【汽车工艺】背门内板冲压数值模拟及工艺改进

时间:2019-05-15 01:52:15下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《【汽车工艺】背门内板冲压数值模拟及工艺改进》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《【汽车工艺】背门内板冲压数值模拟及工艺改进》。

第一篇:【汽车工艺】背门内板冲压数值模拟及工艺改进

【汽车工艺】背门内板冲压数值模拟及工艺改进

在数值模拟分析的基础上,制定出合理的冲压工序排布方案,对于实际生产有着重要的指导意义。本文对背门内板的成形工艺进行了分析,利用AutoForm软件分析其成形性并对成形工艺进行了改进,工艺改进后的方案能够有效解决开裂和起皱的问题。

汽车覆盖件一般由冷轧薄钢板冲压而成,具有结构尺寸大、形状复杂、板料薄和表面质量要求高等特点。薄板的冲压成形过程是一个复杂的力学过程,它是一个集几何非线性、材料非线性和接触非线性于一体的三重非线性耦合的连续介质力学问题,是一个大位移、大转动和大变形的过程。以往车身覆盖件的模具制造需要反复试模和修模,生产周期长,生产成本很高,产品质量不易控制。随着计算机技术的发展,数值模拟技术在板料成形分析中得到广泛应用,以往只能凭借经验和生产试验得出的结果经数值模拟分析便可快速获得,从而缩短了模具设计与制造周期,降低了模具开发成本,提高了模具和冲压件质量。

汽车背门内板具有尺寸大、形状复杂等特点,成形容易产生开裂、起皱等缺陷。本文利用AutoForm软件分析了背门内板的成形性,并对其成形工艺进行了改进。背门内板成形工艺分析 本文研究的背门内板模型如图1所示,零件尺寸约为1320mm×1154mm×110mm。从图1可以看出,此零件形状复杂,尤其周边形状多样,变化急剧,周边R角较小,侧壁较深且拔模角度小,拉延时极易出现开裂、起皱等缺陷;此件孔洞较多,冲孔方向不一致,工序排布比较困难;背门内板在背门开启时部分可见,对表面质量要求较高,故此件成形质量控制难度较大。

背门内板冲压方向的确定比较重要,合理的冲压方向不仅能生产出高质量的产品,对降低生产成本也起着积极作用。若采用图2a所示的冲压方向,则侧冲孔的废料将落在产品上无法排出,如图2b所示。经过综合分析,最终确定拉延时的冲压方向如图2c所示。背门内板冲压数值模拟分析1.模拟参数的设定

背门内板形状较复杂,成形有一定的难度,故所用材料为冲压性能较好的DC04,材料厚度为0.8mm。材料性能参数为:屈服强度σs=120~210MPa,抗拉强度σb≥270MPa,硬变硬化指数n≥0.18,厚向异性指数r≥1.5,断后伸长率δ=36%,密度ρ=7.85×10-5N/mm2,杨式模量E=2.1×105N/mm2,泊松比γ=0.3。本例采用弹塑性强化模型进行计算,所用的屈服准则为Hill准则;摩擦因数为0.15。

在CATIA中抽出零件数模片体,以IGS格式导出并导入到AutoForm软件中。工艺补充面在AutoForm软件中制作,如图3a所示,生成如图3b所示的有限元模型工具体。2.模拟结果分析

成形极限图(Forming Limit Diagram,简称FLD)是评定薄板成形性能最直接和有效的方法,通过此图可以直观地判断零件起皱、开裂等缺陷,制定出相应的对策。如图4所示,成形极限图中的曲线A为成形极限曲线(Forming Limit Curve,简称FLC),在此曲线以上的区域表示材料发生了塑性破裂,曲线最低位置为平面应变状态,次应变e2=0;曲线B为临界极限曲线,处在曲线A和曲线B之间的区域材料有破裂风险;直线C为双向等值拉伸线,在该线上材料处于双向等值拉应力状态,e1= e2;直线D为单向拉伸线,在该线上材料处于单向拉伸状态,尽管板料厚度没有增加,但材料内部已存在压应力,有起皱趋势;曲线B和直线C、D组成的区域为安全区,这部分区域的材料在成形时既得到了充分拉伸,又没有破裂和起皱的工艺缺陷,此状态为板料成形的最佳状态;直线E为等厚拉伸线,在该线上材料处于等厚变形状态,e1=-e2;直线D和直线E所组成的区域为临界起皱区,该区域内的材料虽然受到压应力,但材料没有增厚;直线E以下的区域为起皱区,e1在AutoForm软件中,经过多次调整工艺参数,最终得到了背门内板的两种分析结果。第一种分析结果如图5所示,从图5a成形极限图中可以很直观地看出存在较大面积的开裂区域(红色区)和临界开裂区域(黄色区),由此可以判断该零件开裂严重;起皱区无颜色显示,说明无起皱现象,从图中可以看出开裂的原因是局部主应变过大。从图5b看出开裂的位置分布于零件形状较复杂的周边侧壁区域。引起该零件开裂的原因主要有三个:一是,周边R角过小,局部过于尖锐,存在应力集中;二是,零件侧壁高度较大、拔模角度很小,材料横向流动受阻,材料补给困难,在零件的横向基本靠局部区域材料拉胀成形,产生过大的主应变;三是,拉延筋阻力以及压边力过大,材料流动困难。

为解决开裂问题,我们首先在不修改零件结构的前提下对拉延工艺参数进行调整,减小了拉延筋的阻力,得到了图6a所示的成形极限图,从中可以看出无破裂区域,但临界起皱区(蓝色区)和起皱区(紫色区)所占面积较大,说明零件局部存在较严重的起皱现象;从图6b中可以看出起皱的位置主要分布于零件周边区域。该零件产生起皱的原因主要有2个:一是,零件局部区域形状变化急剧且较复杂,致使局部材料堆积;二是,拉延筋的阻力以及压边力过小,材料流入过多。起皱位置大部分在打开背门时是可见的,影响了整车的外观质量,所以这样的区域表面质量要求较高,通常不允许有起皱出现。由以上分析可知,此零件无法同时消除开裂和起皱的缺陷。为了验证数值模拟分析结果的正确性,采用此方案生产出了第一批软模件,得到了图7所示的实物图。从图7中可以看出,背门内板最上部的两个角有明显起皱现象,玻璃窗框的左右下角部虽然经过了人工打磨,仍然可以看出起皱的痕迹,说明此处起皱很严重。图6和图7对比可发现,数值模拟结果与实际生产所得到的结果基本吻合,从而也证明了数值模拟对板料成形分析具有很大的指导意义。工艺改进及其数值模拟分析 1.工艺改进

背门内板形状复杂,拉延时存在开裂与起皱的矛盾,为了克服这个矛盾,且在不修改零件结构的前提下得到合格产品,本文采用了一种改进的工艺,新工艺所建立的有限元工具体如图8所示。其工作过程如下:

