动门时,发现只要稍开一点(大概1/20圈),排汽温度就很快从80多摄氏度降到40多摄氏度,因此分析是减温水管径过大,导致即使手动门在很小开度就会有较大量的水进入排汽缸,因此决定在减温水手动门后加装节流孔板,这样就能更好更容易地控制减温水量,具体整改如图2。结语
通过此次事故的处理及对排汽缸减温水管的整改,在以后几次的启动冲转过程中,A小机再也没有发生过因轴振大而跳闸的事故,保证了#7机组的顺利启动及安全运行。
参考文献
[1] 华东六省一市电机工程(电力)学会.汽轮机设备及其系统[M].北京:中国电力出版社,2006.[2] 王国清.汽轮机设备运行技术问答[M].北京:中国电力出版社,2003.[3] Q/MZN-103.501-2012,600MW机组集控运行规程主机部分.[4] Q/MZN-103.502-2012,600 MW机集控运行规程辅机及公用系统.
第二篇:一起因设备质量导致220千伏断路器跳闸的分析
一起因设备质量导致220千伏断路器跳闸的分析
一、跳闸前运行方式
疆南电网220千伏麦盖提变电站220千伏母线接线方式为双母线分段,运行方式为220千伏鹿麦线、220千伏1号主变在220千伏I母运行,220千伏麦莎线在220千伏II母运行,220千伏I、II母并列运行。跳闸前一、二次设备均运行正常,现场无异常现象,220千伏鹿麦线和麦莎线线路运行正常。
220千伏鹿麦线断路器型号为LW30-252,由山东泰开高压开关有限公司生产,2013年2月出厂。该线路保护为双套配置,A套保护型号为CSC-103B,北京四方继保自动化股份有限公司生产。B套保护为WXH-803B,许继电气公司生产。智能汇控柜内智能终端A/B套型号为JFZ-600F,合并单元A/B套型号为CSN-15B4均由北京四方生产,网络分析仪A/B套为广州思维奇公司生产的M8100型装置,故障录波记录器A/B套为深圳双核公司生产的SHDFR-C型装置。
二、跳闸经过及简况
某日09时16分220千伏麦盖提变220千伏鹿麦线2907断路器跳闸。跳闸后运维人员对保护设备,智能终端及断路器机构进行检查,均未发现保护动作信息。220千伏金鹿变侧220千伏鹿麦线间隔一二次设备运行正常。于10时09分220千伏鹿麦线2907断路器合闸成功。
次日02时22分,220千伏鹿麦线2907断路器再次跳闸,跳闸后运维人员对保护设备,智能终端及断路器机构进行检查,均未发现保护动作信息,220千伏金鹿变内的220千伏鹿麦线间隔一二次设备运行正常。于03时06分220千伏鹿麦线2907断路器合闸成功。
10时12分,220千伏鹿麦线2907断路器第三次跳闸,跳闸后运维人员对保护设备,智能终端及断路器机构进行检查,均未发现保护动作信息。220千伏金鹿变内的220千伏鹿麦线间隔一二次设备运行正常。10时30分,接调度令试合220千伏鹿麦线2907断路器失败,并将此情况汇报省调。
第三日4时02分,220千伏鹿麦线2907断路器第四次跳闸,于04时17分220千伏鹿麦线2907断路器合闸成功。
三、现场检查及保护动作分析(一)第一次跳闸及检查分析情况
某日9时16分220千伏鹿麦线2907断路器跳闸后,根据疆南220千伏电网N-1安全稳定运行需要,于10时09分合闸恢复运行方式,我公司调查小组于10时30分到达现场并对设备进行检查。对220千伏鹿麦线2907断路器机构、线路保护装置报文、220千伏线路故障录波文件、自动化后台报文、网络分析文件及站内SCD文件进行全面检查核对,在网络分析仪A套中发现报文:(北京四方保护)220千伏鹿麦线保护A-PI->跳闸,描述“状态数据集数量递增但状态未变化”沟通三跳 goose未变位和在网络分析仪AB套均报“断路器A相-2907断路器低气压闭锁2(合位->过渡)”。根据报文对断路器机构SF6气压及智能汇控柜二次回路进行核查,未发现寄生回路及二次电缆破损。根据故障录波器记录波形图显示线路未出现故障现象,三相断路器同时跳闸未见异常。详见下图:
在北京四方技术人员到达现场对后台报文、网络分析文件、站内SCD文件、录波文件及智能终端内部记录文件进行调取、检查和分析,未发现相关问题。因该工程还未移交竣工图纸,现场无断路器厂家机构原理图和相关二次图纸,调查小组结束当日检查工作,撤离工作现场。对相关厂家和设计院图纸进行了收集和整理,准备开展相关二次回路详细核查工作。
(二)第二次跳闸及检查分析情况
次日02时22分220千伏鹿麦线再次发生跳闸,调查小组于3时05分返回到达现场对鹿麦线保护装置报文、220千伏故障录波文件、后台报文、网络分析文件调取并与第一次跳闸故障进行比对,与第一次断路器跳闸故障信息一致。根据疆南220千伏电网N-1安全稳定运行需要,于3时02分合闸恢复运行方式,调查小组无法开展进一步检查,为此准备做计划申请将220千伏鹿麦线断路器停电做全面检查。
(三)第三次跳闸及检查分析情况
10时12分220千伏鹿麦线发生第三次跳闸,跳闸调查小组对保护设备、智能终端及断路器机构进行检查,依然未发现设备异常及保护动作信息。
在10时30分,对220千伏鹿麦线断路器合闸不成功,调查小组到达现场后,经检查发现后台机有220千伏鹿麦线同期合闸失败的报文,原因为同期角不满足条件,于是判断220千伏鹿麦线2907断路器由于同期角差不满足同期合闸条件,所以手动同期合闸不成功。同时对鹿麦线保护装置报文、故障录波文件、后台报文、网络分析文件进行调取并与前2次设备跳闸信息进行比对,信息基本一致,未发现相关异常情况。
14时00分将220千伏鹿麦线2907断路器转检修,检查小组对断路器机构以及相关二次回路进行检查,并试分、合断路器,断路器分、合闸正常。用万用表对断路器机构内三相不一致保护回路、中间继电器及时间继电器开出常开接点进行导通测试未发现异常。对断路器防跳回路及三相不一致保护试验后未发现异常。根据断路器机构二次原理图分析,只有三相不一致保护动作或“远方/就地把手在就地位置”且分合闸辅助开关分闸时才能出现三相断路器同时跳闸现象。
