第一篇:技术指导 断桩、桩身夹泥成因分析及预防措施
技术指导
断桩、桩身夹泥成因分析及预防措施
成因分析:
导管埋深过浅:
水下钻孔灌注桩在灌注过程中,先灌注的混凝土会夹杂孔底泥渣,处于孔内混凝土的最上端,当导管在混凝土内的埋深较浅时,上部混凝土在钻孔内的扩散呈卷吸状态,部分混凝土沿钻孔壁上升与上部浮浆混合; 导管底部提离混凝土面:
因操作人员失误提升导管过猛或计算错误致使导管底部提离已灌注的混凝土面将会造成断桩;首灌量不足; 初灌混凝土的初凝:
在深孔和大直径灌注桩中,单桩需要灌入大批量的混凝土,因灌注时间较长,浮在最上层的首灌混凝土有可能会因初凝形成壳体,将阻碍后灌注混凝土的上升,当后灌注混凝土漫过初凝混凝土形成新的灌注面时,先灌注的夹杂着泥沙的初凝混凝土就会被留在桩身之间,成为桩身夹泥缺陷,缺陷严重的成为断桩; 灌注过程中塌孔:
成孔护壁质量差或灌注过程中受到外来机械的扰动等造成塌孔,会使坍塌的块体卡在钢筋笼与孔壁之间造成桩身夹泥,严重的会阻碍混凝土的上升,使混凝土灌注不下去而造成断桩。导管水密性试验 预防措施:
-严格控制混凝土的配合比,灌注前应检查混凝土的和易性等,确保灌注过程中不堵管,必要时混凝土中加入适量缓凝剂,延缓混凝土初凝时间;
-灌注混凝土前对导管进行水密性试验,确保灌注过程顺利;-首灌方量满足规范要求;
-灌注过程中不断测定导管的埋置深度,控制导管埋入深度在2~6m;
-每次灌注后应对导管内外进行清洗;
-整个混凝土灌注过程必须连贯,禁止断续灌注。
及时清洗导管 断桩处理方法:
1)通过地质钻芯取样,调查断桩或夹泥位置,判断混凝土的强度;同时再钻一个孔,一个用作进浆孔,一个用作出浆孔。
孔深达到断桩或夹泥位置以下最少1.0m;
用高压水泵向一个孔内压入清水,压力不小于0.5~0.7MPa,将夹泥和松散的混凝土冲出;
第一次压入水胶比为0.8的纯水泥浆,用麻絮堵塞进浆管周围,防止水泥浆从进浆孔冒出。
待孔内原有清水从出浆口压出来后,再用水胶比0.5的浓水泥浆压入;
为使浆液得到充分扩散,应压一阵、停一阵,当浓浆从出浆口冒出时,停止压浆,用碎石将出浆口封堵,并用麻絮堵实; 用水胶比0.4的水泥浆压入,并增大灌浆压力至0.7~0.8MPa,关闭进浆阀,稳压闷浆20~25min,压浆工作即可结束。
2)接桩法:
主要适用于因灌注过程中,导管严重堵塞、卡管或其他原因,灌注被迫中断但又未继续灌注而造成的半截桩。使用接桩法应根据半截桩混凝土面所处地下水位的情况以及桩径的大小等采用不同的方法:
a.混凝土面处地下水位以上时,可以采取挖孔的方法,直接挖到混凝土面,凿毛清洗后直接灌注,将桩接到设计桩顶面。由于接桩是采用人工的方法,开挖时遇到不稳定地层应进行人工护壁。
b.当混凝土面处在地下水位以下时,如果断面位置距孔口不太深时,可以采用挖孔与井点降水相结合的方法,将断面接至桩顶设计标高。
c.当混凝土面处在地下水位以下,而且断面位置距孔口较深,桩径较大时,可采取桩芯凿井方法处理。
3)经过处理后仍不能满足承载力要求或沉降量要求,或采用钻芯注浆和接桩法仍不能满足要求的,则需要进行返工处理。
第二篇:预应力管桩断桩原因分析
管桩断桩原因分析
一、管桩的产品质量问题
为叙述方便,将管桩在吊装、运输、堆放中出现的问题归入产品质量之中,同时也将桩尖质量问题一并列出:
(1)端头板的设计宽度小于管桩设计壁厚。如曾有Ф550—100管桩,端板实用宽度只有70mm。
原因:设计错误,偷工减料。
危害:无端板处的混凝土高出端板2—3mm,很难接驳,若要接驳,只能将高出部分的混凝土敲掉,不仅费时费工,而且往往将内壁混凝土敲掉桩壁变薄,使桩的传力性能减弱。(2)端板四周的坡口不按设计要求加工,误差大,坡口尺寸偏小。
原因:加工设备和工艺落后;加工质量差;未认真检查验收;有些甚至是施工单位提出的加工要求。
危害:焊缝厚度得不到保证;有的坡口甚至塞不进焊条,接头质量差。(3)端头板焊接性能差。
原因:不用A3或AY3钢板,而用一些如旧船板等可焊性差的钢板作端头板。危害:焊接质量难以保证;接头极易开裂。(4)端头板翘曲不平。
原因:加工不平整;加工好后被压弯而仍然使用。危害:桩头处易打碎;桩身无法接长或接头质量很差。(5)端头板微凹成盆碟状。
原因:主筋位于设计壁厚的中间或稍偏里,张拉时端板受力不匀,外侧小内侧大;施加预应力时桩身横截面受力不匀,内侧压缩量大于外侧压缩量,从而使端板内侧微凹成盆碟状;端板厚度不符合规范要求。
危害:对接不平,传力性能差;打桩时桩顶混凝土应力集中易破碎。(6)端头板与桩身轴线不垂直,即端部倾斜。
原因:预应力钢筋长短不一;张拉力偏心;桩模端部倾斜。
危害:打桩时桩头受力不匀,应力集中易破碎;桩身接长后不是一直线而是折线状。(7)镦头凹出端板面。
原因:端板上的镦头孔太浅;镦头形状不规则或异型。
危害:桩头接长时端面不能吻合;打桩时应力集中,桩头或桩接头很快破碎。(8)端头板上手镦头孔底被拉脱。
原因:镦头孔钻得太深,或端板太薄,以至孔底厚度太薄,张拉时镦头将孔底拉脱穿孔而出。
危害:无法张拉,成不了预应力管桩。(9)钢套箍凹陷。
原因:钢套箍加工质量差;成型后尚未入模时受外力撞磕而变形。危害:桩头处易跑浆,外观难看。(10)钢套箍与端头板连结质量差。
原因:焊接马虎,焊缝质量差;有的厂家采用先将钢筋穿入端板孔然后再镦头的落后工艺,于是,钢套箍与端板的连结不能在内侧连续焊接而只能在外侧用点焊连结,不仅连结力不足,而且将薄板烧坏。
危害:钢套箍起不了围护混凝土的作用;打桩时钢套箍会整个脱落;烧焊时散热作用差,易烧坏桩身混凝土。(11)镦头被拉脱。
原因:钢筋材质差;镦头形状不规则,尺寸偏小;镦头工艺差,强度损失大。
危害:脱头钢筋无法张拉,其余钢筋超张拉,易发生断筋;预应力不匀,桩身耐打性差。(12)断筋。
危害:未断钢筋超张拉;预应力不匀;桩身易成香蕉形;桩身耐打性差。(13)内外表面露筋(包括主筋和箍筋)。
原因:钢筋骨架成型时质量差;混凝土拌和物质差;桩身混凝土坍落。危害:打桩时桩身易破裂;桩基耐久性差。(14)预应力钢筋内移。
原因:手工绑扎的钢笼直径偏小;滚焊机中的定位块上的孔特别是铜圈磨损大而不及时修补或更换,故成型的骨架直径偏小。危害:预应力分布不匀;桩身抗弯强度减少。(15)桩身粘皮。
原因:桩模未涂脱模剂,或涂得不均匀,或脱模剂质量不良,或脱模剂来不及成脱就灌混凝土;蒸养制度不合理。
危害:外观难看;深度大或面积大的粘皮有损桩身质量。(16)桩身麻面。
原因:桩模内侧不平,存在麻点、起鳞、锈蚀等缺陷;混凝土流动性能差,离心工艺制度不合理,表面出现成片水泡。危害:外观难看。(17)桩身合缝漏浆。
原因:桩模合口间隙太大;桩模合模时螺栓上得不紧;缝合处止浆措施不良。危害:外观难看;漏浆太多,桩身出现一条无浆的碎石沟,桩身耐打性差。(18)钢套箍与桩身结合处漏浆。原因:止浆措施不良;钢套箍变形。
危害:外观难看;漏浆多时只露出石子,桩头混凝土松散,极易破碎。(19)桩头内部有空洞和蜂窝。
原因:钢套箍漏浆严重;桩头内有空气,离心时空气跑不出以至混凝土无法充满桩头空间;桩头构造筋太密,混凝土扩散困难;混凝土太干或时间太长流动性差,成型困难;混凝土中石子太大。
危害:打桩时桩头易破碎。(20)内表面混凝土坍落。
原因:混凝土搅拌不匀;桩模跳动;离心制度不当。危害:桩身薄弱易打断。(21)桩壁太薄。
原因:混凝土量不足;浮浆太多。危害:桩的耐打性差。
(22)桩身混凝土分层离析,外侧石子、内侧浮浆层次十分清晰。原因:混凝土配比不当;水灰比太大,离心制度不合理;离心时桩模跳动。危害:桩身强度内外差别大、强度低。(23)桩身混凝土脆性大、强度低。
原因:静养时间短;蒸气养护时升温太快、太高,降温太快;掺合料不合理。危害:桩身经不起锤击,容易脆裂或爆裂。