(1)板料放置在下压边圈上,上压边圈下行与下压边圈接触将板料压住;

(2)上压边圈与下压边圈以及板料一起下行,与凸模共同成形出上压边圈所具有的零件形状;

(3)凹模下行,与内压边圈以及凸模共同成形出剩余的零件形状。2.工艺改进后的数值模拟结果分析为了快速验证工艺改进后的成形性,在AutoForm软件中对背门内板进行了数值模拟分析,分析中所用的拉延筋阻力与工艺改进前的第一种情况相同,得到成形极限图(见图9a),从图中可以看出零件无开裂、起皱缺陷出现,只有极少数位置有开裂风险,后期通过模具调试可以解决,小部分区域存在压应力,材料有增厚的趋势。从图9b中可以看出,在零件的可见区域不存在起皱现象,整个冲压件无开裂区域,质量达到了要求,说明改进后的工艺能有效解决开裂和起皱的矛盾,可获得质量较高的冲压件。但此工艺还需后期实际生产来进一步验证。以下从工艺改进前后成形过程的对比来分析工艺改进后能够获得合格冲压件的原因。图10所示为工艺改进前的部分成形过程,从中可以看出,零件周边复杂的形状与内部凹陷的形状同时成形,最高点A先接触板料,进料方向只能由外向内,当拉延筋的阻力较大时,周边形状复杂处无法得到足够的材料补给,主要依靠局部材料的拉胀成形;当主应变大于材料的极限应变时,零件周边侧壁发生开裂,零件中心形状是凹陷的,同时内部较平坦,板料线长较大,有足够的板料成形;当拉延筋的阻力和压边力较小时,致使进料速度过快,内部局部区域会出现起皱现象。图11为工艺改进后的部分成形过程,成形时零件周边复杂的形状最先成形,随着上压边圈下行,内部板料由弧形逐渐被拉直,说明在成形周边复杂的形状时,进料方向不单是由外而内,内部的材料也会进行补给,材料优先贴合在凸模上,周边材料得到聚存,故侧壁得到了较好的形状,开裂问题得以解决;由于内部材料向外侧流出,材料线长缩短,内部形状成形时无法从外侧得到材料,只能依靠材料的局部拉胀成形,保证了内部局部区域不会起皱。所以,从理论上也说明此工艺方案能有效地解决开裂和起皱问题,保证能够得到合格的产品。背门内板冲压工序排布

采用数值模拟分析手段对该零件的成形进行分析后,确定出板料大小、冲压方向和分模线的位置等,根据得到的相关数据制定冲压工序排布简图,为后期模具方案的制定提供指导。在工序分配时要考虑零件的冲压成形性、稳定性和模具结构实现的可行性、难易程度,以及各工序间的衔接和冲压生产流程等。

此零件孔洞较多,且各类孔的冲切方向不同,给工序安排带来很大困难。孔(包括圆孔和非圆孔)冲切的一般原则为:孔径(特指圆孔直径和非圆孔的最小直线距离)不大于6mm时,冲切方向与孔平面法线角度不大于5?;孔径在6~12mm之间时,冲切方向与孔平面法线角度不大于10?;孔径大于12mm时,冲切方向与孔平面法线角度不大于15?。按此原则并结合该零件孔的功能和属性,同时考虑模具各部分的结构强度,把冲孔安排在3个工序中完成。

经过以上分析并结合数值模拟分析结果,最终成形工序排布为:OP05,落料→OP10,拉延→OP20,修边+冲孔→OP30,整形+冲孔+侧冲孔+翻边→OP40,整形+冲孔+侧冲孔。各工序间零件的旋转角度因不能大于10?,所以OP20工序相对于OP10工序以Y轴为中心旋转了8?;OP30工序相对于OP20工序以Y轴为中心旋转了9?;OP40工序相对于OP30工序以Y轴为中心旋转了10?。修边和冲孔时要充分考虑废料的排出或收集,在OP20序修边时,两处废料刀因工艺所限布置为刀背对刀背形式,废料切断后会滞留在两废料刀之间,需预留废料提升器,以保证废料顺利排出。详细工序排布如图12所示。结语

汽车背门内板由于其结构复杂并且具有一定的特殊性,在成形时容易出现开裂和起皱等缺陷,并且这两种缺陷很难同时消除,往往在消除一种缺陷的时候会造成另一种缺陷产生。本文采用两种工艺方案在AutoForm软件中分别对背门内板进行了数值模拟分析,通过结果对比分析,工艺改进后的方案能够解决开裂和起皱的矛盾,得到质量合格的冲压件。因此,对于有背门内板类似结构的零件,如左右车门内板等,都可以采用本文中改进的方案进行成形,解决开裂和起皱缺陷。虽然数值模拟分析得到了较好的结果,但此改进方案还有待实际生产的验证。

借助数值模拟分析方法,为冲压成形的评估提供了重要参考,可以制定出较合理的冲压工艺,为模具方案的制作提供参考。作者:孙芬芬 谭植文 魏宪波 冯擎峰

第二篇:关于汽车纵梁冲压工艺分析与改进

关于汽车纵梁冲压工艺分析与改进

[摘 要]以汽车纵梁为研究对象,介绍其冲压工艺方案,利用CAE技术,对纵梁在回弹处理方面总结了合理的工艺与技术改进措施。经过实际冲压验证:表明改进后的纵梁冲压工艺效果良好,满足使用要求,对类似零件成形工艺设计具有一定的参考作用。

[关键词]汽车纵梁;冲压工艺;CAE;回弹;自动补偿

中图分类号:TG386 文献标识码:A 文章编号:1009-914X(2018)29-0353-01

引言:冲压工艺中,制约其快速发展主要集中在一些典型的难成形件上,如汽车覆盖件、轮罩板件、梁类件等。梁类件随着汽车轻量化的发展使用比例越来越高,强度也越来越高,决定了它的工艺特殊性和成形难度。梁类件中特别是高强梁类件中纵梁是典型的难成形件,主要取决于纵梁造型的复杂程度和使用板料的高抗拉强度。传统加工工艺及存在的问题

汽车纵梁加工的内容主要包括:成形和制孔。加工工艺可分为成型前加工孔和成型后加工孔,制孔的方式又分为冲孔加工和钻孔加工。目前,汽车纵梁加工多采用的是买成形纵梁料,通过摇臂钻床钻孔。选用钻孔方式最大的优点是设备投资少,但缺点也很多:加工效率低、需要制造多种钻模,生产准备周期长,很难适应多品种、小批量多批次产品的生产节拍。以陕重汽为例,随着陕重的斯太尔产品产能的大幅提升,同时MAN产品逐步上升为主导产品,传统的加工工艺已无法适应产能提升和产品变形的需求,纵梁孔位加工能力不足已成为车架生产的“瓶颈”问题,寻求新的纵梁加工工艺迫在眉睫。因为斯太尔产品为等截面梁,MAN产品为变截面梁,这两种车架的纵梁结构不同,加工工艺差别较大,因此选择纵梁加工工艺和设备时应兼顾此两种产品结构的加工。加工工艺及所用设备的特点