首先现场检查“远方/就地”把手在“远方”位置,且分合闸辅助开关接点和动作性能可靠,故分析此回路不满足引起此次断路器跳闸条件。其次对三相不一致保护相关二次回路进行检查,发现三相不一致保护动作信号,由时间继电器(由山东泰开自购的韩国龙声电气制造YSDT4S-D22-52型)KT1第二组辅触接点输出,这样的信号接线方式不能监控三相不一致中间出口继电器或时间继电器发生误动,后台机无法记录断路器三相不一致保护动作信号。该断路器二次原理图如下:
为保证后台能完全监控到三相不一致保护动作信号,将后台监控动作信号由两套时间继电器KT1和KT2的第二组动作开出接点,改接至中间出口继电器ZJ3第四组辅触节点(备用)提供。根据疆南220千伏电网N-1安全稳定运行需要,在20时30分,220千伏鹿麦线断路器投入运行。我公司调查小组于21时50分撤离工作现场。
(四)第四次跳闸及检查分析情况
第三日04时02分,220千伏鹿麦线2907断路器发生第四次跳闸,于04时17分220千伏鹿麦线断路器投入运行。
调查小组对自动化后台信息检查时,发现断路器第一组三相不一致保护动作两次,第一次动作信息在断路器跳闸前,第二次动作信息在断路器跳闸后。其余故障信息与前三次跳闸信息一致,故分析为220千伏鹿麦线第一组三相不一致保护动作导致三相断路器跳闸。
根据断路器变位记录信息分析,断路器三相不一致保护中间出口继电器ZJ3或时间继电器KT1的第一组开出接点存在误动,引起了断路器三相跳闸。在申请停用第一组三相不一致保护后,对时间继电器KT1开出接点用万用表进行测试,未发现异常,用500V绝缘电阻测试仪对开出接点空气间隙进行绝缘测试时,发现第一组开出接点测试值为零,第二组开出接点值为580兆欧。其次对第二组三相不一致保护时间继电器KT2开出接点进行测量,第一组开出接点测试值为470兆欧,第二组开出接点值为530兆欧。现场对第一组三相不一致时间继电器(全封闭型)进行破坏性解体,发现时间继电器内部的第一组开出接点(至启动中间继电器)空气间隙不足,接点间存在似接非接接触不良拉弧发热迹象,由接点瞬时粘合,触发中间继电器动作出口造成断路器跳闸。
第一组三相不一致保护时间继电器第一组开出接点绝缘测试值
第一组三相不一致保护时间继电器第一组开出接点
根据四次断路器跳闸情况综合分析,四次跳闸原因均为第一组三相不一致保护,时间继电器内部的第一组开出接点(至启动中间继电器)空气间隙不足,接点间存在似接非接接触不良拉弧发热迹象,由接点瞬时粘合,触发中间继电器动作出口造成的断路器跳闸。前三次后台没有三相不一致保护动作信息报文是因第一组三相不一致保护时间继电器,KT1的第一组开出接点(至启动中间继电器)不正确动作,但第二组开出接点(至后台信号)正常。另外在对220千伏鹿麦线断路器三相不一致时间继电器KT1的解体检查时,发现继电器的底座母板处有水渍痕迹现象,部分接线压接螺丝铁件出现锈斑。在对站内其他三组220千伏断路器机构箱(220千伏麦莎线、220千伏母联、1号主变220千伏侧)进行检查时,发现B断路器机构箱部分接线压接螺丝铁件均有锈迹。初步分析为断路器生产厂家在制造过程中,机构箱元器件接线板组件保管不完善,导致受潮,断路器厂家人员已现场确认。如下图所示:(图六)时间继电器底座插线板
时间继电器底座插线板
中间继电器外观图
四、暴露的问题及整改措施
因断路器第一组三相不一致保护的时间继电器故障,故公司申请将鹿麦线2907断路器转检修,完成以下整改工作:
更换断路器机构内第一组和第二组三相不一致保护时间继电器,并进行了试验验证动作时间(定值2S)、动作电压及出口,结果正确。另对两套三相不一致保护信号回路进行完善整改,实现中间出口继电器和时间继电器动作,在后台监控信号上的相互独立。
配合断路器厂家完成了机构检查和断路器特性试验,试验结果符合220千伏断路器高压试验规程标准。
配合北京四方研发人员及网络分析仪厂家完成了对保护装置、后台信息、故障录波、智能终端和网络分析仪中的报文再一次进行了梳理分析,未发现其他引起断路器跳闸的相关信息。并查明了网络分析仪中的“2907断路器低气压闭锁2”是因系统集成商(北京四方),提供给网络分析仪厂家的全站SCD文件含有过程层附加描述,且由于该附加描述不对应引起的信号误报。另网络分析仪中“数据集递增但状态未发生变化”信号是因SQNum发生跳变,但GOOSE信号未发生变化引起,需要在北京四方研发总部内综合分析后再做结论。完成了保护装置整组传动试验,试验结果满足相关要求。
五、防范措施
组织相关部门及时召开了此次220千伏鹿麦线2907断路器跳闸整改分析会,确定了后期整改计划及措施:
据了解该型号断路器此类跳闸原因在泰开公司尚属首次,要求断路器厂家对断路器机构箱元器件选择和设备工艺进行质量追溯调查,并制定整改方案。
对后期更换的220千伏断路器三相不一致保护,严格按照《十八项电网重大反事故措施》,第15.7.8条,校验涉及直接跳闸重要回路采用的继电器动作电压和动作功率。对断路器非全相保护回路进行完善化改造,避免回路中继电器误动导致设备跳闸。对三相不一致保护信号回路进行完善整改,实现中间出口继电器和时间继电器动作,在后台监控信号上的相互独立,确保动作监控信号零死角。
在以后的验收工作中针对断路器机构,对重要隐蔽性的继电器等元器件进行破坏性解体对开出接点进行抽检,防止设备元器件内部隐蔽性动作接点存在隐患。
建议省公司对该断路器设备制造厂家,进行设备质量考核。对本次断路器跳闸隐患进行深入排查治理,制定、落实整改计划、整改方案及防范措施。
二○一三年五月十六日
第三篇:汽轮机发生水冲击原因分析及事故处理
汽轮机发生水冲击原因分析及事故处理(1)北极星电力网技术频道 作者: 2012-12-10 10:07:19(阅501次)所属频道: 火力发电 关键词: 汽轮机 水冲击