(24)桩身浮浆多而又残留在桩孔内,有的甚至占据一半内孔。原因:水灰比太大;浮浆多而不倒掉。
危害:桩身强度降低;桩重;外观不雅;安放承台插筋时很难插入。(25)桩身纵向弯曲大,呈香蕉形状。
原因:预应力钢筋长度误差大;有少量断筋;偏心张拉造成应力不匀;长细比太大,脱模强度低,Ф300桩尤为多见。
危害:接驳不直;打桩时易打断,易烂桩头;受力不良。(26)同规格的管桩外长误差大。
原因:桩模直径误差大,尤其是不同厂家的管模混用,生产出来的管桩直径有大有小。
危害:如果直径大一些的桩在下一节,上一节直径小一些,桩的摩擦力损失大;上下节桩接头质量差。(27)桩身有冷却裂缝。
原因:压蒸工艺制度不合理,高压蒸养出釜时,温差太大,外界温度太冷而又没有保温措施,或淋上雨水。
危害:桩身不耐打,耐久性差。(28)桩身局部磕损。
原因:吊装过程中发生碰撞;运输时有菱角的铁件上震荡摩擦。危害:严重损坏时不能应用。(29)桩身出现纵横裂缝。
原因:吊装、堆放、运输过程中管桩发生强烈碰撞或掉地摔坏;堆放为不合理、上下支点不在同一垂线上。危害:管桩报废不能用。
(30)桩身混凝土强度达不到设计要求。
原因:水泥、砂、石质量有问题;水灰比太大;离心制度或蒸养制度不合理;管理混乱。危害:产品质量不合格,或降级使用。(31)用普通钢筋代替高强进口钢筋。原因:偷工减料,经营作风不正。
危害:产品不符设计要求;损害厂家信誉。(32)用PC管桩冒充PHC管桩。
原因:经营作风不正,以次充好,以低顶高。危害:破损率高,损害厂家信誉。
(33)不经压蒸养护的管桩混杂在压蒸养护的管桩中。
原因:产品供不应求时经营作风不正。危害:破损率高,损害厂家信誉。
(34)十字桩尖底座板不是整块盖住管桩截面,仅仅盖住内孔口,十字刃直接焊在端板上。
原因:桩尖设计错误,偷工减料。危害:应力集中,易打烂桩端部。(35)桩尖十字刃宽度超过桩直径。
原因:下料不准,没有扣除焊缝的增量;制作粗糙。危害:桩尖大桩身细,桩侧摩阻力大大减少。
(36)桩尖十字中心或圆锥形尖尖端不在桩中心轴线上。原因:制作粗糙。危害:打桩时桩身易倾斜。
(37)外观难看:例如止浆棉纱在桩头随风飘;钢套箍上混凝土薄片残留…… 原因:堆场前未加清理;管理不善。危害:有损管桩外观,有损厂家水准。(38)桩尖焊在桩身上的焊缝质量差。原因:焊接不认真。
危害:管桩内渗水,若持力层为强风化泥岩、页岩等软质岩,遇水变软,承载力达不到要求。
二、管桩的工程质量问题
管桩的工程质量问题不外乎:桩位及桩身倾斜率超过规范要求;桩头打碎,桩身(包括桩破损,接头开裂)断裂;沉桩达不到设计的控制要求;单桩承载力达不到设计要求。至于环境质量方面的问题不在此叙述。
(一)桩顶偏位超过规范要求(一般要求≤10cm)。
原因:
(1)测量放线有误;
(2)现场放样桩受外界影响变位而未纠正;(3)插桩对中马虎;
(4)在软土地基或桩密集处,先施工的桩易被挤压而偏位;(5)打桩顺序不当能引起桩顶大偏位;(6)大承台处若桩间距太小易使桩偏位;
(7)孤石和其他的障碍物可将桩尖和桩身挤向一旁;(8)桩尖沿裸露岩石倾斜面滑移而使桩尖偏位;(9)接桩不直,桩中心线成折线状;(10)桩身倾斜率太大都可使桩顶偏位较大;(11)边打桩边开挖基坑;
(12)开挖基坑时桩周土体高差悬殊。
危害:桩基受力不良;有些偏位太大的桩,桩身可能断裂;承台尺寸变化,给施工带来困难。
(二)桩身倾斜超过规范要求(一般要求不大于1%)。原因:
(1)打桩机导杆不直;
(2)施工场地不平,地耐力不足引起打桩机前倾后仰;(3)插桩马虎,第一支桩倾斜过大;(4)桩身本身是香蕉形;
(5)桩端面与桩轴线不垂直,倾斜太大;
(6)开始打桩时桩身未稳定就猛烈撞击,易使桩身倾斜;
(7)在淤泥软土层中开始打桩,一锤击就沉下去几米甚至十几米,此时桩身最容易倾斜;(8)施打时,桩锤、桩帽、桩身中心线不在同一直线上,偏心受力;(9)桩垫或锤垫不平,锤击时会使桩顶面倾斜而造成桩身倾斜;(10)桩帽太大,引起锤击偏心而使桩身倾斜;(11)多节桩连接后成曲折线;
(12)遇到孤石和障碍物,使桩尖跑位桩身倾斜;(13)桩尖沿裸露岩石倾斜面滑移,石灰岩地区多见;
(14)先打的桩被后打的桩挤斜,尤其是打桩顺序不当时更显得严重;(15)先打的桩送桩太深,附近后打的桩会往送桩孔的方向倾斜;(16)锥形桩尖尖端或十字桩尖交叉点偏点;
(17)“钻孔埋桩法”施工时,钻孔本身倾斜而引起管桩倾斜;(18)送桩器套筒太大或送桩器倾斜也会引起管桩倾斜;(19)边打桩边开挖基坑易使桩倾斜;(20)开挖基坑时桩周土体高差悬殊。
危害:桩基偏心受压,承载力减少,倾斜太大桩身会折断。
(三)桩头碎裂。原因:
(1)桩头结构设计不合理,或制作时不按设计要求进行;(2)桩头严重跑浆,形成空洞;
(3)蒸养制度不当引起混凝土脆性破坏;(4)PC桩混凝土龄期不足二十八天;
(5)桩顶面不平整或翘曲;(6)预应力主筋镦头高出桩端面;(7)桩顶面与桩轴线不垂直;(8)桩身弯曲度太大;
(9)搬运、吊装、堆放过程中桩头严重损伤;(10)柴油打桩锤选用不当,过轻、过重;
(11)自由落锤落距太大,一般超过1.5m易将桩头击碎;(12)桩帽太小、太大、太深,或桩头尺寸偏差太大;(13)桩帽衬垫太薄或未及时更换;(14)桩身倾斜,偏心锤击;(15)打桩机倾斜,偏心锤击;
(16)遇到石灰岩等硬岩面时继续猛打;
(17)贯入度要求大小,总锤击数过多,或每米锤击数过多;(18)贯穿厚度较大的硬隔层进易打击碎桩头。
危害:桩头击碎,不能继续锤击,桩无法打下去,收不了锤,承载力达不到设计要求。这是打桩中常见的事故。在单桩承台中发生桩台破裂,连补桩都困难。
(四)桩身裂断(包括桩尖破损,接头开裂,桩身出现横向、竖向、斜向裂纹或断裂)。原因:
(1)在卵石层中打开口管桩,下端桩身有发生劈裂的可能;(2)桩尖遇裸露的新鲜岩面仍硬打,桩尖易击碎;
(3)十字平头桩尖一半嵌岩一半入土时也会引起桩尖破裂;(4)桩尖焊接质量差易打烂;
(5)底板只盖住桩孔、十字刃直接焊在端板上的桩尖破裂;
(6)接桩时接头焊接质量差易引起接头开裂;(7)端板可焊性差的接头经不起锤击;(8)坡口小的接头易开裂;(9)镦头高出端板的接头易破碎;
(10)接缝间隙只用少量钢条填塞的接头易引起集中传力而破碎;(11)焊接时自然冷却时间太少,焊好后立即施打,焊缝遇水淬火易脆裂;(12)桩身强度不足,质量差,锤击时易打烂桩身;(13)合缝漏浆严重,或内壁坍落严重的桩身易打断;(14)蒸养制度不当,桩身混凝土脆性大,经不起重锤敲击;(15)打桩锤选择不当,过轻、过重;
(16)打桩时未加桩垫或桩垫太薄,或未及时更换;(17)桩身出现断裂裂缝而未发现;
(18)在“上软下硬、软硬突变”的地质条件下打桩易断桩;
(19)桩身断筋或预应力值不足,不足以抵抗锤击时出现的拉应力而产生横向裂缝;(20)桩身弯曲度过大;(21)打桩时偏心锤击;
(22)桩身由于各种原因倾斜过大;
(23)管桩内孔充满水时密封锤击易使管桩产生纵向裂缝;
(24)桩身自由段长细比过大,桩尖处又遇到坚硬土层时,打桩易使桩身颤动而折裂;(25)一根桩总锤击数达3000-4000击,桩身混凝土疲劳破坏;
(26)桩身已入硬土层后再用移动桩架等强行回扳的方法纠偏易将桩身扳断;(27)桩身已改硬土层后再用移动桩架等强行回扳的方法纠偏易将桩身扳断;
(27)打桩完毕露出地面部分的桩身,易被施工机械碰撞而断裂;(28)边坡滑移可使成片桩倾倒折断;
(29)开挖基抗土方不当引起桩身大倾斜大偏位而使桩身断裂。
危害:桩基质量存在严重隐患;承载力达不到设计要求;大多数断桩只可按报废处理。