2.1 生产效率高,劳动强度小

数控冲对新产品生产要求的准备时间短,对于纵梁孔的变化,生产准备仅为编程时间,输入CAD图形,可以自动生成加工程序,可以充分快速地满足市场和每个用户的要求,解决了现有摇臂钻床孔效率差、生产准备时间长、劳动强度低的问题。采用原有方法,冲一个孔,带上下料最慢需要1.2s,钻一个孔最快需要10s。当加工5595mm长、200余孔的S35车纵梁时,5人需要14min,而采用数控冲只需4min。加工11050mm长、350余孔O40车纵梁,5人需要28min,而采用数控冲加工350个孔只需8min。

2.2 产品质量高

数控冲加工解决了摇臂钻床钻孔时,漏孔和孔距尺寸超差而影响铆接和总装配进度及质量的问题,并且数控冲加工的孔没有毛刺,精度高于钻孔。纵梁工艺改进

汽车的纵梁的强度比较高,且该类元件的塑性变形程度比较小,在纵梁的成形阶段,其达到的塑性变形阶段存在着一定的困难。如果其在成形时期,其板料的变形仍旧属于弹性形变,那么就会使得其应力在释放过后产生回弹的现象,降低了其成形尺寸的精准程度,其板料成形时期,如果其塑性成形出现了断裂的现象,那么其板块变薄百分比为60%,其普通的钢板就会只有在25%以上,才会产生开裂的现象。

3.1 拉深成形

在对板料进行拉深处理时,要尽可能的让其拉深工序一次完成,其拉深的深度要满足其零件成形的需求,达到相应的标准,一次来防止其后续出现整形等不良现象。将其板料一次性的拉深到最大的位置上,可以确保其板料应用的充分程度,最大限度的降低了其板料的回弹性,其板料会无法轻易的产生塑性形变,提升了其成形零件尺寸的精准程度。以板料拉深成形的特征为基础点,让其拉深的深度要和其保持高度的一致性,便于板料和凸模的光顺更好的基础,降低其板料出现褶皱等不良现象,让其拉伸后的板料应力可以不受到影响,在应力变化过后,其板料的变形程度就会趋于平稳,其所产生的变形以及回弹程度会比较小。

3.2 工序排布

工序排布工作开展时,必须要对其零件结构的可实施性以及自身的应用强度进行探究,通常,汽车纵梁的整形力度比较强,具有回弹大的特性。在零件结构条件满足其工序排布的需求是,需要重视其板料成形的稳固性设计内容,还要对其零件尺寸的修改方案的可实施性进行探究。通常,板料的强度会比较高,其料的厚度也比较大,如果在成形时,不对其受力状况进行分析,就会使得其受力呈现不均匀的状态,导致其模具零件出现变形的现象,严重的还会影响其模具的使用年限,降低其零件的质量以及稳固程度。要在工序排布工作开展之后,调控好修边力和整形力二者之间的关系,确保其模具零件的受力状态。板料的回弹性比较明显,所以其模具零件的修整工作难度比较高,如果使用传统工艺方式修改其模具零件,就会使得其调试过后的模具零件回弹性超过实际所需的回弹性,还会使得其回弹量区域出现负角等现象,让其整形工作无法顺利的开展,严重的还会使得其模具报废,不能正常的投入到使用工序中。想要防止该现象的发生,就要研究其CAE模拟回弹量和以往车型,总结其相关的生产经验。纵梁CAE模拟改进分析

当确定出其实际的工艺生产方案之后,要利用CAE对其理论开展模拟的实验,确定出其纵梁精准尺寸的目标,考量各类施工工艺方案应用的成形要求,尽可能的减小其现场模具整改的强度,适当的缩短其板料的调试时间,在实际的设计阶段开展预处理的工作,设立出回弹控制的目标数值。

4.1 设定回弹理论分析目标值

通过最近几年进行理论与实际回弹对比,总结了高强板模拟参数设置对应下的回弹分析目标值,梁类件对主面、侧壁、法兰等的不同部位制定了不同的目标值。梁类件主面的作用比较重要,在模具零件整改中牵动的整改工作量比较大,采用了较高目标的控制值;侧壁CAE模拟尽量保证不出现负回弹,针对侧壁定的目标值相对高一点;法兰的影响因素比较多,理论与实际的对应程度不是很高,而且法兰相对现场模具零件整改比较容易,整改成本和周期均较短,法兰理论不出现负回弹,且在+1.0mm左右都能接受。

4.2 自动循环反弹模拟

为了达到理论目标值,借助软件进行反复计算,由于纵梁结构复杂,回弹比较大,要想达到理想的目标值,需要进行多次补偿并反复验证。若每次均通过CAD辅助进行补偿,再进行CAE软件分析,则工作量大且浪费时间。研究了AF软件自动补偿循环回弹功能,如图6所示,能减少此过程的工作量,避免了CAD造型过程中精度的降低。采用自动循环反复计算后能使人为利用CAD进行辅助造型的工作量减少到2~3次,节省了人力、物力。

4.3 高精度补偿处理

虽然软件的模拟结果作为主要的回弹补偿依据,但由于软件本身与现场的准确度不能达到完全一致,针对软件的结果,还要结合经验来进行判定,特别是针对纵梁类难成形的板料。高精度补偿处理一般会在最后阶段结合以往类似件的经验值进行特殊部位和不确定部位的最终方案判定。软件模拟的结果可能非常精确,但软件模拟的状态要真实反映到现场,就关系到模拟结果到加工数据的转化精度问题,为了达到高精度转化,经过试验,采用Think3软件进行回弹数据的处理。在进行回弹补偿方案的选择时,主要在拉深工序进行回弹预处理,整形工序作为较小量的回弹预处理。

结语

汽车纵梁是梁类件的典型代表,通过合理的设备选型、生产工艺设计,并借助CAE分析技术,基于软件循环计算的回弹补偿处理方法,经过实际冲压效果的验证,改进后的纵梁冲压质量得到明显提升,满足客户的使用要求。

参考文献

[1] 李绍民,张勇,刁照云,王子建.智能制造――重卡车架纵梁智能加工系统探讨[J].重型汽车.2016(04).[2] 周家明.汽车纵梁抛丸前除油清洗工艺设计浅谈[J].时代汽车.2016(12).[3] 毛?l国.汽车纵梁冲压成形数值模拟及试验验证[J].锻压技术.2017(04).