汽轮机发生水冲击危害:进入汽轮机的蒸汽必须保持足够的过热度:(当湿蒸汽中的水全部汽化即成为饱和蒸汽,此时蒸汽温度仍为沸点温度。如果对于饱和蒸汽继续加热,使蒸汽温度升高并超过沸点温度,此时得到的蒸汽称为过热蒸汽,过热度指的是蒸汽温度高于对应压力下的饱和温度的程度。)正常运行中蒸汽应保持在额定参数允许范围内。如果蒸汽带水进入汽轮机,将使推力急剧增大,将转子向后推移,导致推力瓦烧损和动静碰磨。同时汽轮机运行中汽缸、转子、阀门等都处于高温状态,低温蒸汽或水突然进入汽轮机的某一部位,将造成部件急剧收缩,除本身金属产生大的热应力影响寿命外,局部收缩变形可能导致动静碰磨、大轴弯曲、部件裂纹、接合面变形泄漏等等。近年来汽轮机进水事故时有发生,有的甚至造成设备损坏。
现象:
1.主蒸汽温度和汽缸温度急剧下降,汽缸上、下壁温差升高(发生水冲击此现象最为明显和直观,我曾经在运行中遇到过汽包满水事故,最为直接的现象就是主汽温度快速下降,此时机侧能做的就是快速降负荷,并开启机侧的疏水门优先开启主汽管道和高压内缸等疏水,及时联系锅炉调整,同时对机组的本体画面加强监视,如本体个参数发生异常现象无法挽回,必要时打闸停机并破坏真空处理。)2.主汽门、调速汽门门杆法兰,汽缸结合面,轴封处冒白汽或溅出水滴(此现象说明已经是发生严重水冲击必须立即打闸停机加强放水,并根据情况采取连续盘车或定期盘车。)。
3.蒸汽管道有强烈的水冲击声和振动。(此现象较为严重)4.机组声音异常,机组振动增加。
5.轴向位移增大:定义:又叫串轴,就是沿着轴的方向上的位移。总位移可能不在这一个轴线上,我们可以将位移按平行、垂直轴两个方向正交分解,在平行轴方向上的位移就是轴向位移。轴向位移反映的是汽轮机转动部分和静止部分的相对位置,轴向位移变化,也是静子和转子轴向相对位置发生了变化。全冷状态下一般以转子推力盘紧贴推力瓦为零为.向发电机为正,反之为负,汽轮机转子沿轴向向后移动的距离就叫轴向位移。发生水冲击(蒸汽带水):水珠冲击叶片使轴向推力增大,同时水珠在汽轮机内流动速度慢,堵塞蒸汽通路,在叶轮前后造成很大压力差,说的通俗一点就是说水比起蒸汽来走的太慢,而力量又很大,不能像蒸汽一样从动叶片之间钻过去,而是打在了叶片上,就像水枪冲击其他东西似的,所以轴向推力才会加大,推力瓦块温度升高(轴向推力过大会使推力轴承超载,而推力瓦主要是起平衡轴向推力的作用,所以会导致瓦块温度升高而乌金烧毁),胀差(汽轮机转子与汽缸的相对膨胀,称为胀差。习惯上规定转子膨胀大于汽缸膨胀时的胀差值为正胀差,汽缸膨胀大于转子膨胀时的胀差值为负胀差)减小(负涨差大,说明进气温度比缸温低,转子膨胀(收缩)比缸体慢,这在原则上是不允许的。原因:
1.因为负向间隙要比正向间隙小很多,所以说负胀差过大比正胀差过大更危险 2.负胀差的出现一般是甩负荷,热态启动等。负胀差的出现对转子来说寿命很大的,因为转子运行时处于加热状态,出现负涨差时转子被冷却了,随着带负荷或热态启动等,转子又被加热。转子完全加热到冷却在到被加热的循环过程。转子的热应力很大,热疲劳损失也很大。对转子的寿命损失影响特别大。所以机组都规定不允许甩负荷维护空转或带厂用电运行)原因:
1.锅炉满水或汽水共腾(蒸发表面(水面)汽水共同升起,产生大量泡沫并上下波动翻腾的现象,叫汽水共腾。发生汽水共腾时,水位表内也出现泡沫,水位急剧波动,汽水界线难以分清;过热蒸汽温度急剧下降;严重时,蒸汽管道内发生水冲击)原因一是锅水品质太差,二是负荷增加和压力降低过快。
2.锅炉燃烧调整不当。
3.主蒸汽减温水使用不当(特别是刚起炉时由于蒸汽流量较低,减温水投入量过大容易形成水塞,运行人员又忽略其过热度未及时进行调整)。
4.启动过程中,暖管、暖机疏水没排净(热态启动时更是应该充分疏水)。5.加热器满水,抽汽逆止门不严或保护拒动,使水进入汽轮机。
6.除氧器满水或轴封供汽减温减压器减温水门误开或轴封疏水不够充分,使轴封进水。处理:
1.当发生水冲击时,应立即破坏真空停机(破坏真空紧急停机的条件通俗的理解就是,我们的汽轮机再也不能转动了,必须马上让其静止下来。所以我们采用破坏真空紧急停机,减少惰走时间(惰走时间是指发电机解列后,从自动主汽门和调门关闭起到转子完全静止的这段时间),使汽轮机尽快静止以减小故障的危害程度。由于紧急事故停机破环凝汽器真空时,大量冷空气进入凝汽器,对凝汽器和低压缸迅速冷却,产生很大的“冷冲击”,会造成凝汽器铜管急剧收缩,使其胀口松动,产生泄漏。而且使低压缸和低压转子的热应力增大,有时还会诱发机组振动增大)不破坏真空故障停机指的是汽轮机及附属系统的故障已经无法维持机组的正常运行,但对主机的安全威胁并不大,意思就是汽轮机还是可以转动的,所以就可以采用快速降负荷,然后按正常打闸和正常破坏真空程序来停机)第一:两者停机的条件有区别,是不一样的。
第二:两者对于凝汽器真空的处理有区别。一个是强制破坏真空,一个是自然消除真空。第三:两者产生的结果有区别。一个对设备伤害大(破坏真空停),一个对设备伤害小(不破坏真空停)。
第四:两者导致转子惰走时间有区别。破坏真空惰走短,不破坏真空惰走时间长。最后:两者让领导的感受有区别。如果领导听说自己的汽轮机破坏真空停机了,那绝对是心头一沉,额头冒汗。后者就好多了,2.开启主汽母管、主汽管道、汽轮机本体所有疏水。倾听机组声音(这点需要到就地用听针判断,倾听是否有摩擦声等)记录振动、惰走时间(如惰走时间延长,表明机组进汽阀门有漏汽现象或不严,或有其它蒸汽倒入汽缸内。如惰走时间缩短,则表明动静之间有碰磨或轴承损坏),注意除氧器、凝汽器水位的变化。
3.若因加热器满水引起水冲击,应迅速关闭加热器进汽门和进、出水门,打开加热器危急疏水门和水侧旁路门(给水直接走旁路切除加热器,必要时隔离放水),降低加热器水位。若因高、低除氧器满水引起水冲击,应立即停用四、五段抽汽,关闭四、五段抽汽门,开启放水门降低除氧器水位。
4.惰走中检查下列参数,记录在记录本中:轴向位移,推力瓦块金属温度,汽机振动,高、低压缸胀差,高压缸上、下缸金属温度。
5.汽机转速到零后立即投入连续盘车(这样可以减小上下缸温,同时也可以防止转子因受热不均引起弯曲)。记录盘车电流、转子偏心。若动导部分摩擦,盘车盘不动时(有可能是大轴弯曲,说明问题较严重),严禁强行盘车(可采用手动定期盘动转子180°消除热弯曲,强行连盘的话,会动静摩擦;1:先开启高压缸调节级疏水,排尽疏水关闭2:同时组织人员定盘转子,找到转子晃动度最大值,做好标记,转动该标记对准下缸,然后每30分钟定盘180度;3:多注意晃动值的变化,到规程定值后,投连续电动盘车,多观查盘车电流,)。