(五)沉桩达到设计的控制要求(主要指贯入度和持力层)。原因:
(1)勘探资料有误码有假;(2)桩头被击碎无法继续施打;(3)桩身被打断,无法再打;
(4)设计选择持力层不当,如要求打到中风化微风岩石层是不现实的事;(5)沉桩时遇到地下障碍物或厚度较大的硬隔层;
(6)打桩锤选得太小,或柴油锤破旧锤击力不足,跳动不正常;
(7)布桩密集或打桩顺序不当,使后打的桩无法达到设计标高,并使先打的桩涌动上升;(8)在厚粘土层中的桩不是一气呵成地打到底面而是间歇时间太长,以至无法再打下去;(9)送桩深度超过设计要求还收不了锤,或配桩长度短而盲目送桩,易造成桩端达不到设计持力层;
(10)“一脚踢”的承包方式易出现偷工减料的结果。
危害:桩基质量存在较多问题,有的桩承载力达不到要求,有的桩下沉量过大……
(六)单桩承载力达不到设计要求。原因:
(1)桩身断裂,桩尖破损,接头碎坏,桩头破碎;(2)桩头碎裂无法打至设计的持力层;(3)打桩时弄虚作假,偷工减料,桩长不够;
(4)收锤贯入度不是当天测定,而是过了几天以后才测定;(5)送桩太深,收锤贯入度不能真实反映实际;(6)配桩不准,送桩后收不了锤;
(7)厚粘土层中的桩不是一气呵成地打进持力层;(8)地质资料有错有假,持力层弄错;
(9)工程地质条件太差,如淤泥层太厚,强风化岩层太薄等;(10)先打的桩被后打的桩拱动上涌;
(11)锤击过度,收锤贯入度很小而使桩身损伤;
(12)设计要求太高,脱离实际,根本达不到这样高的承载力;(13)在“不宜应用预应力管桩的工程地质条件”下应预应力管桩。(14)持力层为软质强风化岩而桩端渗水,使持力层软化、承载力降低。
(15)布桩密集,打桩速度过快,超孔隙水压力陡增,日后基桩成片上拱,单桩承载能力下降。
危害:单桩承载力达不到设计要求,桩基无法使用,不是补桩就是报废。
案例1:
甲方情况:第一次用管桩
监理情况:对管桩外观质量要求严格,对于局部合缝漏浆、露石等外观质量原因吹毛求疵。自恃比较专业,对一些解释一般不予采纳,坚持己见,比较顽固。
地质情况:粉土、粉质粘土为主,地表为建筑垃圾回填,地表以下28米左右有粗砂层,层厚不均,0.8米-2.4米,稍密,标贯均值18击。
工地异常情况:PHC AB 400 95,桩长35米,标高为地表以下4米,第三节桩时,送至地面以下2米时,发生爆桩,爆桩位置不明,施工人员反映施工压力约2000KN,爆桩后压力值约为700KN,施工人员怀疑第三节桩桩身爆裂,因水位较高,无法用掉线判明具体爆桩位置。
施工方认为是桩身质量问题造成爆桩,并将此原因告知甲方,甲方要求我公司赔偿补桩费用。
例2:
甲方情况:曾使用过管桩
监理情况:非专业监理,对管桩不是很了解
地质情况:地表建筑垃圾回填,粉土、粉粘为主,标贯均值14击,地表以下20.5米有粗砂层,夹少量乱石,标贯均值24击。
工地异常情况:PHC AB 500 100,桩长19米,桩顶标高为地面以下2米,第二节桩时,底部桩头爆裂,压力值3100KN。请简述爆桩原因。
例3:
甲方情况:对管桩施工比较熟悉,多次用过管桩
监理情况:从事建筑行业30余年,对管桩施工非常了解,且自恃管桩施工的专家 地质情况:粉粘为主,标贯均值12击,有两个粗砂层。第一个砂层距地表6米,层厚3.5-4.4米,标贯均值28击。第二个砂层距地表20米,层厚2.8-4.2米,均厚3.4米。
工地异常情况:PHC500*125AB,桩长28米,桩顶标高为地面以下3米,锤机施工,最后一节桩距地面6米时桩头一侧开始掉皮。总锤击数637击。
监理分析可能垂直度有一些偏差,但是在国标要求范围之内,且其它桩也有垂直度偏差,唯独该桩桩头爆裂,怀疑我公司管桩有质量问题,可能是强度不够。甲方要求我公司处理该桩,认为需要补桩。请分析爆桩原因及处理方案。
例4:
甲方情况:第一次施工管桩
监理情况:非专业监理,不常在工地
地质情况:地表以下15米的湿陷性黄土,标贯均值19击,下面是平均4米的粉质粘土,标贯均值21击,以下为粉质粘土标贯25击。工地异常情况:PHC 500*125AB,桩长15米,单根桩配桩。桩顶标高距地面以下3米。800吨静压施工,连续爆桩,爆桩位置比较分散,有底部、上部桩头爆,也有桩身爆桩。初步了解施工人员比较老练,从事管桩施工11年,桩身垂直度控制良好。请分析爆桩原因。
第三篇:桩基础常见质量问题及预防措施
桩基础常见质量问题及预防措施
一、钢筋砼预制桩基础
常用方法:锤击沉桩法、静力压桩法。问题1:预制桩桩身断裂
现象:桩在沉入过程中,桩身突然倾斜错位,桩尖处土质条件没有特殊变化,而贯入度逐渐增加或突然增大;同时,当桩锤跳起后,桩身随之出现回弹现象。
原因:
(1)制作桩时,桩身弯曲超过规定,桩尖偏离桩的纵轴线较大,沉入过程中桩身发生倾斜或弯曲。
(2)桩入土后,遇到大块坚硬的障碍物,把桩尖挤向一侧。
(3)稳桩不垂直,压人地下一定深度后,再用走架方法校正,使桩产生弯曲。
(4)两节桩或多节桩施工时,相接的两节桩不在同一轴线上,产生了弯曲。
(5)制作桩的砼强度不够,桩在堆放、吊运过程中产生裂纹或断裂未被发现。
预防和治理:
(1)施工前应对桩位下的障碍物清除干净,必要时对每个桩位用钎探了解。对桩构件进行检查,发现桩身弯曲超标或桩尖不在纵轴线上的不宜使用。
(2)在稳桩过程中及时纠正不垂直,接桩时要保证上下桩在同一纵轴线
上,接头处要严格按照操作规程施工。
(3)桩在堆放、吊运过程中,严格按照有关规定执行,发现裂缝超过规定坚决不能使用。
(4)应会同设计人员共同研究处理方法。根据工程地质条件,上部荷载及桩所处的结构部位,可以采取补桩的方法。可在轴线两侧分别补一根或两根桩。
二、钢筋砼灌注桩基础
常用方法:人工挖孔灌注桩、钻孔灌注桩、沉管灌注桩。问题1:干作业成孔灌注桩的孔底虚土多
现象:成孔后孔底虚土过多,超过标准规定的不大于lOOmm的规定。治理:
(1)在孔内做二次或多次投钻。即用钻一次投到设计标高,在原位旋转片刻,停止旋转静拔钵杆。
(2)用勺钻清理孔底虚土。
(3)如虚土是砂或砂卵石时,可先采用孔底浆拌合,然后再灌砼。(4)采用孔底压力灌浆法、压力灌砼法及孔底夯实法解决。问题2:泥浆护壁灌注桩塌孔
现象:在成孔过程中或成孔后,孔壁坍落。原因:
(1)泥浆比重不够,起不到可靠的护壁作用。
(2)孔内水头高度不够或孔内出现承压水,降低了静水压力。(3)护筒埋置太浅,下端孔坍塌。
(4)在松散砂层中钻孔时,进尺速度太快或停在一处空转时间太长,转速太快。
(5)冲击(抓)锥或掏渣筒倾倒,撞击孔壁。
(6)用爆破处理孔内孤石、探头石时,炸药量过大.造成很大振动。(7)成孔后放置时间过长没有灌注砼。防治:
(1)在松散砂土或流砂、较厚的砂层、砾石层中钻进时,成孔速度控制在2m/h以内,泥浆性能控制其密度为1.3~1.4g/cm3,粘度为20~30s,含砂率不大于6%。选用较大相对密度、黏度、胶体率的优质泥浆(或投入黏土掺片石或卵石,低锤冲击,使黏土膏、片石、卵石挤入孔壁)。
(2)如地下水位变化过大,应采取升高护筒,增大水头.或用虹吸管连接等措施。
(3)严格控制冲程高度和炸药用量。
(4)孔口坍塌时,应先探明位置,将砂和黏土(或砂砾和黄土)混合物回填到坍孔位置以上1~2m;如塌孔严重,应全部回填,等回填物沉积密实后再进行钻孔。
(5)没有特殊原因,钢筋骨架安装后应立即灌注砼。问题
3、钻孔垂直度不符合规范要求 原因:
(1)场地平整度和密实度差,钻机安装不平整或钻进过程发生不均匀沉降,导致钻孔偏斜:
(2)钻杆弯曲、钻杆接头间隙太大,造成钻孔偏斜:
(3)钻头翼板磨损不一,钻头受力不均,造成偏离钻进方向;
(4)钻进中遇软硬土层交界面或倾斜岩面时,钻压过高使钻头受力不均,造成偏离钻进方向。
预防措施:
(1)压实、平整施工场地;
(2)安装钻机时应严格检查钻机的平整度和主动钻杆的垂直度,钻进过程中应定时检查主动钻杆的垂直度,发现偏差立即调整;
(3)定期检查钻头、钻杆、钻杆接头,发现问题及时维修或更换;(4)在软硬土层交界面或倾斜岩面处钻进,应低速低钻压钻进。发现钻孔倾斜,应及时回填黏土,冲平后再低速低钻压钻进;
(5)在复杂地层钻进,必要时在钻杆上加设扶正器。问题
4、孔底沉渣过厚或灌注砼前孔内泥桨含砂量过大
原因:孔底沉渣过厚除清孔泥浆质量差,清孔无法达到设计要求外,还有测量方法不当造成误判。
预防措施:
(1)要准确测量孔底沉渣厚度,首先需准确测量桩的终孔深度,应采用丈量钻杆长度的方法测定,取“孔内钻杆长度+钻头长度”,钻头长度取至钻尖的2/3处;
(2)在含粗砂、砾砂和卵石的地层钻孔,有条件时应优先采用泵吸反循环清孔;
(3)当采用正循环清孔时,前阶段应采用高黏度浓浆清孔,并加大泥浆泵的流量,使砂石粒能顺利地浮出孔口。孔底沉渣厚度符合设计要求后,应把
孔内泥浆密度降至1.1-1.2g/cm3。
(4)清孔整个过程应专人负责孔口捞渣和测量孔底沉渣厚度,及时对孔内泥浆含砂率和孔底沉渣厚度的变化进行分析,若出现清孔前期孔口泥浆含砂量过低,捞不到粗砂粒,或后期把孔内泥浆密度降低后,孔底沉渣厚度增大较多,则说明前期清孔时泥浆的黏度和稠度偏小,砂砾悬浮在孔内泥浆里,没有真正达到清孔的目的,施工时应特别注意这种情况。
三、水下灌注钢筋砼灌注桩基础 问题
1、灌注砼时堵管
原因:砼导管破漏、灌注导管底距孔底深度太小、完成二次清孔后灌注砼的准备时间太长、隔水栓不规范、砼配置质量差、灌注过程中灌注导管埋深过大等原因引起。
预防措施:
(1)灌注导管在安装前设专人采用肉眼观察和敲打听声相结合的方法负责检查灌注导管是否有孔洞和裂缝、接头是否严密、厚度是否合格;
(2)灌注导管使用前应进行水密承压和接头抗拉试验,严禁用气压。进行水密试验的水压不应小于水深1.5倍的压力,也不应小于导管壁和焊缝可能承受灌注砼时最大内压力的1.5倍;
(3)灌注导管底部至孔底的距离应为300~500mm,在灌浆设备初灌量足够的条件下,尽量取大值,隔水栓应认真细致制作,其直径和椭圆度应符合设计要求,其长度应不大于200mm;
(4)完成二次清孔后,应立即开始浇筑砼,若因故推迟浇注砼,应重新清孔。否则,可能造成孔内泥浆悬浮的砂粒下沉而使孔底沉渣过厚,并导致隔
水栓无法正常工作而发生堵管事故。
问题
2、水下砼灌注过程中钢筋骨架上浮 原因:
(1)砼初凝和终凝时间太短,使孔内砼过早结块,当砼面上升至钢筋骨架底部时,结块的砼托起钢筋骨架;
(2)清孔时孔内泥浆悬浮的砂粒太多,砼灌注过程中砂粒回沉在砼面上,形成较密实的砂层,并随孔内砼逐渐上升,当砂层上升至钢筋骨架底部时托起钢筋骨架;
(3)砼灌注至钢筋骨架底部时,灌注速度过快,造成钢筋骨架上浮。预防措施:(1)认真清孔;
(2)当灌注的砼面距钢筋骨架底部1m左右时,降低灌注速度;(3)当砼面上升到骨架底口4m以上时,提升导管,使导管底口高于骨架底部2m以上,然后恢复正常浇灌速度。
问题
3、水下砼灌注桩桩身砼夹渣或断桩 原因:
(1)初灌砼量不够,造成初灌后埋管深度太小或导管根本就没有进入砼;(2)砼浇筑过程拔管长度控制不准,导管拔出砼面;
(3)砼初凝和终凝时间太短,或灌注时间太长,使砼上部结块,造成桩身砼夹渣;
(4)清孔时孔内泥浆悬浮的砂粒太多,砼灌注过程中砂粒回沉在砼面上,形成沉积砂层,阻碍砼的正常上升,当砼冲破沉积砂层时,部分砂粒及浮渣被
包入砼内,严重时可能造成堵管事故,导致砼浇筑中断。
预防措施:
(1)导管的埋置深度宜控制在2~6m之间;(2)砼浇筑过程中拔管应有专人负责指挥;
(3)分别理论灌入量计算孔内砼面和重锤实测孔内砼面,取两者的低值来控制拔管长度;
(4)确保导管的埋置深度不小于1m;
(5)单桩砼灌注时间宜控制在1.5倍砼初凝时间内。问题
4、水下砼灌注桩砼灌注过程因故中断
原因:砼灌注过程中断的原因较多,在采取抢救措施后仍无法恢复正常灌注的情况下,可采用如下方法进行处理:
治理:
(1)若刚开灌不久,孔内砼较少,可拔起导管和吊起钢筋骨架,重新钻孔至原孔底,安装钢筋骨架和清孔后在开始灌注砼。
(2)迅速拔出导管,清理导管内积存砼和检查导管后,重新安装导管和隔水栓,然后按初灌的方法灌注砼,待隔水栓完全排出导管后,立即将导管插入原砼内,此后便可按正常的灌注方法继续灌注砼。此方法的处理过程必须在砼的初凝时间内完成。
(3)砼灌注过程因故中断后拔出钢筋骨架,待已灌砼强度达到C15后,先用同级钻头重新钻孔,并钻除原罐砼的浮桨,再用φ500钻头的桩中心钻进300-500mm深,这样就完成了接口的处理工作,然后便可按新桩的灌注程序灌注砼。
第四篇:高强度预应力管桩施工中常见质量缺陷的成因分析及预防措施
高强度预应力管桩施工中常见质量缺陷的成因分析及预防措施.作者系原湖南新天和工程设备有限公司董事.总经理助理.湖南新天和基础工程有限公司副总经理.现为湖南金甲泰克斯达科技有限公司总工程师:管有新
摘要:本文根据湖南省高强度预应力管桩施工的实际情况和刀具厂三车间厂房桩基础工程的施工经验,对高强度预应力管桩在施工中出现的质量缺陷的成因进行了分析,提出了在各种不同地质条件下桩基础施工预防质量缺陷的措施。此文可供建设单位、建筑设计院设计时选择桩型,监理单位、施工单位在施工中对质量缺陷的控制和预防时提供参考。
关键词:预应力管桩 施工质量缺陷 成因分析预防措施
一、高强度预应力管桩应用
在建筑工程中,桩基础是最常用的基础形式。随着现代建筑业的飞速发展和科学技术的进步,桩基础已从木桩逐渐发展为钢筋混凝土桩和钢桩,桩基础的施工方法与施工机械也有了长足的发展。同时为了满足现代建筑的质量标准和可靠性,制桩方法也有了很大的改变,预制桩是在专业化工厂生产,采用的是大型现代化设备,有成熟的生产工艺和完整的质量管理体系,各项指标由计算机控制,使产品质量在生产运行的全过程中得到有效地控制。因此预制桩在全国已经得到普遍使用。
经过三十多年在工业和民用建筑等工程中的使用实践,预制桩不仅适用于多层和高层建筑(广东、广西、上海等地区应用预应力管桩作基础的楼房已高达60层),在湖南,用于18-32层高层建筑的项目有:顺天*黄金海岸、先锋*水韵花都、中嘉*裙原、珠江花城、益阳银色现代城、当代MOMA城、世纪金源房地产、新河三角洲房地产、长沙市二馆一厅等,用于多层和别墅的项目有:保利*云阆别墅、创远*第三城、和记黄浦*金星住宅项目、南山*苏迪亚诺、比华利山、长沙民政职业技术学院、常德金汇广场等。
同时也适用于厂房建筑和设备基础等,在湖南地区已经用于厂房基础的有:株冶钻石工业园三分厂管桩基础工程、中联重科泉塘工业园技改二期和三期项目、麓谷工业园技改工程管桩基础、湖南新天和湘潭九华工业园等。在湖南目前已经有9家压桩机生产厂,规模大、质量好、产品规格齐全的有湖南新天和工程设备有限公司等。湖南液压静力压桩机产量占全国总产量的85%,年产值在5亿元以上。
在湖南,目前生产规模已经超过100万米的砼预应力管桩生产厂—湖南建华管桩有限公司和湘江管桩有限公司。
在湖南目前已经有十多台液压静力压桩机和约150台柴油锤桩机在全省范围内施工。并且施工设备和施工队伍还在不断增加中。
与其它的桩型相比较,预制桩施工有明显的优势。预制桩施工目前有二种主要施工方法,一是锤击法,一是静压法(目前正在进行推广的还有一种栽桩法)。
二、高强度预应力管桩静压施工特点