第三篇:汽车生产四大工艺冲压工艺讲稿

汽车生产四大工艺冲压工艺讲稿

一、冲压加工工艺的特点

冲压是一种先进的金属加工方法。它是建立在金属塑性变形的基础上,利用模具和冲压设备对板料施加压力,使板料产生塑性变形或分离,从而获得一定形状、尺寸和性能的零件。

冲压生产依靠模具和冲压设备完成加工过程,因此它具有生产效率高、操作简便、便于实现机械化和自动化的特点。采用精密复杂的模具,能加工出用其她方法难于生产的形状复杂的零件,且尺寸精度稳定,材料利用率高,零件重量轻。在大批量生产中,是一种先进的优质、高产、低消耗和低成本的加工方法。

二、冲压工序分类

冲压工序可分为分离工序和成形工序两大类。分离工序是在冲压过程中使冲压零件与板料沿一定的轮廓线相互分离,同时冲压零件的分离断面要满足一定的质量要求。成形工序是板料在不破裂的条件下产生塑性变形,获得所要求形状的零件,同时也满足尺寸的要求。

三、模具调整

模具调整,就是在试冲过程中,解决模具本身各相对运动部分之间、冲压件结构与冲模结构、冲模结构与压床工艺参数、冲模结构的工艺参数与现实生产条件之间、压床与生产条件之间、人与冲模或压床等等之间的矛盾。只有解决了这些矛盾,才能保证冲压件的质量和一定的生产效率。根据冲模调整的内容和性质,调整工作一般可分为四类:新制模具的调整;磨损后或修复后的调整;生产调整(即日常调整);使用代用材料或更换压床后的调整。

新制模具的调整(试模),就是在模具制造完成后,在相应的压床上进行试冲,制出合格的零件。

冲模在经过一段时间使用后,其工作部分的精度和结构的工艺参数会有变化,因此,必须进行修复。修复后的冲模,在结构上不可能与新制造后的冲模完全一样,必须再次调整,又称之为大调或修后调整。

在冲压件生产过程中,每次都需经过装模后生产前的模具调整,(通常此项工作由机长来完成)由机长按照《工艺规程》和《作业标准》中的要求,将模具调整压制出合格零件。

使用代用材料之后,必须正确地解决冲模结构的工艺参数与毛坯的机械性能直间的矛盾。也就是要根据代用材料的特性(机械性能、厚度及精度等级)来修整冲模结构的有关工艺参数部分。

更换压床生产时,也必须进行适当的调整工作,以解决冲模结构与压床结构之间、制件特征与压床性能之间的矛盾。一般只是相应地改变冲模的气垫顶杆的长度和位置,改变冲模的安装孔或安装槽等。在整个调整过程中,必须严格地遵守调整工安全操作规程及作业标准。试冲前必须先以寸动规范逐渐下调压床滑块,检查以下内容:

(1)冲模安装是否正确;

(2)压床的装模高度是否略大于冲模的实际闭合高度;(3)冲模各相对滑动部件间的相对关系是否准确;(4)冲模内和压床上有无杂物;

(5)压床的技术状态(尤其是压床的制动情况)是否良好。

四、汽车覆盖件生产的特殊要求(一)覆盖件的定义

汽车覆盖件是指覆盖发动机、底盘、构成驾驶室和车身的薄钢板异形体的表面零件和内部零件而言。载重汽车的驾驶室、厢式货车的车身、轿车的车前板和车身等都是由覆盖件和一般冲压件组成。(二)覆盖件和一般冲压件的比较

覆盖件与一般冲压件相比较,具有材料薄、形状复杂、多为空间曲面、结构尺寸大和表面质量高等特点。(三)对覆盖件的要求 1.表面质量

覆盖件表面质量分为A级和B级除被覆盖的表面为B级外,暴露在外面的表面均为A级。(1)A级

覆盖件表面不允许有裂纹、波纹、凹痕、边缘拉痕、擦伤以及其他破坏表面完美的缺陷。覆盖件上的装饰棱线、装饰筋条要求清晰、平滑、左右对称及过渡均匀。覆盖件之间的装饰棱线衔接处应吻合,不允许参差不齐。表面上一些微小缺陷都会在涂漆后引起光的漫反射而损坏外观。(2)B级

覆盖件表面不允许有裂纹、暗伤,但允许有轻微的拉痕、波纹,筋条棱线要求清晰、平滑、过渡均匀。

(四)生产过程中的特殊要求

由于外覆盖件的表面质量要求较高,在生产过程中对材料的表面洁净度、模具型腔的洁净度以及输送带的表面洁净度要求就高,否则会造成覆盖件表面凸包等质量缺陷。由于我公司的生产条件有限,没有板料清洗机,全靠人工操作,因此要求操作工在作业和装箱过程中必须严格按照作业标准中的要求操作,保持材料、模具型腔、输送带的表面洁净,对零件轻拿轻放,避免不必要的磕碰划伤、凸包等现象。同时要求操作人员和质量检查人员必须对零件进行全数检查,发现问题立即处理。

内、外覆盖件在成行过程中的拉延、翻边、整形是否到位,它会直接影响外覆盖件的美观(主要影响棱线及筋条的清晰度),影响内覆盖件焊接搭接部位的形状吻合,零件本身的回弹也会加大,从而最终影响白车身焊接的尺寸精度。因此判断冲压件在成形过程中是否到位也是十分重要的。

第四篇:《冲压工艺及模具设计》教学大纲

《冲压工艺及模具设计》教学大纲

适用四年制本科材料成型专业(参考时数:48学时)

一、课程的性质、任务

本课程是材料成型及控制专业模具设计与制造专业方向学生的一门专业必修课程,其教学目的主要是使学生掌握冲压工艺及模具设计的基本知识,培养从事冲压工艺及冲压模具设计、现场实施冲压工艺的能力,为就业后进行冲压工艺及冲压模具设计和冲压工艺的现场实施打下基础。

二、课程基本要求

通过学习,掌握冲压基本工序(冲裁、弯曲和拉深)的变形规律、变形特点、有关工艺计算、模具结构设计和工作部分尺寸计算,了解其它冲压工艺(翻边、胀形、缩口、整形及校平)的工艺特点及模具结构,能够根据冲压件制定冲压工艺规程和设计冲压模具。

本课程的前程课程主要有机械制图、机械原理、机械设计基础、工程材料学、材料成形理论基础、材料成形技术基础、认识实习等;本课程的后续课程包括生产实习、成型模具课程设计、毕业实习及毕业设计等。

三、课程内容

第一章:冲压基本知识

(4学时)

第一节:概论 第二节:冲压基本工序 第三节:冲压过程中的变形规律 第四节:冲压变形引起的材料硬化 第五节:冲压常用材料

第二章:冲裁工艺设计

(6学时)

第一节:冲裁基本知识 第二节:冲裁间隙

第三节:凸模与凹模刃口尺度几制造公差 第四节:提高冲裁件精度的方法 第五节:冲裁工艺设计

第三章:弯曲工艺设计

(4学时)

第一节:弯曲的基本原理 第二节:最小弯曲半径 第三节:弯曲回弹 第四节:弯曲工艺计算

第五节:弯曲模结构及工作部分计算

第四章:拉深工艺设计

(10学时)