6.如果惰走时间、转子偏心及盘车电流正常,汽轮机内部无异常(说明问题不严重),符合热态启动条件,停机24小时后可重新启动,但全部管道应充分疏水。升速及带负荷过程中应注意轴向位移,推力瓦块温度及高、低缸胀差指示,仔细倾听机组声音,测量机组振动,如发现汽机内部有异常或磨擦声音应立即停止启动(加强监视和检查,发现问题及时处理。按规定是要总工批准方可启动的)。
7.如果惰走中轴向位移、胀差、振动、推力轴承金属温度明显升高,惰走时间明显缩短,盘车电流增大或摆动范围增加(说明内部动静部分已发生摩擦),禁止启动。停机后应根据检查推力轴承情况决定是否揭缸检查,不经检查,汽机不允许重新启动。8.如果停机时发现汽轮机内部有异音和转动部分有摩擦,则应揭缸检查。案例分析
1.1977年某厂一台苏制100MW高压机组,用电动主汽门旁路门启动,机组达到3000r/min时,由于锅炉减温水量过大,加之电动主汽门前积水未疏净,开启电动主汽门后,蒸汽带水进入汽轮机,主汽门、调节汽门冒白汽,现场值班人员层层请示汇报延误了打闸停机,加之启动前未投轴向位移保护,致使推力瓦片磨损6mm之多,动静部分严重磨损,叶轮同隔板磨擦产生的溶渣约4mm厚,虽然两个月抢修恢复了运行,但遗留隐患造成低压转子叶轮轮缘甩脱、隔板裂纹等多次事故。(锅炉满水或蒸汽管道积水,使蒸汽带水进入汽轮机)2 1988年某厂一台国产100MW高压机组停机后,除氧器满水经机组轴封溢汽管(逆止门不严)返到高压汽封处,造成高压缸前端剧冷收缩变形,接合面间隙增大漏汽,被迫转大修对按合面刷镀找平后,才恢复正常。(回热设备热交换器管子爆漏或汽侧满水,若抽汽逆止门不严,水将进入汽轮机)3 1993年某厂一台300MW机组运行中主汽温度降低,由于现场运行规程规定1min下降50℃才打闸停机,致使低到400℃左右才打闸停机,导致推力瓦片磨损。(此类事故也较为常见,由于锅炉的的汽包满水或汽温调整不当导致主汽温度快速下降,运行人员存在侥幸心理对事故的判断与处理反应迟钝错过最佳处理时机。本是完全可以避免的.)4 70年代某厂一台50MW机组,停机中进行凝汽器汽侧灌水查漏中对水位缺乏监视,以致凝汽器满水进入汽缸,直到从汽封洼窝处往外溢水才被发现(4.凝汽器汽侧灌水找漏或停机后对凝汽器汽侧水位缺乏监视,凝汽器满水进入汽轮机。因凝汽器水位计最高量程在1500MM-2000MM左右,一般是以凝结水泵的入口静压和真空信号管做为灌水找漏时凝汽器的水位监督。这在今后运行中是有可能遇到的。所以要严格按规程执行缸温低于83°才可对凝汽器灌水找漏。
上一页12
第四篇:AA001-1主变跳闸事故的分析及处理
题目:AA001-1主变跳闸事故案例分析及处理
一、案例介绍
某电厂某年某月某日,新建一回南德线,某电建公司施工,办理了开工通知单和双签发工作票(工作监护人未填,根据厂内工作实际情况,检修部临时指派人员监护,未指定专人进行监护跟踪),编写了施工方案,其中在调试施工组织设计篇“9 危险点分析和风险预控”中有“9.8误通流、通压到运行设备”和“9.11防止误接线或遗漏接线措施”等风险控制要求。某月某日17:00,施工人员在南德线汇控柜(柜内交直流电源已拉电)将00ADA35-1170、00ADA35-1171两根电缆接入端子排I4排编号48、49接点,19:00工作完成。第二天早晨封堵施工人员未经许可私自进入GIS对南德线汇控柜进行防火封堵,当时雷雨交加,天昏地暗,GIS室内光线不够,施工人员私自将南德线汇控柜内交直流电源开关送上。8:38:22NCS发出GIS站110V直流Ⅰ、Ⅱ母线正极接地报警,08:38:26,#
1、#2主变高压侧开关2201、2202跳闸,随即#
1、#2发电机出口断路器开关801、802跳开,#1机组(负荷300MW)、#2机组(负荷250MW)跳闸,厂用电失压,柴油发电机启动成功。运行人员立即紧急停机,随后运行人员到机组电子间、GIS检查未发现发变组保护、母差保护、线路保护动作信号,GIS站110V直流绝缘监测装置显示主变电度表屏接地报警,电阻值为0。
事故调查时,发现GIS直流母线电压波形有突变(约310V左右)且有脉动,见附图1,立即对南德线汇控柜进行排查,当断开报警电源及指示灯电源开关后,直流接地报警立即消失,母线电压波形正常。现场检查汇控柜发现:I5端子排的48、49端子上查线人员核对正确后用黑色油漆笔做好了标记(附图2),但是该端子上未接线,再次检查发现I4端子排的48、49端子上接入新电缆。解开电缆测量电缆端头有220V交流电,见附件示意图2。
直流系统Ⅰ、Ⅱ段同时接地报警,经核查发现在主变电度表屏两路直流合环运行,见附件示意图3。
#
1、2机主变高压侧开关2201、2202同时跳闸,但未发现任何保护动作信号,根据设计发变组保护屏安装在机组电子间,而主变出口继电器屏安装在GIS电子间,两个房间距离约350米,#1主变、#2主变出口继电器组屏安装在同一屏内,分别由GIS室直流系统Ⅰ、Ⅱ段供电,该出口继电器BCJ起动功率为1.2W,动作电压有64V。因无原因可查,经电气专业组讨论及综合继电器厂家意见,进行事故还原(保证线路安全运行的前提下),即合上#
1、#2主变高开关,然后再次将南德线汇控柜内解开的电缆接回I4端子排的48、49端子上,经录波(录波图见附件4)发现一合南德线汇控柜报警电源及指示灯电源开关,几豪秒2201、2202开关就跳闸,#1主变、#2主变出口继电器BCJ指示灯闪亮,该继电器动作后无自保持,也无信号报警。经过试验、分析、查找终于找到了跳闸的根源。
附件1:直流母线电压波形图
附件2: 核线标记图
附件3: 端子排示意图3
附件4:主变电度表屏直流供电示意图4
附件5:试验录波图5
附件6: 事故前运行方式接线图6
二、考核要求
根据案例内容、主接线图及主变保护配置情况,请回答以下问题:
1、主变跳闸的原因分析?