静压桩机静压预应力管桩从八十年代开始应用,经过二十多年的发展,逐步走向成熟。静压桩施工法适应范围广,一般粘土、软弱土、淤泥土、砂层地质土等都适宜,特别是覆土不太厚的岩溶地区和持力层深的沿海地区优势更为明显。在静压预应力管桩应用得比较多的地区,如广东、广西、海南、福建、江苏、浙江、上海、天津、北京、山东、山西、河南、湖北、江西、安徽、辽宁、吉林、黑龙江、陕西等省市;其它的桩型如:锤击桩、钢管桩、沉管灌注桩、人工挖孔桩和钻孔灌注桩的使用范围逐步减少或正逐步被淘汰,桩基施工质量事故的发生频率也在大幅度下降。根据二十多年的使用实践证明,静压预应力管桩有如下优点:
1、供设计选用范围广
管桩规格型号多,直径从300mm~1200mm不等;单桩承载力从600KN~1000KN不等,各种建筑的基础都能适用。
目前在全国大部分城市都有管桩生产工厂,工厂生产的产品都能满足工程施工需要;根据建筑结构荷载的大小和土质情况,设计院可选用不同直径、不同壁厚和桩长的管桩,为业主节约工程投资;在施工中也容易解决布桩问题。
2、对地质条件复杂、持力层起伏变化大的地基适应性强 管桩桩长可以由施工单位根据试桩的桩长要求生产(从5m~15m),各种长度的桩可以任意搭配焊接,配桩简单,桩长可以在5~70 m范围任意搭配,在施工过程中可根据地质条件和承载力变化随时调整桩长,减少不必要的投资。
3、单位承载力造价便宜
虽然管桩每米造价比沉管灌注桩贵,但管桩单桩承载力高,按单位(每吨)承载力造价比较(管桩总长度或者根数要少),管桩造价比沉管灌注桩要低;这在多年前已经成为公认的事实。虽然管桩单方混凝土造价比人工挖孔桩和钻孔灌注桩高,但管桩持力层与人工挖孔和钻孔灌注的持力层不在同一平面(二者比较管桩桩长短一些),在计取其它的费用后,综合费用管桩要低。
长时期使用实践证明,在同样直径、同样土壤的条件下,由于静压预应力管桩对桩周及桩端土壤的挤压,静压预应力管桩的桩侧摩擦力和桩端阻力都要比其它桩型大很多,这在理论界和设计院都有定论,只是各地设计院在设计时选取参数时掌握分寸不一。
为了尽量减少不必要的投资,许多有经验又懂行的业主,采取先试桩,要求设计院在试桩完成后进行复核计算,调整设计方案,采用最合理、最经济的优化方案。
4、成桩质量稳定可靠
(1)管桩是在专业化工厂生产,采用的是大型现代化设备,有成熟的生产工艺和完整的质量管理体系,各项指标由计算机控制,使产品质量在生产运行的全过程中得到有效地控制。
(2)管桩采用离心成型、压蒸养护与混凝土科学配比掺外加剂工艺,确保砼强度等级大于C60(高强砼PHC管桩砼强度等级达到C80以上),比普通砼预制桩承载力高2~4倍。选用的是高强度预应力钢棒,采用成熟的先张法预应力工艺有较高的抗裂、抗弯强度。
(3)成桩质量可靠性高
因桩在工厂制作,桩身平整直立,在施工中静压桩机能随时调整桩的垂直度,确保桩的垂直度符合规范要求。
桩在施工中的偏差因静压桩是将桩抱紧后强制压入土,外界因素不会造成桩的跑偏,能确保桩位准确无误。压桩过程中桩的阻力由静压桩机上的仪表反映出来,所以每根桩的单桩承载力可以很直观地观测和记录(相当于每根桩都做了静载试验),监理工程师和建设方现场代表在现场对施工质量和工程量计量的监督工作变得简单,减轻了工作强度,节约了人力资源。
(4)由于压桩过程中,桩的单桩承载力可以很直观地观测和记录,所以桩的质量可靠,一方面不会出现检测不合格,需要大面积检测和补桩的质量事故;另一方面,在施工中出现的地质土层变化等问题能及时反映到设计院和监理公司,针对出现的问题能及时采取措施解决。
4、施工速度快、工效高、工期短、检测简单快速
在市场经济发展的今天,“工期就是效益,时间就是金钱”。静压管桩施工速度是所有基础施工项目中最快的一种,一台800吨的静压桩机在正常情况下每天可压桩20-80根(最高记录是每天可压桩1600米)。
由于静压桩过程中,桩对周边土壤和地下水的干扰相对较少,所以压入桩的最终压力值要大于桩的实际承载力,因此可在压桩施工后立刻对桩进行检测;检测合格可马上进行桩基承台施工;这样可大大缩短工期,提高工效;同时可以节省施工费用,缩短投资回收时间。
基桩的检测主要是由静载试验检测桩的单桩承载力和小应变检测桩身的质量,静力压桩机可以作为静载试验的反力加载装置,无需外请吊车、堆沙包、砌承重墙和重新修建施工临时道路等工作,检测时间可以缩短数倍,检测费用大大降低,只是原来的30-50%;如一个项目施工桩的数量在1000根,按规范要求要检测桩的数量是10根,设计承载力是220吨,常规检测费用是:220吨*2倍*55元/吨*10根=242000元;如果采用桩机做反力机构,检测单位取费:每根桩在3000元以内(长沙市市场价),设备使用台班费:2000元/根,检测费用是:5000元/根*10根=50000元;二者相差192000元。
5、运输装卸方便,接桩快捷,压桩长度不受限制
静力压桩机都配备有16t以上的液压吊车,各种建筑施工材料可随到随卸。接桩采用电焊法,由两个电焊工对焊。压桩的长度可以根据地质持力层的变化随时调整,桩长从5m~70m或更长都可以灵活搭配。
6、施工文明,现场整洁,对周围的环境影响少 静力压桩机施工是一种全机械化施工,最大的特点是无噪音、无振动、无污染、无建筑垃圾外运,现场文明整洁,工人劳动强度低。特别适宜在对噪音有管制和对震动有限制的市区、危房、精密仪器房附近及河口、地铁、立交桥等地区施工。
7、静力压桩对施工场地的土质有很大的改善,挤土桩形成过程中对桩周的土壤有一定的挤压,能极大地增加摩擦力;桩机行走灵活,施工效率高。
8、预制桩施工,不受流砂,地下水位,淤泥质土壤的影响,不良地质不会影响施工进度和施工重量。
9、施工安全:由于预制桩施工工艺简单,施工环境和施工条件较好,所以施工安全有保证。
经过二十多年的使用,在沿海地区和内陆地区,静压桩机静压预应力管桩已经成为最普通最常用的施工方法,业主、设计院、监理公司、施工单位公认这种施工法是最经济最可靠的施工法。
三、施工质量问题
静压桩机静压预应力管桩施工法虽然得到普遍推广和使用,但在施工过程中由于管理和质量控制不完善,管桩桩基础施工产生的质量问题是:桩位及桩身倾钭超过规范要求;桩头破裂;桩身(包括桩尖和接头)破损断裂;桩端达不到设计持力层;单桩承载力达不到设计要求;桩的长度不够;基坑开挖不当引起大面积群桩倾钭;桩身上浮。
四、施工质量缺陷原因分析
1.桩顶偏位过大
主要原因:
(1)测量放线有误,或样桩在施工过程中位移;
(2)插桩对中误差较大;
(3)先沉入的桩被挤位偏移,在饱和的软土地区的大片密集群桩施工时最易出现;
(4)施工顺序不当,引起桩位移;(5)沉桩过程中桩尖遇到坚硬的障碍物或地层土质突变,产生断裂带,桩位正好在陡变区,桩在沉降过程中受到偏心力作用,将桩挤偏;
(6)接桩不直,或用了“香蕉形”的预制桩;
(7)基坑挖土施工引起坑中的桩身倾斜或大偏位;
(8)在软土地基上由于重型施工机械的偏压也易引起桩的偏位.2.桩身倾斜
主要原因:
(1)施工场地不平;或地表松软,使打桩机倾斜;或打桩机导(挺)杆未校直;
(2)插桩不正,底桩倾斜过大;或初入土时就发生倾斜;
(3)桩身弯曲度过大;
(4)桩顶与桩身中轴线不同心;
(5)桩尖偏心不对中;
(6)打桩时桩锤、桩帽、桩身中心线不在同一直线上;
(7)桩垫或锤垫不平;
(8)桩帽太大,引起偏心锤击;
(9)遇到孤石或坚硬障碍物;
(10)接桩时上下节桩不在同一直线上,或用了“香蕉形”桩;
(11)大片密集群桩中,打(压)桩时土体挤压邻桩;
(12)在软土地区施工,送桩器太大且送桩太深也会引起桩顶偏位或桩身倾斜;(13)基坑开挖不当引起了大批桩身倾斜或折断;
(14)钻孔植桩法施工时导孔倾斜。
3.桩顶破碎
主要原因:
(1)桩的制作质量差,如原材料质量差,配合比不当,振捣不密实,养护不当等;
(2)桩顶结构不合理;
(3)桩身养护时间不足;
(4)桩顶面不平,或桩顶与桩身轴线不垂直;
(5)桩锤太轻,锤击次数过多;