第一节:拉深基本原理 第二节:圆筒形拉深件工艺计算 第三节:有凸缘圆筒形件拉深 第四节:拉深模设计计算 第五节:盒形件拉深 第六节:其它旋转体件的拉深

第五章:其它成形工艺设计

第一节:翻边 第二节:账形 第三节:缩口 第四节:整形与校平

第六章:冲模结构设计及压力机选用

第一节:冲模基本类型和结构组成 第二节:冲模结构设计 第三节:压力机的选用

第七章:连续模设计

第一节:连续模的特点及应用 第二节:冲裁连续模设计

第三节:拉深连续模设计

第八章:冲压工艺规程的制定

第一节:冲压工艺制定的一般步骤

第二节:实例

四、学时分配

总学时:48学时

其中: 课堂教学44学时

实验教学`4学时

4学时)

(10学时)4学时)

(2学时)((各章学时参见教学内容

五、课程实验内容及基本要求

实验一:模具结构及拆装实验

(2学时)实验二:冲压工艺操作和冲压件质量控制实验

(2学时)

六、推荐教材及参考书

1、丁松聚.冷冲模设计.北京: 机械工业出版社,2001

2、马正元,韩晵.冲压工艺与模具设计.北京: 机械工业出版社,1995

3、王孝培.冲压手册.北京: 机械工业出版社,1995

4、冲模图册,北京: 机械工业出版社,2007

七、大纲使用说明

第五篇:云母片冲压工艺及模具设计-说明书

云母片冲压工艺及模具设计

摘要

本文分析了云母片的结构、尺寸、精度和原材料性能,并具体指出了该产品的成型难点;拟定了落料模具冲压工艺方案;详细阐述了排样设计方法和过程,确定了该产品需要落料的排样图;完成了所有必要的工艺计算,包括模具刃口尺寸、各工位冲压力、总的冲压工艺力、压力中心等;概述了模具概要设计方法,系统的阐述了模具主要零部件的结构、尺寸设计及标准零部件的选用。同时阐述了模具的工作过程、各成形动作的协调性并对设备选择和核算进行了较为细致的叙述。

关键词:云母片;冲压工艺分析;零件设计;模具设计

Mica sheet stamping process and die design

ABSTRACT This paper analyzes the technical characteristics of the spring hook such as configuration dimension precision and the capability of the raw materials.There are including the difficulties of this production in the molding ,studying out the technics of the progressive die ,making sure the layout project and the die general structure.The progressive die could complete thirteen processes that include punching, blanking, bending and so on.It has finished all needed technical count ,including the knife-edge of the mold, the force of each process , punch technical force of the all process and the stress center of the mold.It summarizes the method of designing this mold.It introduces the design and manufacture of the punch, the die, the stripping device, the pushing device, and the blanking holders in details.And it also expatiates the working process of the die, the coordination about each motion of figurations.Besides it has a section about equipment choosing and proofreading.Key words:mica sheet;analysis of stamping process;parts design;mold design

目 录

1绪论.........................................................................................................................................1 2工艺设计.................................................................................................................................3 2.1零件介绍...........................................................................................................................4 2.2零件工艺性分析...............................................................................................................4 2.3工艺方案的确定...............................................................................................................4 3排样设计.................................................................................................................................5 3.1毛坯排样设计...................................................................................................................5 3.2材料的利用率...................................................................................................................7 4工艺计算.................................................................................................................................8 4.1冲压工艺力的计算...........................................................................................................8 4.2冲裁力计算.......................................................................................................................8 5模具总体结构设计...............................................................................................................11 5.1模具概要设计.................................................................................................................11 5.2模具零件结构形式确定.................................................................................................11 5.2.1定位机构..................................................................................................................14 5.2.2卸料机构..................................................................................................................15 5.2.3导向机构。..............................................................................................................16 6模具零件的设计与计算.......................................................................................................17 6.1工作零件.........................................................................................................................17 6.1.1冲裁凸、凹模刃口尺寸计算..................................................................................17 6.1.2凸模设计..................................................................................................................19 6.2定位零件.........................................................................................................................20 6.3出料零件.........................................................................................................................20 6.3.1卸料零件..................................................................................................................20 6.3.2顶件零件..................................................................................................................21

云母片冲压工艺及模具设计

6.4导向零件.........................................................................................................................21 6.5其他零件.........................................................................................................................21 7设备选择...............................................................................................................................24 7.1设备吨位确定.................................................................................................................24 7.1.1设备类型的选择......................................................................................................24 7.1.2设备规格的选择......................................................................................................24 7.2设备校核.........................................................................................................................26 7.2.1压力行程..................................................................................................................25 7.2.2压力机工作台面尺寸..............................................................................................25 结 论........................................................................................................................................26 参考文献..................................................................................................................................28 致谢..........................................................................................................................................28

1737544646 1 绪论

模具工业是国民经济的基础工业,是工业生产的重要工艺装备。先进国家的模具工业已摆脱从属地位,发展为独立的行业。美国工业界认为:“模具工业是美国工业的基石。”日本工业界认为:“模具工业是其它工业的先行工业,是创造富裕社会的动力。”在德国,模具被冠以“金属加工行业中的帝王”之称。近20多年来,美国﹑日本﹑德国等发达国家的模具总产值都已超过机床总产值,世界模具市场总产量已达600~650亿美元。冲压技术的最新研究成果与加工方法,以及模具工业的前沿技术及房展方向:高速冲裁,高效﹑精密﹑长寿命模具,激光与等离子数控打孔与剪切,板料激光成形,板材多点成形和单点渐进成形,对向液压拉深,内高压成形与粘性介质压力成形,流动控制成形(FCF加工方法),精冲复合工艺,SPF/DB成形,高速高能成形,数字化冲压成形关键技术,冲压成形有限元数值模拟和优化,快速样品生产,冲压生产自动化和柔性加工系统,冲压制品与模具的远程网络设计与制造,冲模CAD/CAE/CAM/PDM,RP技术与快速模具制造。

冲压加工技术应用范围十分广泛,在国民经济各工业部门中,几乎都有冲压加工或冲压产品的生产。冲裁是冲压工艺的最基本工序之一。冲裁是利用模具使板料的一部分沿一定的轮廓形状与另一部分产生分离以获得制件的工序。

冲压成形近年来有很多新的发展,在精密冲裁、精密成形、精密剪切、复合材料成形、超塑性成形、软模成形以及电磁成形等方面取得很大的进展。冲压件的成型精度、生产率越来越高,冲压范围越来越广,由平板零件精密冲裁拓宽到精密弯曲、精密拉深及立体精密成形等。计算机辅助工程(CAE)在冲压领域也得到了较好的发展和应用,模具计算机辅助设计∕辅助制造技术(CAD∕CAM)、板料成形模拟仿真技术(冲压CAE)、快速成形(RPM)等。计算机辅助工程可进行应力应变的分析、排样、毛坯的优化设计及工艺过程的模拟与分析等,实现冲压过程的优化设计。