2、该事件暴露的问题?
3、防止该类事故发生的整改措施?
三、考试方式:笔试
四、考核时间:60min
五、参考答案与配分
1、主变跳闸的原因分析:30分
1)根据跳闸的现象、事故调查内容及相关附图,施工人员在南德线汇控柜内接错线,误将交流回路接入直流回路,在封堵人员送上汇控柜电源时导致GIS直流系统Ⅰ、Ⅱ段都串入了220V交流电(主变电度表屏处Ⅰ、Ⅱ段合环),引起发变组继电屏保护出口继电器(BCJ)动作,造成主变跳闸,这时直接原因。(10分)
2)设计有缺陷,未满足继电保护反措是要求:发变组继电器屏保护跳闸出口继电器BCJ的动作功率在连线长、电缆电容大的情况下应选用大启动功率(不小于5W)跳闸出口继电器,防止直流正极接地时误动作。由于发变组保护屏(机组电子间)与发变组继电器屏(GIS电子间)相隔较远(约350米),同电缆内并排两电缆芯线正负间存在分布电容,当交流电窜入直流系统时,分布电容放电导致发变组继电屏保护出口继电器(BCJ)动作,是造成主变跳闸的根本原因之一。(10分)
3)工程验收把关不严,直流系统定期接地报警试验不认真,未及时发现GIS直流系统Ⅰ、Ⅱ段合环的隐患,合环后直流Ⅰ、Ⅱ段绝缘监测的平衡电阻桥破坏,合环处设备电阻值下降,在正极接地时就发出报警。这时造成2台主变同时跳闸的根本原因之二。(10分)
2、该事件暴露的问题:30分 1)、两票三制执行力度不够,特别是工作票制度,每天工作结束后工作票应收回,第二天开工应经运行许可,施工人员不能私自进入GIS。(5分)2)、安全管理不到位,风险分析及控制措施存在薄弱环节。对承包商人员进行了入厂安全培训,制定、审批了施工方案,但执行不严,未认真落实作业现场“五想五不干”的安全理念。(5分)3)、承包商内部管理存在严重漏洞,未严格执行相关管理制度及未按施工方案进行作业。在调试施工组织设计篇“9 危险点分析和风险预控”中有“9.8误通流、通压到运行设备”和“9.11防止误接线或遗漏接线措施”等风险控制要求,且调试单位已对2399开关核线完毕,需接线的48、49端子已在柜内作好标记,但接线人员未通知调试单位就私自接线,且未认真对线,导致了接错线,为后面的事故发生埋下了隐患。(5分)4)、运行管理不到位。未严格执行门禁出入管理规定,无电厂监护人的情况下允许承包商人员进入GIS室。(5分)
5)设计及工程验收把关不严,导致设计不符合反措要求,直流合环隐患未及时发现。(5分)6)、发变组出口继电器屏报警不完善,导致事故发生后处理事故、分析事故困难。(5分)
3、防止该类事故发生的整改措施:40分
1)、加强对对承包商的管理,严格执行施工方案,严禁施工人员私自拉送电操作,认真落实作业现场“五想五不干”的安全理念。(5分)
2)、加强运行管理,严格执行门禁及出入管理规定。对进出设备区域人员权限、资质进行检查,确保设备和机组运行安全。(5分)3)、进一步严格执行工作票制度,加强监管,做到监护人不到场工程决不开工,每天工作结束后应押票,第二天开工应经运行许可,施工人员不能私自进入施工现场。(5分)4)、解开南德线2399开关汇控柜内的错误接线(I4端子排上48、49端口)并进行包扎。并停止建设工程,进行整改。(5分)
5)解开GIS直流系统Ⅰ、Ⅱ段合环,并对其他直流系统进行排查。(5分)6)注重本质安全,消除设计、工艺及施工遗留缺陷。(1)、将#
1、#2主变保护A屏、B屏、C屏至GIS站内发变组继电器屏同电缆内并排正负两电缆芯线分布到不同电缆,减少同一电缆长线路并排正负芯线间的电缆分布电容。(5分)(2)、#
1、#2主变保护出口中间继电器(BCJ)换型,选用大动作功率(不小于5W)跳闸出口继电器。(5分)(3)、完善主变高开关出口箱报警信号,保证出口继电器BCJ动作后记录,方便事故分析。将新增出口中间继电器动作信号引入NCS监控系统和录波装置。(5分)
第五篇:《建筑工程事故分析与处理》
《建筑工程事故分析与处理》
期末课程论文
姓 名:董泽伟 学 号:3100106044 所在院系:土木工程与力学学院 专 业:建筑1002 任课教师:沈圆顺
二〇一三年十二月
2013年12月
《建 筑 工 程 事 故 分 析 与 处 理》 课 程 期 末 论 文
2013 December
建筑工程事故处理与分析
作者:董泽伟
(江苏大学土木工程与力学学院、江苏 镇江、212013)
摘要:土木工程事故处理是土木工程专业的一门重要学术内容。常见的建筑工程有地基与基础工程、混泥土工程、砌体结构工程、钢结构工程、装饰工程、桥梁工程等。常见引发事故的原因主要有:工程技术上的失误、工程质量上的不足、地震洪水等自然因素,及火灾等人为因素。因此,土木工程事故处理因给与重视。进入21世纪后,我国城市发展进入了一个崭新阶段,城市的数量、规模和人口数量都有了飞速的发展。新的高楼大厦、展览中心、铁路、公路、桥梁、港口航道及大型水利工程在祖国各地如雨后春笋般的涌现,新结构、新材料、新技术大力研究、开发和应用。随着城市人口数量的增加和规模的矿大,城市建筑正在向空间超高、地下超深的三维空间发展。伴随着城市建设的高速发展,各种工程质量事故也时有发生。
关
键
词:土木工程事故处理、事故处理与分析
中图分类号:TU 443(Times New Roman)
文献标识码:A
Architectural engineering accident analysis and processing
DONG Ze-wei(College of civil engineering and mechanics, Jiangsu University, Jiangsu Zhenjiang 212013)