(6)桩锤太重,或落距太大;
(7)没有设桩垫,或桩垫厚度不够,或桩垫未及时更换;
(8)桩帽太小、太大、太深,或桩帽结构变形;
(9)桩锤、桩帽、桩身轴线不重合而偏心锤击;
(10)遇到孤石或硬岩面时继续猛打;
(11)收锤贯入度要求过小;
(12)在厚粘性土层中停歇时间久再重打时,易打坏桩头;
(13)送桩器尺寸不合适、送桩太深击碎桩头;
(14)截桩头后再复打时桩顶易碎。
4.桩身断裂 主要原因:
(1)桩身制作质量不符合要求,存在质量隐患;
(2)桩在堆放、吊运过程中已产生断裂或裂缝;
(3)遇硬岩面时继续强打,特别是在石灰岩地区、“上软下硬、软硬突变”的地质条件下施工,桩身更易断裂;
(4)桩尖沿硬岩面滑移而将桩身蹩断;
(5)桩身弯曲过大,偏心锤击;
(6)桩尖进入硬土层后倾斜过大,误用移动桩架等强行扳回的方法纠偏易将桩身折断;
(7)桩身自由段长细比过大,且桩尖已进入硬土层时,易将桩身打裂;
(8)打桩中发生过大的拉应力,桩身易引起地面以下的桩身断裂;
(9)压桩时夹具不当,夹力太大易将桩身夹爆;
(10)收锤贯入度要求过小,总锤击数太多;
(11)沉桩完毕,露出地面的桩受施工机械碰撞引起地面以下的桩身断裂;
(12)开挖基坑不当易引起桩身倾斜而被折断;
(13)接头质量差,打桩时易断裂;挤土严重时,接头易拉脱。
5.沉桩达不到设计控制要求
主要原因:
(1)地质勘察资料与实际桩端持力层不符,持力层顶面标高变化大,预制桩长度不够;
(2)设计选择持力层不当,或设计承载力过高,无法将桩打至要求的行力层,以致打桩破损率大;(3)沉桩时遇地下障碍物或厚度较大的硬夹层;
(4)打桩锤太小,压桩机压力不够;
(5)桩头被击碎或桩身被打断,无法继续沉桩;
(6)在较厚的粘性土层中,沉桩中间休歇时间太长;
(7)布桩密集或打桩顺序不当,使后打的桩无法达到原先的设计深度。
6.桩身上浮
桩基础施工时,由于施工操作不当或地质情况复杂,有时会产生桩身上浮的现象。这种情况在上海、浙江、广东、湖北等地发生过。其原因是:
(1)地下水位高,土层中含水率高,桩在下沉过程中,由于土体被挤密实,地下水在桩的挤压下无法及时消散,桩的下端部形成一个相对密闭容器状水土混合体,桩端施压的压力越大,下部的水和土的混合体的压强越大,水将土挤得更加密实,水就更加难消散,这样就会使桩沉不到要求的持力层。而静载试验时,由于桩的停歇时间已久,桩下部的水已经消散,桩的承载力比施工时的实际承载力要低很多,这样就会造成较大的质量事故。
(2)同样原理,桩在下沉过程中,由于持力层是基岩,桩端下部的水土混合体对周围的岩土均匀施压,岩石和硬质结构土体的强度大,不易挤碎,而此时新压入的相邻桩的桩侧摩擦力没有完全恢复,水土混合体顶起管桩,造成相邻桩上浮。
(3)对端承桩而言,上述二种情况是主要原因;在沿海地区和江浙一带,摩擦桩是主要的桩型,摩擦桩一般情况不会出现浮桩的情况。在桩的静载试验时由于桩的下沉量大,有时误判断是桩上浮,这是对土力学、桩的受力原理和桩基础施工缺乏了解所致。局部土质差异,地下水和地表水的变化,沉桩后停歇时间的长短,桩下端部土质承载力差等,都有可能产生桩的承载力变少,沉降量大。这需要专业人员根据实际情况判断确认。
7.基坑开挖不当引起大面积群桩倾钭 软土地区施打(压)大面积密集的预制桩后,在沉桩区进行深基坑开挖(开挖深度4~5 米以上),在沿海地区,在此深度范围内存在着淤泥等软弱土层,这就给开挖带来许多困难,并引起桩身大幅度位移、倾倒或折断。原因是:
(1)打(压)桩后,由于土体被挤紧挤密,土的挤压内应力没有完全消散掉,土体中的水没有形成流动通道,在深基坑开挖时,原有的平衡被破坏,土的挤压内应力和水压力得到释放,加上淤泥本身的流动性,土体产生侧向力向开挖方向流动,而基桩对水平力的抵抗能力小,于是随着土体的位移而向开挖方向倾斜,造成桩顶大量位移。
(2)基坑开挖时,一般采用机械开挖,机械设备的重量、振动、土体标高的高低差和土体的重量都是引起淤泥质土体移动的主要因素。
四、质量缺陷防范措施
主要是:
1.加强施工管理和上岗人员的培训,施工前进行技术和安全交底,对施工重点和难点要有保证措施;
2.施工前要有施工方案,施工中要严格按施工方案和操作规程执行;
3.严格遵守公司的质量管理制度,对进场的管桩等主要材料在沉桩前要进行检查,确保施工前材料的质量全部合格;
4.每个项目都有专职质量员负责质量检查,对每一道工序都要进行复检,杜绝人为因素造成的质量问题发生;
5.施工前和施工中都要认真研究地质勘察报告,对不良土质和地下水高等情况要有措施,确保施工质量。
6.桩基础施工看起来简单,其实需要有专业理论知识和施工经验的施工管理和技术人员来管理,施工前能有预见性,能发现问题,施工质量才能有保证。目前施工单位管理混乱,挂靠多,很多情况是出现问题后再来处理,影响工期和造成经济损失;所以施工队伍、施工管理人员、施工技术人员和施工设备是决定施工质量的主要因素。7.基坑开挖要由有经验的技术人员编制施工方案,确定开挖程序,注意保持基坑围护结构或边坡土体的稳定,基坑边严禁堆土和重物;
8.施工大片密集的预制管桩时采用设置袋装砂井、打插塑料排水板,开挖降水井和防挤土沟等技术措施来降低孔隙水压力,减少土体的隆起。
9.选择桩机时应注意桩机重量和设计的承载力要求,一般是三比一比较合适,对静压桩机的夹桩夹具要有选择,夹具是造成桩身裂纹的主要原因。
10掌握地质特点、根据土层变化,控制锤击冲程,控制停锤标准,发现桩身剧烈抖动或贯人度突然增大、桩身严重倾斜时应立即停锤进行研究处理;
11.锤击桩机在施工时,要及时更换锤垫桩垫,防止桩顶破损;
12施工前要根据地质资料选择桩位试桩,根据试桩情况合理配桩,确保桩顶的标高基本达到设计要求,减少锯桩和接桩数量,杜绝在没有达到压力值时停止压桩或超过终压力值时继续压桩。
13.测量设备和仪器、桩机上的压力表、水平仪都要经常检查和标定。
14.对桩的垂直度和桩位偏差要严格控制。
五.缺陷桩处理
1.桩位偏差超过规范,按设计院要求可以增大承台,增补桩来处理。
2.断桩一般采用补桩处理,对三类桩的处理要根据情况采用灌芯或补桩。
3.桩上浮采用复压。
4.桩的承载力不够,要分析原因,找出问题,然后分别采取复压或补桩。
5.桩顶标高低于设计标高,要接桩。
6.桩顶标高高于设计标高,要锯桩。
六、在经济发展中的作用 本项目研究开发的“2000-3000吨港口桩基础施工专用液压静力压桩机”,是《中国机械工业行业调整发展导向意见汇编》中属“工程机械行业”所列产品,是国家和湖南省鼓励、支持发展的无公害桩工机械。
近几年来,国家持续加大基础建设的力度,对建设工程的速度与质量提出更高要求,而液压静力压桩机的应用,对于加快工程施工进度、防止“豆腐渣”工程的出现能起到一定的积极作用。
另外,本项目产品具有高效、节能、无震动、无噪声等特点,尤其适用于城市内施工,并且随着社会进步而得到逐步推广,成为桩工机械的发展方向之一。
第五篇:管桩烂桩断桩坏桩问题原因-预应力管桩质量问题成因-各
管桩烂桩断桩坏桩问题原因-预应力管桩质量问题成因-各
管桩烂桩断桩坏桩问题原因-预应力管桩质量问题成因-各种坏烂断桩疑难问题原因~ 内容提要:本文是笔者于1994年11月15日在番禺市召开的中国水泥制品工业协会预制混凝土桩专业委员会九四年会上的发言稿。文章比较详细地论述了预应力管桩在制作和应用两大方面所曾经出现过的质量问题,并且指出产生这些质量问题的主要原因及其危害性,供制作厂家和使用单位的工程技术人员作参考借鉴之用。
预应力管桩的质量应包括产品质量(严格来说应为商品质量)和工程质量两大方面,而工程质量又有勘察设计质量和施工质量之分;就施工质量来说,也不单指打桩质量,还包括吊装、运输、堆放及打桩后的开挖土方、修筑承台时的质量问题。