冲压生产主要是利用冲压设备和模具实现对金属材料(板料)的加工过程。所以冲压加工具有如下特点:

(1)生产效率高、操作简单、内容实现机械化和自动化,特别适合于成批大量生产;

(2)冲压零件表面光滑、尺寸精度稳定,互换性好,成本低廉;

(3)在材料消耗不多的情况下,可以获得强度高、刚度大、而重量小的零件;

云母片冲压工艺及模具设计

(4)可得到其他加工方法难以加工或无法加工的复杂形状零件。

本论文主要以云母片冲压模具设计为主线,云母材料为天然矿因其材料为天然矿制品,具有无污染、绝缘、耐电压性能好和化学稳定性的特点,而且云母片是一种多层结晶体的非金属材料。因云母本身具有独特的耐高温、耐高压及高度的绝缘性能,因此,在电子、仪器仪表等行业应用广泛。故可根据客户需求冲切各种规格的天然云母片。采用云母板制得零件云母片,材料壁厚较薄,零件为异形件,结构虽较为复杂,但只要用适合的冲孔落料就可以获得所要的零件。依据模具的基本组成部分,采取基础和设计技巧相结合,理论与实践相结合,图例与剖析相结合,模具设计与加工工艺相结合的方式,分析云母片的冲压工艺性,提出设计其模具的多种方案,通过比较分析设计出较合理的模具。同时,从模具的加工工艺的角度出发,分析并提供便于加工的模具结构形式,使模具设计和加工更加紧密的结合在一起。

本论文在设计时广泛吸收了国内外各个领域成熟的经验和最新的参考资料,并在模具的成型零部件等关键部位采用了国内外的优质模具钢。为了顺应形势发展的需要,在技术上也有一定的创新,使用了计算机辅助设计来绘图,如UG、AUTOCAD等,达到优化设计的目的。

毕业设计是按查阅资料、学习、消化、吸收、创新的思路进行的。本论文是关于介绍我在毕业设计中做的一副云母片落料模具的全部设计资料,文中包含了较详细的工艺分析、模具结构设计及冲压机床的选择。整个设计是在老师的辅导下以及和同学的相互探讨下完成,通过这次毕业设计的锻炼,我增加了专业知识,丰富了视野,提高了自主创新的能力。但是,我毕竟是初次接触模具如此具体的设计,再加上知识经验的局限现性,设计内容可能会有一些漏洞和错误,学生的所有不足之处,殷切希望各位尊敬的老师及所有的评委能给予指正和指导,谢谢各位老师。

1737544646 2 工艺设计

2.1 零件介绍

本次毕业设计的产品见图2.1所示,材料为厚1mm的Q235钢板料,要求批量为中批量。该零件属于典型的冲裁件,如图2.1零件尺寸图,图2.2云母片工件图所示

图2.1 零件尺寸图

图2.2云母片工件图

云母片冲压工艺及模具设计

2.2 零件工艺性分析

零件尺寸:图中零件未注公差取ST8级,零件的尺寸较小,成形的位置较为紧凑,成形比较简单。零件材料为Q235钢,是普通的碳素结构钢,有一定的塑性,料厚为1mm属薄料,冲压性能良好,零件需要经过一次冲裁,零件的结构比较对称,冲压性能仍然很良好。

综上所述,得到结论:零件具有较好的可冲压性。

2.3 工艺方案的确定

确定工艺方案首先要确定的是冲裁的工序数,冲裁工序的组合以及冲裁工序顺序的安排。冲裁工序一般易确定,关键是确定冲裁工序的组合与冲裁工序顺序。应在工艺分析的基础上制定几种可能的方案,再根据工件的批量、形状、尺寸等方面的因素,全面考虑、综合分析,选取一个较为合理的方案。

冲裁工序按工序的组合方式可分为单工序冲裁、复合冲裁和级进冲裁。

单工序模是只完成一种工序的冲裁模。如落料、冲孔、切边、剖切等。复合冲裁是在压力机的一次行程中,在模具的同一位置同时完成两个或两个以上的工序;级进冲裁是把一个冲裁件的几个工序,排列成一定顺序,组成级进模,在压力机的一次行程中,模具的不同位置同时完成两个或两个以上的工序,除最初几次冲程外,每次冲程都可以完成一个冲裁件。由零件的工艺分析及图可知:该工件落料一个基本工序:落料,故采用采用单工序模生产。

1737544646 3排样设计

3.1毛坯排样设计

在进行模具设计时,首先要设计条料排样图,条料排样图的设计是模具设计时的重要依据。模具条料排样图设计的好坏,对模具设计的影响是很大的,排样图设计错误,会导致制造出来的模具无法冲制零件。条料排样图一旦确定,也就确定了被冲制零件各部分在模具中的冲制顺序、模具的工位数、零件的排样方式、模具步距的公称尺寸、条料载体的设计形式等一系列问题。在本模具中,排样设计总的原则是先进行冲切废料,然后拉伸,最后切断,并要考虑模具的强度、刚度,结构的合理性。

冲裁件在条料、带料或板料上的布置方法叫排样。排样合理就能用同样的材料冲出更多的零件来,降低材料消耗。大批量生产时,材料费用一般占冲裁件的成本的60%以上。因此,材料的经济利用是一个重要问题,特别对贵重的有色金属。排样的合理与否将影响到材料的经济利用、冲裁质量、生产效率、模具结构与寿命、生产操作方便与安全等。

排样的意义就在于保证用最低的材料消耗和最高的劳动生产率得到合格的零件。毛坯在板料上可截取的方位很多,这也就决定了毛坯排样方案的多样性。典型毛坯排样:单排、斜排、对排、无费料排样、多排、混合排。

根据此次毕业设计的零件结构特征及材料的利用率,决定采用对排,采用这种毛 坯排样的模具结构的相对简单,模具制造较为方便。

1﹑条料搭边值的确定

搭边是指排样中相邻两冲裁件之间的余料或冲裁件与条料边缘间的余料。其作用是补偿定位误差和保持条料有一定的强度和刚度,防止由于条料的宽度误差、送进步距误差、送料歪斜等原因而冲裁出残缺的废品,保证送料的顺利进行,从而保证制件的质量。

由参考文献[3]得

材料厚度为1mm时,条料长度大于20mm,搭边可以取a=2mm,a1=2mm。

2、条料的宽度

条料是由板料(或带料)剪裁下料而得,为了保证送料顺利,规定条料宽度B的上级极限偏差为零,下偏差为负值(-Δ)。条料在模具上送进时常用导尺导向,使用导尺又分为有侧压导向和无侧压导向两种情况。两种导向情况下的条料宽度计算不同,但目6