Abstract:Civil engineering accident treatment is an important research content of civil engineering.Common building foundation and foundation engineering, concrete engineering, engineering, masonry structure, steel structure engineering, decoration engineering, bridge engineering.Common causes of accidents are: natural factors, engineering quality engineering technology on the shortcomings, earthquakes and floods, fires, and etc..Therefore, the civil engineering accident treatment by giving attention to.After entering in twenty-first Century, China's city development has entered a new stage, the number of city size and population, have made rapid development.The new many-storied buildings, exhibition center, railway, highway, bridge, harbor, large-scale water conservancy projects in all parts of the country such as bamboo shoots after a spring rain like emerge, new structure, new materials, new technology research, development and application of vigorously.Along with the increase of city population and the scale of the mine, 3D city building is to super high, super deep underground space development.With the rapid development of city construction, engineering quality accidents have occurred from time to time.Key words: Civil engineering accidents, accident analysis and processing.前言
土木工程事故处理是土木工程专业的一门重要学术内容。常见的建筑工程有地基与基础工程、混泥土工程、砌体结构工程、钢结构工程、装饰工程、桥梁工程等。常见引发事故的原因主要有:工程技术上的失误、工程质量上的不足、地震洪水等自然因素,及火灾等人为因素。因此,土木工程事故处理因给与重视。进入21世纪后,我国城市发展进入 提交日期:2013-12-15
作者简介:姓名:董泽伟,性别:男,出生年份:1992。
了一个崭新阶段,城市的数量、规模和人口数量都有了飞速的发展。新的高楼大厦、展览中心、铁路、公路、桥梁、港口航道及大型水利工程在祖国各地如雨后春笋般的涌现,新结构、新材料、新技术大力研究、开发和应用。随着城市人口数量的增加和规模的矿大,城市建筑正在向空间超高、地下超深的三维空间发展。伴随着城市建设的高速发展,各种工程质量事故也时有发生[1]。专业:土木工程
班级:建筑1002
学号:3100106044
姓名:董泽伟 土木工程事故发生的原因
事故发生的原因多种多样,从已有的工程事故分析,主要由以下几个方面:
(1)设计问题;
(2)施工问题;
(3)材料问题;
(4)勘测问题
此外,还可能有以下问题:
(1)管理不善,责任不落实,监管不到位;
(2)使用、改善不当,或使用中任意增大荷载;
(3)安全技术规范在施工中的得不到落实;
(4)有章不循,冒险蛮干;
(5)以包代管,安全管理薄弱,忽略了了安全细节因素;
(6)一线操作人员安全意识和技能较差,缺乏安全意识、安全知识、自我保护意识、不能辨别危害和危险; 事故处理的工作原则
事故处理的工作原则有如下几点:
(1)以人为本,安全第一;把保障人民群众的生命安全和身体健康、最大程度的预防和减少安全事故灾害造成的人员伤忙作为首要任务。
(2)统一领导,分级负责。
(3)条块结合,属地为主;充分发挥当地人民政府的指导和协调作用。
(4)依靠科学,依法规范;采用先进技术,充分发挥专家作用,采用新进的救援设备和技术。
(5)预防为主,平战结合;贯彻落实“安全第一,预防为主”的方针,做好预 防、预测、预警和预报工作。地基与基础工程事故处理
常见的地基工程事故的主要原因是由于勘察、设计、施工不当或环境和使用情况改变而引起的,其最终反应是地基产生过量的变形或不均匀变形,从而造成上部结构出现裂缝、倾斜,削弱和破坏了结构的整体性和耐久性,并影响建筑物的正常使用。事故严重者会使地基是稳,将导致建筑物倒塌[2]。建筑物均匀沉降对上部结构影响不大,但沉降量过大,可能造成室内地坪低于室外地坪,起雨水导管、管道断裂以及污水不易排出等影响正常使用问题。
不均匀的沉降过大是造成建物倾斜和产生裂缝的主要原因。建筑物不均匀沉降过大对上部结构的影响主要反映在下述几方面:
(1)墙体产生裂缝;
(2)柱断裂或压碎;
(3)建筑物产生倾斜
常见基础工程缺陷事故还有错位、变形、裂缝、强度不足、混泥土孔洞以及桩基础工程事等类型。地基基础质量控制要点主要为地基、地基基础的质量控制,只有严格按照相关质量制要点进行地基基础的设计、施工,才能减少地基基础工程事故的发生[3]。混泥土结构工程事故处理
在工程中要完全避免裂纹几乎是不可能的。微细的收缩裂纹(宽度<0.1 5~ 0.2mm)对承载能力影响不大。随着水泥不断水化,一些微裂纹可能自合。但受拉区的粗裂缝甚至贯穿裂纹显然降低结构的承载能力。尤其应该重视早期裂纹对工程结构使用寿命的影响,特别是工作环境较严酷的结构物。水是混凝土诸多破坏因素载体,由此可见混凝土的渗水性对耐久性的重要。在工程实际中,虽然混凝土本身液相的渗透和扩散的阻力大,但裂纹成为液相进入混凝土的最便捷的通道。举钢筋锈蚀为例,如果保护层有裂纹,有害物质很易通过裂纹抵达钢筋表面。一根钢筋上即使有几处锈蚀,就能降低整根钢筋的承载力 ,导致过早破坏[4]。混凝土的裂缝大致可分为以下几种:
(1)混凝土拌合物凝结前的沉降裂缝及干缩裂缝;(2)混凝土温度应力裂缝;(3)混凝土自应力裂缝;
(4)混凝土受外力及荷重影响裂缝。
混凝土裂缝产生的原因非常繁多,也非常复杂,并且常常是几种原因共同作用。为了较好地分析混凝土裂缝出现的原因并采取相应地措施进行控制,现将裂缝产生的主要原因概括分类如下:(1)与结构设计有关的