衡量管桩产品质量最终最直观的尺度是它的耐打性;评价管桩工程质量最主要的指标是桩的承载力,检查桩体的完整性、桩的偏位值和斜倾率就是为了保证桩的承载力。本文将根据我国尤其是广东地区近十年来生产和应用上千万米预应力管桩的过程中所曾出现过的产品质量和工程质量问题逐一加以列举,并指出产生原因及危害性。“前事不忘,后事之师”,尽管有些产品质量问题是个别现象且现已不复存在,但作为教训,对制造厂家尤其是新近投产的厂家可能有所帮助;至于工程质量问题,更应引起各设计、建设和施工单位的重视;作为制造厂家,熟悉工程质量问题,对加强管桩质量、合理使用管桩等方面也都是有益的。下面就管桩的质量问题发表一些粗浅的看法:
一、管桩的产品质量问题
为叙述方便,将管桩在吊装、运输、堆放中出现的问题归入产品质量之中,同时也将桩尖质量问题一并列出:
(1)端头板的设计宽度小于管桩设计壁厚。如曾有Ф550—100管桩,端板实用宽度只有70mm。
原因:设计错误,偷工减料。
危害:无端板处的混凝土高出端板2—3mm,很难接驳,若要接驳,只能将高出部分的混凝土敲掉,不仅费时费工,而且往往将内壁混凝土敲掉桩壁变薄,使桩的传力性能减弱。
(2)端板四周的坡口不按设计要求加工,误差大,坡口尺寸偏小。
原因:加工设备和工艺落后;加工质量差;未认真检查验收;有些甚至是施工单位提出的加工要求。
危害:焊缝厚度得不到保证;有的坡口甚至塞不进焊条,接头质量差。(3)端头板焊接性能差。
原因:不用A3或AY3钢板,而用一些如旧船板等可焊性差的钢板作端头板。危害:焊接质量难以保证;接头极易开裂。(4)端头板翘曲不平。
原因:加工不平整;加工好后被压弯而仍然使用。危害:桩头处易打碎;桩身无法接长或接头质量很差。(5)端头板微凹成盆碟状。
原因:主筋位于设计壁厚的中间或稍偏里,张拉时端板受力不匀,外侧小内侧大;施加预应力时桩身横截面受力不匀,内侧压缩量大于外侧压缩量,从而使端板内侧微凹成盆碟状;端板厚度不符合规范要求。
危害:对接不平,传力性能差;打桩时桩顶混凝土应力集中易破碎。(6)端头板与桩身轴线不垂直,即端部倾斜。
原因:预应力钢筋长短不一;张拉力偏心;桩模端部倾斜。
危害:打桩时桩头受力不匀,应力集中易破碎;桩身接长后不是一直线而是折线状。
(7)镦头凹出端板面。
原因:端板上的镦头孔太浅;镦头形状不规则或异型。
危害:桩头接长时端面不能吻合;打桩时应力集中,桩头或桩接头很快破碎。(8)端头板上手镦头孔底被拉脱。
原因:镦头孔钻得太深,或端板太薄,以至孔底厚度太薄,张拉时镦头将孔底拉脱穿孔而出。
危害:无法张拉,成不了预应力管桩。(9)钢套箍凹陷。原因:钢套箍加工质量差;成型后尚未入模时受外力撞磕而变形。危害:桩头处易跑浆,外观难看。(10)钢套箍与端头板连结质量差。
原因:焊接马虎,焊缝质量差;有的厂家采用先将钢筋穿入端板孔然后再镦头的落后工艺,于是,钢套箍与端板的连结不能在内侧连续焊接而只能在外侧用点焊连结,不仅连结力不足,而且将薄板烧坏。
危害:钢套箍起不了围护混凝土的作用;打桩时钢套箍会整个脱落;烧焊时散热作用差,易烧坏桩身混凝土。(11)镦头被拉脱。
原因:钢筋材质差;镦头形状不规则,尺寸偏小;镦头工艺差,强度损失大。危害:脱头钢筋无法张拉,其余钢筋超张拉,易发生断筋;预应力不匀,桩身耐打性差。(12)断筋。
危害:未断钢筋超张拉;预应力不匀;桩身易成香蕉形;桩身耐打性差。(13)内外表面露筋(包括主筋和箍筋)。
原因:钢筋骨架成型时质量差;混凝土拌和物质差;桩身混凝土坍落。危害:打桩时桩身易破裂;桩基耐久性差。(14)预应力钢筋内移。
原因:手工绑扎的钢笼直径偏小;滚焊机中的定位块上的孔特别是铜圈磨损大而不及时修补或更换,故成型的骨架直径偏小。危害:预应力分布不匀;桩身抗弯强度减少。(15)桩身粘皮。
原因:桩模未涂脱模剂,或涂得不均匀,或脱模剂质量不良,或脱模剂来不及成脱就灌混凝土;蒸养制度不合理。
危害:外观难看;深度大或面积大的粘皮有损桩身质量。(16)桩身麻面。原因:桩模内侧不平,存在麻点、起鳞、锈蚀等缺陷;混凝土流动性能差,离心工艺制度不合理,表面出现成片水泡。危害:外观难看。(17)桩身合缝漏浆。
原因:桩模合口间隙太大;桩模合模时螺栓上得不紧;缝合处止浆措施不良。危害:外观难看;漏浆太多,桩身出现一条无浆的碎石沟,桩身耐打性差。(18)钢套箍与桩身结合处漏浆。原因:止浆措施不良;钢套箍变形。
危害:外观难看;漏浆多时只露出石子,桩头混凝土松散,极易破碎。(19)桩头内部有空洞和蜂窝。
原因:钢套箍漏浆严重;桩头内有空气,离心时空气跑不出以至混凝土无法充满桩头空间;桩头构造筋太密,混凝土扩散困难;混凝土太干或时间太长流动性差,成型困难;混凝土中石子太大。危害:打桩时桩头易破碎。(20)内表面混凝土坍落。
原因:混凝土搅拌不匀;桩模跳动;离心制度不当。危害:桩身薄弱易打断。(21)桩壁太薄。
原因:混凝土量不足;浮浆太多。危害:桩的耐打性差。
(22)桩身混凝土分层离析,外侧石子、内侧浮浆层次十分清晰。
原因:混凝土配比不当;水灰比太大,离心制度不合理;离心时桩模跳动。危害:桩身强度内外差别大、强度低。(23)桩身混凝土脆性大、强度低。原因:静养时间短;蒸气养护时升温太快、太高,降温太快;掺合料不合理。危害:桩身经不起锤击,容易脆裂或爆裂。
(24)桩身浮浆多而又残留在桩孔内,有的甚至占据一半内孔。原因:水灰比太大;浮浆多而不倒掉。
危害:桩身强度降低;桩重;外观不雅;安放承台插筋时很难插入。(25)桩身纵向弯曲大,呈香蕉形状。
原因:预应力钢筋长度误差大;有少量断筋;偏心张拉造成应力不匀;长细比太大,脱模强度低,Ф300桩尤为多见。
危害:接驳不直;打桩时易打断,易烂桩头;受力不良。(26)同规格的管桩外长误差大。
原因:桩模直径误差大,尤其是不同厂家的管模混用,生产出来的管桩直径有大有小。
危害:如果直径大一些的桩在下一节,上一节直径小一些,桩的摩擦力损失大;上下节桩接头质量差。(27)桩身有冷却裂缝。
原因:压蒸工艺制度不合理,高压蒸养出釜时,温差太大,外界温度太冷而又没有保温措施,或淋上雨水。危害:桩身不耐打,耐久性差。(28)桩身局部磕损。
原因:吊装过程中发生碰撞;运输时有菱角的铁件上震荡摩擦。危害:严重损坏时不能应用。(29)桩身出现纵横裂缝。
原因:吊装、堆放、运输过程中管桩发生强烈碰撞或掉地摔坏;堆放为不合理、上下支点不在同一垂线上。危害:管桩报废不能用。(30)桩身混凝土强度达不到设计要求。
原因:水泥、砂、石质量有问题;水灰比太大;离心制度或蒸养制度不合理;管理混乱。
危害:产品质量不合格,或降级使用。(31)用普通钢筋代替高强进口钢筋。原因:偷工减料,经营作风不正。危害:产品不符设计要求;损害厂家信誉。(32)用PC管桩冒充PHC管桩。
原因:经营作风不正,以次充好,以低顶高。危害:破损率高,损害厂家信誉。
(33)不经压蒸养护的管桩混杂在压蒸养护的管桩中。原因:产品供不应求时经营作风不正。危害:破损率高,损害厂家信誉。
(34)十字桩尖底座板不是整块盖住管桩截面,仅仅盖住内孔口,十字刃直接焊在端板上。
原因:桩尖设计错误,偷工减料。危害:应力集中,易打烂桩端部。(35)桩尖十字刃宽度超过桩直径。
原因:下料不准,没有扣除焊缝的增量;制作粗糙。危害:桩尖大桩身细,桩侧摩阻力大大减少。
(36)桩尖十字中心或圆锥形尖尖端不在桩中心轴线上。原因:制作粗糙。危害:打桩时桩身易倾斜。
(37)外观难看:例如止浆棉纱在桩头随风飘;钢套箍上混凝土薄片残留„„ 原因:堆场前未加清理;管理不善。危害:有损管桩外观,有损厂家水准。(38)桩尖焊在桩身上的焊缝质量差。原因:焊接不认真。