云母片冲压工艺及模具设计 的是一致的,要求既能保证条料的顺利送进,又能保证冲裁件与条料侧边之间有不低于规定的搭边值。条料采用无侧压,可以确定条料与导料销的间隙和条料宽度偏差分别为c1=0.5mm,Δ=0.6mm由参考文献[3]中公式得

00 条料宽度B[D2(a)c]1(3.1)

3、步距

冲裁模的步距是确定条料在模具中每送进一次,所需要向前移动的固定距离。步距的精度直接影响到冲件的精度。设计连续模时,要合理的确定步距的基本尺寸和精度。步距的基本尺寸,就是模具中相邻工位的距离。

此次毕业设计的条料为单排,步距的基本尺寸等于冲压件的外形轮廓尺寸和两冲压件间的搭边宽度之和,其步距基本尺寸由参考文献[3]得:

h= L + a

(3.2)式中h---冲裁步距

L---沿条料送进方向,毛坯外形轮廓的最大宽度值 a----沿送进方向的搭边值 排样方式图3.1所示

图3.1 坯料排样图

00 条料宽度B[D2(a)c1]

=[45+2×﹙2+0.6)﹢0.5﹚0-0.6 =50.70-0..6mm

该零件的步距确定为: h= L + a=35+3=38mm

借助UG软件分析可得单个零件的面积为A=1032mm,一个步距的材料利用率η为 η=﹙A∕h×B﹚×100%=﹙1032/38×50.7﹚×100%=53.6% 排样方式图3.2所示

1737544646

图3.2 坯料排样图

00条料宽度B[D2(a)c1]

=[45+2×﹙2+0.6)﹢0.5﹚0-0.6 =50.70-0..6mm 步距h

h=62.5mm 一个步距的材料利用率η为

η=﹙A∕h×B﹚×100%=﹙1032×2/50.7×62.5﹚×100%=65.1%

由上计算知道方案的材料利用率分别为56.9%和67%。其中第一种排样方式材料的利用率少于60%,这样原材料没有得到合理的利用。而第二种排样方式虽然需要二次送料,但材料利用率高,为此我们选择方案二的排样方式。

3.2材料的利用率

1、排样方式的确定

根据冲裁件的结构特点,排样方式可选择为:对排,有废料排样。

2、送料进距的确定

为了节约材料,应合理的选择搭边值。搭边值过小,会使作用在凸模侧表面上的发向应力沿切口分布不均,降低冲裁质量和模具寿命,故必须使搭边的最小宽度大于冲裁时塑性变形区的宽度,一般可以取材料的厚度。若搭边值小于材料的厚度,冲裁时搭边可能被拉断,有时还会被拉入到凸、凹模间隙中,使零件产生毛刺,甚至损坏模具刃口。

搭边值的大小与材料的性能、零件的外形及尺寸、材料的厚度、送料及挡料的方式、卸料方式有关。硬材料的搭边值可以小一些,软材料和脆材料的搭边值应大一些。零件尺寸大或有尖突时,搭边值应大一些,厚材料的搭边值取大一些。

云母片冲压工艺及模具设计

4工艺计算

4.1冲压工艺力的计算

工艺计算是模具设计的基础,只有正确的计算出各道工序的凸凹模尺寸、冲压力、毛坏尺寸等,才能设计出正确的模具。而且是选用压力机、模具设计以及强度校核的重要依据。为了充分发挥压力机的潜力,避免因超载而损坏压力机,所以计算是非常必要的。

工艺计算是选用压力机、模具设计以及强度校核的重要依据。为了充分发挥压力机的潜力,避免因超载而损坏压力机,所以计算是非常必要的。

4.2冲裁力计算

冲裁力是冲裁力、卸料力、推件力和顶料力的总称。

冲裁力是凸模与凹模相对运动使工件与板料分离所需要的力,它与材料的厚度、工件的周长、材料的力学性能等参数有关。冲裁力是设计模具、选择压力机的重要参数。计算冲裁力的大小是为了合理的利用冲压设备和设计模具。选用冲压设备的标准冲压压力必须大于所计算的冲裁力,所设计的模具必须能够传递和承受所计算的冲裁力,以适应冲裁的要求。

该模具采用弹性卸料和下方出料方式。总冲压力F0由冲裁力F、卸料力F卸和推件力F推组成。若采用复合冲裁模,其冲裁力由落料冲裁力F落料和冲裁力F冲孔两部分组成。

冲裁力是冲裁过程中凸模对材料的压力,它是随凸模行程而变化的。通常说的冲裁力是指冲裁力的最大值。平刃冲模的冲裁力可按下式计算:

FKLtb

(4.1)

式中 F——冲裁力(N);

L——零件剪切周长(m m); t——材料厚度(mm); b——材料抗拉强度(MPa)。

K——系数,一般取K=1.3。已知零件材料是Q235,取

b=400Mpa,材料厚度t=1mm,L值由全部冲裁线即冲裁零件周长尺寸组成,由于零件是异形件,形状比较复杂,用手工计算零件的周长比较困

1737544646 难,借助CAD中“面域、查询面域∕质量特性”等命令测出该零件的周长为L=187.98mm,取L=188mm。

1)落料、冲裁力。材料Q235铜的抗拉强度可按b400MPa

F落料Ltb1881.5400112.8KN

2)推件力,K推=0.055

F推=nK推F=1×0.055×112.8=6.2kN 3)力。查表得卸料力系数

F卸K卸F落料0.05112.85.64KN

4)总冲压力F0的确定

所以总冲压力F0=F落+F推+F卸=112.8+6.2+5.64=134.64kN 冲压力合力的作用点称为冲模压力中心。冲模压力中心应尽可能和模柄的轴线以及和压力机滑块的中心线重合,以使冲模平稳地工作,减少导向机构滑动件之间的磨损,提高运动精度以及模具和压力机的寿命。

求合力作用点可转化为求轮廓线的重心。具体的方法如下:

(1)按比例画出每个凸模刃口轮廓的位置;(2))建立坐标轴线,分别凸模刃口轮廓的压力中心及坐标位置x1,x2,x3,...,xn和y1,y2,y3,...,yn。

(3)分别计算凸模刃口轮廓的冲裁力F1,F2,F3,„,Fn或每一个凸模刃口轮廓的周长L1,L2,L3,„Ln。

(4)对平行系,冲裁力的合力等于各力的代数和,即F=F1﹢F2﹢F3﹢„Fn。(5)根据力学原理,即可求出压力中心的坐标(x0,y0)。按下列公式求出冲模压力中心的坐标值(x0,y0)

x0L1x1L2x2Lnxn

(4.2)