1.构件断面尺寸不足、钢筋用量不足、配置位置不当;
2.对温度应力和混凝土收缩应力估计不足;(2)与环境条件有关的 1.环境温度、湿度的变化;
2.结构构件各区域温度、湿度差异过大; 3.冲击、振动影响。(3)与材料性质和配合比有关的 专业:土木工程
班级:建筑1002
学号:3100106044
姓名:董泽伟
1.水泥非正常凝结(受潮水泥、水泥温度过高)2.水泥的水化热高 3.骨料含泥量过大 4.骨料级配不良 5.混凝土收缩
6.混凝土配合比不当(水泥用量大、用水量大、水胶比大、砂率大等)
7.选用的水泥、外加剂、掺合料不当或匹配不当;
8.外加剂、硅灰等掺合料掺量过大(4)与施工有关的
1.拌合不均匀、搅拌时间不足或过长,拌合后到浇筑地时间间隔长;
2.送时增加了用水量、水泥用量; 3.浇筑顺序有误,浇筑不均匀;
4.捣实不良,塌落度过大、骨料下沉、泌水,混凝土表面强度过低就进行下一道工序; 5.连续浇筑间隔时间过长,接茬处理不当; 6.钢筋搭接、锚固不良,钢筋、预埋件被扰动; 7.钢筋保护层厚度不够 8.滑模工艺不当(拉裂或塌陷)
9.模板支撑下沉、模板变形、模板漏浆或渗水、过早拆除模板、模板拆除不当;
10.养护初期遭受急剧干燥(日晒、大风)或冻害;
11.混凝土表面抹压不及时;
12.大体积混凝土内部温度与表面温度或表面温度与环境温度差异过大。
针对裂缝产生的不同原因,在设计方面、原材料、配合比方面以及施工方面应采取相应的裂缝控制措施[5]。
(5)有关设计方面的措施:
1、设计应符合《混凝土结构设计规范》GB50010的规定,同时应考虑工程当地的气候、环境,建筑物的规模、体量、体形、平面尺寸等;
2、楼板、屋面板、基础地板、地下室外墙强度等级不宜过高;
3、在长大建筑物中为减小施工过程中由于混凝土收缩对结构形成开裂的可能性,应根据结构条件采取“抗防结合”的综合措施。(6)有关原材料方面的措施:
1、水泥宜用硅酸盐水泥、普通硅酸盐水泥或矿渣硅酸盐水泥;对大体积混凝土,宜采用中热硅酸盐水泥、低热硅酸盐水泥、低热矿渣硅酸盐水泥。对防裂抗渗要求较高的混凝土,所用水泥的铝酸三
钙(C3A)含量不宜大于8%。使用时水泥的温度不宜超过60℃。
2、骨料:对混凝土用的骨料应符合《普通混凝土用砂质量标准及检验方法》JGJ
52、《普通混凝土用碎石或卵石质量标准及检验方法》JGJ 53及其他国家现行有关标准的规定,且应优选洁净、级配良好的中砂和级配良好、空隙率较小的粗骨料。此外,还应注意骨料的含泥量和硫酸盐含量不应超过标准的规定,认真检查骨料中是否含有其他能引起混凝土内部结构破坏的物质。骨料宜堆放于棚内,防止太阳直晒或雨雪淋湿,以免影响混凝土拌合物温度或水胶比。
3、矿物掺合料:为改善混凝土性能应在其中掺入矿物掺合料,所用矿物掺合料应分别符合《用于水泥和混凝土中的粉煤灰》GB 1596、《用于水泥和混凝土中的粒化高炉矿渣粉》GB/T 18046等的规定。粉煤灰掺量不宜超过水泥用量的30%,对现浇楼板不宜超过20%;矿渣粉掺量不宜超过水泥用量的50%;沸石粉不宜超过水泥用量的10%;硅粉不宜超过水泥用量的10%;采用复合矿物掺合料时,其掺量不宜超过水泥用量的50%。当配制大体积混凝土和高性能混凝土时,粉煤灰和矿渣粉的掺量可适当提高。
4、外加剂:所用外加剂应分别符合《混凝土外加剂》GB 8076、《混凝土泵送剂》JC 473、《砂浆、混凝土防水剂》JC 474、《混凝土防冻剂》JC 475及《混凝土膨胀剂》JC 476等的规定,并按《混凝土外加剂应用技术规范》GB50119等的规定进行施工;选用外加剂时,必须根据工程具体情况先做水泥适应性试验。
5、水:应符合《混凝土拌合用水标准》JC63的规定。当使用混凝土搅拌站中的回收水时,应经过沉淀,去除砂石、泥浆,澄清后的水方可使用,并应注意回收水中所含外加剂和其他有害物质对混凝土质量的影响。(7)配合比
1、混凝土配合比除应按《普通棍凝土配合比设计规程》JGJ 55的规定,根据要求的强度等级、抗渗等级、耐久性及工作性等进行配合比设计。
2、干缩率: 混凝土90d的干缩率宜小于0.06%。
3、坍落度: 在满足施工要求的条件下,尽量采用较小的混凝土坍落度。
4、用水量:不宜大于180kg/m
3。
5、水泥用量:普通强度等级的混凝土宜为270~450kg/m
3,高强混凝土 不宜大于550kg/m3
(含替代专业:土木工程
班级:建筑1002
学号:3100106044
姓名:董泽伟
水泥的矿物掺合料)。
6、水胶比:应尽量采用较小的水胶比。混凝土水胶比不宜大于0.60。
7、砂率:在满足工作性要求的前提下,应采用较小的砂率。
8、宜采用引气剂或引气减水剂。(8)模板的安装及拆除
1、模板及其支架体系应具有足够的承载能力、刚度和稳定性,支撑立柱应置于坚实的地面上,能可靠地承受浇筑混凝土的自重、侧压力、施工过程中产生的荷载,以及上层结构施工时产生的荷载,防止支撑沉陷,引起模板变形。
2、安装的模板须构造紧密、不漏浆、不渗水,不影响混凝土均匀性及强度发展,并能保证构件形状正确规整。
3、安装模板时,为确保钢筋保护层厚度,应准确配置馄凝土垫块或钢筋定位器等。
4、拆除模板时,不应对楼层形成冲击荷载。拆除的模板及支架应随拆随清运,不得对楼层形成局部过大的施工荷载。
5、底模及支架拆除时混凝土强度应符合设计要求;无设计要求时混凝土强度应符合规定。
(9)混凝土的制备
1、应优先采用预拌混凝土,其质量应符合《预拌混凝土》的规定。
2、混凝土所用生产配合比须根据砂、石含水和砂含石情况进行调整。
3、浇筑同一部位混凝土,应保证所用主要材料及配合比相同。(10)混凝土的运输
1、运输混凝土时,应能保持混凝土拌合物的均匀性,不应产生分层离析现象,并保证混凝土施工的连续性。
2、运输车在装料前应将车内残余混凝土及积水排尽。当需在卸料前补掺外加剂调整混凝土拌合物的工作性时,外加剂掺入后运输车应进行快速搅拌,搅拌时间应由试验确定。
3、运至浇筑地点混凝土的坍落度应符合要求,当有离析时,应进行二次搅拌,搅拌时间应由试验确定。严禁向运输到浇筑地点的混凝土中任意加水。
4、由搅拌、运输到浇筑入模,当气温不高于25℃时,持续时间不宜大于90min,当气温高于25℃时,持续时间不宜大于60min。当在混凝土中掺加外加剂或采用快硬水泥时,持续时间应由试验确定。(11)混凝土的浇筑