危害:管桩内渗水,若持力层为强风化泥岩、页岩等软质岩,遇水变软,承载力达不到要求。
二、管桩的工程质量问题
管桩的工程质量问题不外乎:桩位及桩身倾斜率超过规范要求;桩头打碎,桩身(包括桩破损,接头开裂)断裂;沉桩达不到设计的控制要求;单桩承载力达不到设计要求。至于环境质量方面的问题不在此叙述。
(一)桩顶偏位超过规范要求(一般要求≤10cm)。原因:
(1)测量放线有误;
(2)现场放样桩受外界影响变位而未纠正;(3)插桩对中马虎;
(4)在软土地基或桩密集处,先施工的桩易被挤压而偏位;(5)打桩顺序不当能引起桩顶大偏位;(6)大承台处若桩间距太小易使桩偏位;
(7)孤石和其他的障碍物可将桩尖和桩身挤向一旁;(8)桩尖沿裸露岩石倾斜面滑移而使桩尖偏位;(9)接桩不直,桩中心线成折线状;(10)桩身倾斜率太大都可使桩顶偏位较大;(11)边打桩边开挖基坑;
(12)开挖基坑时桩周土体高差悬殊。危害:桩基受力不良;有些偏位太大的桩,桩身可能断裂;承台尺寸变化,给施工带来困难。
(二)桩身倾斜超过规范要求(一般要求不大于1%)。原因:
(1)打桩机导杆不直;
(2)施工场地不平,地耐力不足引起打桩机前倾后仰;(3)插桩马虎,第一支桩倾斜过大;(4)桩身本身是香蕉形;
(5)桩端面与桩轴线不垂直,倾斜太大;
(6)开始打桩时桩身未稳定就猛烈撞击,易使桩身倾斜;
(7)在淤泥软土层中开始打桩,一锤击就沉下去几米甚至十几米,此时桩身最容易倾斜;
(8)施打时,桩锤、桩帽、桩身中心线不在同一直线上,偏心受力;(9)桩垫或锤垫不平,锤击时会使桩顶面倾斜而造成桩身倾斜;(10)桩帽太大,引起锤击偏心而使桩身倾斜;(11)多节桩连接后成曲折线;
(12)遇到孤石和障碍物,使桩尖跑位桩身倾斜;(13)桩尖沿裸露岩石倾斜面滑移,石灰岩地区多见;
(14)先打的桩被后打的桩挤斜,尤其是打桩顺序不当时更显得严重;(15)先打的桩送桩太深,附近后打的桩会往送桩孔的方向倾斜;(16)锥形桩尖尖端或十字桩尖交叉点偏点;
(17)“钻孔埋桩法”施工时,钻孔本身倾斜而引起管桩倾斜;(18)送桩器套筒太大或送桩器倾斜也会引起管桩倾斜;(19)边打桩边开挖基坑易使桩倾斜;(20)开挖基坑时桩周土体高差悬殊。
危害:桩基偏心受压,承载力减少,倾斜太大桩身会折断。
(三)桩头碎裂。原因:
(1)桩头结构设计不合理,或制作时不按设计要求进行;(2)桩头严重跑浆,形成空洞;
(3)蒸养制度不当引起混凝土脆性破坏;(4)PC桩混凝土龄期不足二十八天;(5)桩顶面不平整或翘曲;(6)预应力主筋镦头高出桩端面;(7)桩顶面与桩轴线不垂直;(8)桩身弯曲度太大;
(9)搬运、吊装、堆放过程中桩头严重损伤;(10)柴油打桩锤选用不当,过轻、过重;
(11)自由落锤落距太大,一般超过1.5m易将桩头击碎;(12)桩帽太小、太大、太深,或桩头尺寸偏差太大;(13)桩帽衬垫太薄或未及时更换;(14)桩身倾斜,偏心锤击;(15)打桩机倾斜,偏心锤击;
(16)遇到石灰岩等硬岩面时继续猛打;
(17)贯入度要求大小,总锤击数过多,或每米锤击数过多;(18)贯穿厚度较大的硬隔层进易打击碎桩头。危害:桩头击碎,不能继续锤击,桩无法打下去,收不了锤,承载力达不到设计要求。这是打桩中常见的事故。在单桩承台中发生桩台破裂,连补桩都困难。
(四)桩身裂断(包括桩尖破损,接头开裂,桩身出现横向、竖向、斜向裂纹或断裂)。原因:
(1)在卵石层中打开口管桩,下端桩身有发生劈裂的可能;(2)桩尖遇裸露的新鲜岩面仍硬打,桩尖易击碎;
(3)十字平头桩尖一半嵌岩一半入土时也会引起桩尖破裂;(4)桩尖焊接质量差易打烂;
(5)底板只盖住桩孔、十字刃直接焊在端板上的桩尖破裂;(6)接桩时接头焊接质量差易引起接头开裂;(7)端板可焊性差的接头经不起锤击;(8)坡口小的接头易开裂;(9)镦头高出端板的接头易破碎;
(10)接缝间隙只用少量钢条填塞的接头易引起集中传力而破碎;
(11)焊接时自然冷却时间太少,焊好后立即施打,焊缝遇水淬火易脆裂;(12)桩身强度不足,质量差,锤击时易打烂桩身;(13)合缝漏浆严重,或内壁坍落严重的桩身易打断;(14)蒸养制度不当,桩身混凝土脆性大,经不起重锤敲击;(15)打桩锤选择不当,过轻、过重;
(16)打桩时未加桩垫或桩垫太薄,或未及时更换;(17)桩身出现断裂裂缝而未发现;
(18)在“上软下硬、软硬突变”的地质条件下打桩易断桩;
(19)桩身断筋或预应力值不足,不足以抵抗锤击时出现的拉应力而产生横向裂缝;
(20)桩身弯曲度过大;(21)打桩时偏心锤击;
(22)桩身由于各种原因倾斜过大;
(23)管桩内孔充满水时密封锤击易使管桩产生纵向裂缝;
(24)桩身自由段长细比过大,桩尖处又遇到坚硬土层时,打桩易使桩身颤动而折裂;
(25)一根桩总锤击数达3000-4000击,桩身混凝土疲劳破坏;
(26)桩身已入硬土层后再用移动桩架等强行回扳的方法纠偏易将桩身扳断;(27)桩身已改硬土层后再用移动桩架等强行回扳的方法纠偏易将桩身扳断;(27)打桩完毕露出地面部分的桩身,易被施工机械碰撞而断裂;(28)边坡滑移可使成片桩倾倒折断;
(29)开挖基抗土方不当引起桩身大倾斜大偏位而使桩身断裂。
危害:桩基质量存在严重隐患;承载力达不到设计要求;大多数断桩只可按报废处理。
(五)沉桩达到设计的控制要求(主要指贯入度和持力层)。原因:
(1)勘探资料有误码有假;(2)桩头被击碎无法继续施打;(3)桩身被打断,无法再打;
(4)设计选择持力层不当,如要求打到中风化微风岩石层是不现实的事;(5)沉桩时遇到地下障碍物或厚度较大的硬隔层;
(6)打桩锤选得太小,或柴油锤破旧锤击力不足,跳动不正常;
(7)布桩密集或打桩顺序不当,使后打的桩无法达到设计标高,并使先打的桩涌动上升;
(8)在厚粘土层中的桩不是一气呵成地打到底面而是间歇时间太长,以至无法再打下去;
(9)送桩深度超过设计要求还收不了锤,或配桩长度短而盲目送桩,易造成桩端达不到设计持力层;
(10)“一脚踢”的承包方式易出现偷工减料的结果。
危害:桩基质量存在较多问题,有的桩承载力达不到要求,有的桩下沉量过大„„
(六)单桩承载力达不到设计要求。原因:
(1)桩身断裂,桩尖破损,接头碎坏,桩头破碎;(2)桩头碎裂无法打至设计的持力层;(3)打桩时弄虚作假,偷工减料,桩长不够;
(4)收锤贯入度不是当天测定,而是过了几天以后才测定;(5)送桩太深,收锤贯入度不能真实反映实际;(6)配桩不准,送桩后收不了锤;
(7)厚粘土层中的桩不是一气呵成地打进持力层;(8)地质资料有错有假,持力层弄错;
(9)工程地质条件太差,如淤泥层太厚,强风化岩层太薄等;(10)先打的桩被后打的桩拱动上涌;
(11)锤击过度,收锤贯入度很小而使桩身损伤;
(12)设计要求太高,脱离实际,根本达不到这样高的承载力;(13)在“不宜应用预应力管桩的工程地质条件”下应预应力管桩。(14)持力层为软质强风化岩而桩端渗水,使持力层软化、承载力降低。(15)布桩密集,打桩速度过快,超孔隙水压力陡增,日后基桩成片上拱,单桩承载能力下降。
危害:单桩承载力达不到设计要求,桩基无法使用,不是补桩就是报废。以上列出管桩产品质量和工程质量方面的诸多问题,并不是说我们的管桩质量不好,应该说我们国家管桩的质量一年比一年提高,有些厂家的产品已达到国家先进水平。笔者希望制造厂家不断加强全面质量管理,降低成本,降低消耗,生产出价廉物美的一流产品;但施工方面的质量也千万不能忽视,要知道,如果施工质量有问题,再高质量的管桩也会被打碎打烂;如果施工技术高超,稍有疵病的管桩也会被好好地打到设计要求,所以,制作和施工是一个问题的两个方面,相辅相成,我们只有同心同德,共同努力,才能将我国的管桩生产和应用提高到一个新的水平。