1、为了获得匀质密实的混凝土,浇筑时要考虑结构的浇筑区域、构件类别、钢筋配置状况以及混凝土拌合物的品质,选用适当机具与浇筑方法。
2、浇筑之前要检查模板及其支架、钢筋及其保护层厚度、预埋件等的位置、尺寸,确认正确无误后,方可进行浇筑。同时,还应检查对浇筑混凝土有无障碍(钢筋或预埋管线过密),必要时予以修正。
3、混凝土的一次浇筑量要适应各环节的施工能力,以保证混凝土的连续浇筑。
4、对现场浇筑的混凝土要进行监控,运抵现场的混凝土坍落度不能满足施工要求时,可采取经试验确认的可靠方法调整坍落度,严禁随意加水。在降雨雪时不宜在露天浇筑混凝土。
5、当楼板、梁、墙、柱一起浇筑时,先浇筑墙、柱,待混凝土沉实后,再浇筑梁和楼板。当楼板与梁一起浇筑时,先浇筑梁,再浇筑楼板。
6、浇筑时要防止钢筋、模板、定位筋等的移动和变形。
7、浇筑的混凝土要充填到钢筋、埋设物周围及模板内务角落,要振捣密实,不得漏振,也不得过振,更不得用振捣器拖赶混凝土。
8、分层浇筑混凝土时,要注意使上下层混凝土一体化。应在下一层混凝土初凝前将上一层混凝土浇筑完毕。浇筑上层棍凝土时,须将振捣器插入下一层混凝土5cm左右以便形成整体,9、由于混凝土的泌水、骨料下沉,易产生塑性收缩裂缝,此时应对混凝土表面进行压实抹光;在浇筑混凝土时,如遇高温、太阳暴晒、大风天气,浇筑后应立即用塑料膜覆盖,避免发生混凝土表面硬结。
10、滑模施工时应保持模板平整光洁,并严格控制混凝土的凝结时间与滑模速率匹配,防止滑模时产生拉裂、塌陷。
11、板类(含底板)混凝土面层浇筑完毕后,应在初凝后终凝前进行二次抹压。(12)混凝土的养护
1、养护是防止混凝土产生裂缝重要措施,必须重视并制定养护方案派专人负责养护工作。
2、混凝土浇筑完毕,在混凝土凝结后即须进行妥善的保温、保湿养护,尽量避免急剧于燥、温度急剧变化、振动以及外力的扰动。
3、浇筑后采用覆盖、洒水、喷雾或用薄膜保湿等养护措施,保温、保湿养护时间,对硅酸盐水泥、普通硅酸盐水泥或矿渣硅酸盐水泥拌制的混凝土,不得少于7天,对掺用缓凝型外加剂或有抗渗要求专业:土木工程
班级:建筑1002
学号:3100106044
姓名:董泽伟 的混凝土,不得少于14天。
4、底板和楼板等平面结构构件,混凝土浇筑收浆和抹压后,用塑料薄膜覆盖防止表面水分蒸发混凝土硬化至可上人时揭去塑料薄膜铺上麻袋或草帘用水浇透有条件时尽量蓄水养护。
5、截面较大的柱子宜用湿麻袋围裹喷水养护或用塑料薄膜围裹自生养护,也可涂刷养护液。
6、墙体混凝土浇筑完毕,混凝土达到一定强度(1—3d)后,必要时应及时松动两侧模板,离缝约3~5mm,在墙体顶部架设淋水管,喷淋养护。拆除模板后,应在墙两侧覆挂麻袋或草帘等覆盖物,避免阳光直照墙面,连续喷水养护时间应符合5.6.3条规定;地下室外墙宜尽早回填土。
7、冬期施工不能向裸露部位的混凝土直接浇水养护,应用塑料薄膜和保温材料进行保温、保湿养护。保温材料的厚度应经热工计算确定。
8、当混凝土外加剂对养护有特殊要求时,应严格按其要求进行养护。大体积混凝土水泥水化热产生裂缝的控制措施对大体积混凝土,应控制浇筑后的混凝土内外温差、混凝土表面与环境温差不超过25℃。为达到这一要求可采用以下几种措施:
1、混凝土配合比设计时,采用水化热低的水泥,掺用矿物掺合料降低水泥用量,并应采用缓凝减水剂,降低水泥用量和推迟水化放热;
2、在混凝土表面采用可靠的保温、保湿措施;
3、降低混凝土入模温度(例如在拌制混凝土时可采用加冰屑或冰水降温、控制水泥及骨料温度等措施);
4、预埋冷却水管降低混凝土内部温度。火灾事故处理 高层建筑火灾的特点:
1、火势蔓延的途径多,速度快;
2、安全疏散比较困难;
3、扩散难度相对较大;
4、高层建筑功能复杂,隐患多; 5人员伤忙损失惨重 公共场所的火灾: 地下空间和隧道的火灾:
1、疏散困难;
2、扑救困难,灭火难;
3、易引发地面建筑火灾;
因此,随着社会的不断发展,在社会财富日益增多的同时,防止和减少发生火灾的可能性,保护人身安全和财产的安全,是必不可少的。地震灾害工程事故的处理
地震是一种破坏及严重的自然灾害,严重威胁着人类社会的生存和发展。地震预报是世界范围内的难题,因此目前只有在各项工程技术上达到抗震指标,才是最重要的。因此预防抗震措施有:
1、增强房屋结构的整体性稳定;
2、加强概念设计;
3、严格执行现行的《建筑抗震设计规范》
4、对现有未达标的房屋采取加固措施; 桥梁工程事故处理
桥梁是交通工程的重要环节,是基础建设中的重要组成部分,但由于各种因素,桥梁安全事故还是时有发生。桥梁事故发生的原因主要有以下几点:
1、历史的局限性;
2、结构特性认识不深入;
3、结构在荷载作用下应力分布规律分析不够;
4、盲目追求创新,缺乏科学实例证明;
5、无证设计,非法转包设计;施工技术不当;
6、违规作业,施工中偷工减料,施工方法不当;
因此,总结了以下经验教训:在确定新建桥梁方案时,应正确对待和采用新结构、新技术、确保桥梁的安全性和耐久性,并要严格按照规范及设计要求进行施工,确保施工中的安全[6]。我国将来工程的主要领域
1、房地产;
2、公路工程;
3、港口工程;
4、水务业;
5、城市地下管道系统;
6、铁路工程(地铁,高铁);
7、环境保护工程; 结束语
我们应该始终秉持的预防为主,处理为辅的设计态度,合理设计,认真施工,了解就、砌体结构与专业:土木工程
班级:建筑1002
学号:3100106044
姓名:董泽伟
各影响因素的关系,合理利用材料,组织地基,设置沉降缝,伸缩缝。通过分析砌体结构事故原因,找到正确的预防措施,避免事故发生或者减少发生。所以在以后的设计工作中,我们要始终贯彻预防为主的原则,加强设计、施工及使用方面的管理,确保结构安全和避免不必要的损失。
参
考
文
献
[1] 江见鲸,王元清,龚晓南,崔京浩.北京:建筑工程事故分析与处理[M].中国建筑工业出版社,2006.[2] 崔干祥.工程事故分析与处理[M].科学出版社,2002.[3] 罗福干.建筑结构缺陷事故的分析及防治[M].清华大学出版社,2002.[4] 江见鲸,陈希哲,崔京浩.建筑工程事故与预防[M].北京:中国建材工业出版社,1995.[5] 周炳章.砌体房屋抗震设计[M].北京:地震出版社,1991.[6] GB 50068-2001 建筑结构可靠度设计统一标准[S].北京:中国建筑工业出版社,2001.