L1L2...LnL1y1L2y2Lnyn

(4.3)L1L2...Lny0由于该零件形状对称,所以压力中心在该零件的中点上坐标值(X0,Y0),如图3.1所示

云母片冲压工艺及模具设计

图4.1 零件轮廓线划分图

xn0L1x1L2x2LxnL1L2...Ln

=2788.17/173.83=16 y10Ly1L2y2LnynL1L2...Ln

=4134.46/173.83=24 由以上计算可知冲裁件(云母片)的压力中心的坐标为(16,24)。如下图3.2所示

图4.2 零件压力中心图

1737544646 5模具总体结构设计

5.1模具概要设计

冲压制件的质量,不仅依赖于模具的正确设计,而且在很大程度上取决于模具的制造精度,而模具生产又多为单件小批量生产,这给模具生产带来许多困难,为了获得高质量的冲压制件,冲模制造时,在工艺上要充分考虑模具零件的材料、结构形状、尺寸、精度、工作特性和使用寿命等方面的不同要求。模具是用多个零件按照一定关系装配而成的有机整体,结构是模具的“形”。模具的优劣很大程度上体现在模具结构上,因此落料模具的结构对模具的工作性能、加工性、成本、周期、寿命等起着决定性作用。

在此次模具的结构设计大体可以分为两步:第一步根据工序排样的结果确定模具的基本结构框架,确定组成落料模具的主要结构单元及形式,对模具制造和使用提出要求;第二步确定各结构单元的组成零件及零件间的连接关系。结构设计的结果是模具装配图和零件明细表。

在结构设计中概要设计是模具结构设计的开始,它以工序排样图为基础,根据产品零件要求,确定落料模具的基本结构框架。结构概要设计包括:

(1)模具主要零件凸凹模的设计,计算过程;

(2)模具基本结构:定位方式以及导向方式确定;卸料方式以及出件方式确定;(3)模具基本尺寸:模具工作空间尺寸、各个板件的厚度、模具闭合高度;(4)模架基本结构:模架的类型,导柱与导套选配以及模柄类型的选择;(5)压力机的选择:压力机的类型,压力机规格;(6)设备校核:压力机的校核。

5.2模具零件结构形式确定

该零件是用落料模具完成的。模架是模具的主体结构,采用自行设计的模架机构导向,采用后侧导柱模架,导向装置在后侧,横向或纵向送料都比较方便,并采用弹性卸料装置,落料模具总装图如图5.1所示

云母片冲压工艺及模具设计

注:1—模柄;2—止动销;3—凸模;4—内六角螺钉;5—上模座;6—凸模固定板;7—橡胶;8—卸料板;9—凹模;10—下模座;11—导柱;12—导套;13—内六角螺钉;14—卸料螺钉;15—圆柱销;16—

圆柱销;17—挡料销;18—垫板

5.1 模具整装图

凹模外形尺寸应保证有足够的强度和刚度。由于凹模的结构型式不一,受力状态又比较复杂,首先考虑是在冲裁工位所要受到的冲裁力,所以要适当增加凹模厚,一般根据冲裁件尺寸和板料厚度,由文献[2]凹模的厚度H可按以下经验公式计算

H = Kb

(≥15mm)

(5.2)式中

K—考虑坯料厚度影响的系数;

b — 冲裁件最大外形尺寸(mm); 查文献 [1] 表8-1,得K=0.35; H= 0.35×45 mm=14.6mm=15.75mm 考虑到压窝凸模的高度,则H调整为25mm,此凹模用于大批量生产,其厚度要考虑修磨量(5~6mm),所以凹模厚度H为25 mm。

确定凹模周界尺寸L×B

由文献[2]可得凹模最小壁厚为1.6mm。

1737544646 由文献[2]可得凹模壁厚(刃口到外边缘的距离)可按下列公式确定

C﹦(1.5~2.0)H(≥30mm)

(5.3)C﹦1.5×40 mm﹦60 mm 所以 L=160mm;

B=160 mm 如下图5.3所示

图5.3 凹模图

该模具使用定位销定位夹紧,冲压条料时,销定位挡料销进行导向挡料,由导柱导套导向向下运动,凸模和凹模完成零件的落料工序,弹性元件由于受压反弹,致使得卸料板进行推出材料,制件从下孔掉出,完成整个落料过程。模具主要有模柄、上模座、垫板、凸模固定板、凸模、凹模、卸料板、凸模固定板、螺钉、销钉、下模座、导柱、导套等。落料模具凹模周界长160mm,宽160mm,模具总长250mm,总宽215mm。模具的闭合高度是h﹦40+10+20+21+1+16+25+45﹦178mm。凸模固定板用于安装所有凸模、凹模板用于落料。采用螺钉紧固、销钉定位的方式固定。卸料板是一整块,采用四个螺钉固定。

5.2.1定位机构

为限制被冲材料的进给步距和正确地将工件安放在冲模上完成下一步的冲压工序,必须采用各种形式的定位装置。用于冲模的定位零件有导料销、导料板、挡料销、定位板、导向销、定距侧刃和侧压装置等。定位装置应避免油污、碎屑的干扰并且不与运动14

云母片冲压工艺及模具设计

机构干涉。定位精度要求较高时,要考虑粗精度和精精度两套装置,分步进行;坯料需要两个以上工序的定位时,它们的定位应该一致,如图5.2圆柱销图所示

图5.2 圆柱销图

5.2.2卸料机构

卸料机构的主要作用是把材料从凸模上卸下,有时也可作压料板用以防止材料变形,并能帮助送料导向和保护凸模等。可分为固定卸料装置、弹压卸料装置和废料切刀。固定卸料板仅起卸料作用时,凸模与卸料板的双边间隙取决于板料厚度,一般在0.2~0.5mm之间,板料薄时取小值,板料厚时去大值。当固定卸料板兼起导板作用时,一般按H7/h6配合制造,但应保证导板与凸模hi之间间隙小于凸、凹模之间的冲裁间隙,以保证凸、凹模的正确配合。固定卸料板的卸料力不大,卸料可靠。因此,当冲裁板料较厚(大于0.5mm)、卸料力较大、平直度要求不很高的冲裁件时,一般采用固定卸料装置。

弹压卸料装置既起卸料作用又起压料作用,所得冲裁质量较好,平直度较高。因此质量要求较高的冲裁件或薄板宜用弹压卸料装置。

废料切刀是在冲压过程中将废料切断成数块,避免卡箍在凸模上,切刀夹角α一般为78~80度。主要用于小型模具和切断薄废料以及大型模具和切断厚废料。

在本次模具设计中采用弹压卸料板,弹性卸料板具有卸料和压料的双重作用,多用于冲制薄料,使工件的平面度提高,卸料板的尺寸取160×160×20mm如图5.3卸料板图所示

1737544646

图5.3 卸料板图

5.2.3导向机构

对生产批量大,要求模具寿命和制件精度较高的冲模。一般应采用导向机构来保证上、下模的精确导向。上、下模导向,在凸、凹模开始闭合前或压料板接触制件前就应该充分的合上。导向机构有导柱、导套机构,侧导板与导板机构和导块机构。在此副模具中由于零件的尺寸较小,对制件的精度要求较高。所以采用后置导柱、导套和压入式模柄配合,这样的后置导柱导向精度比较平稳,精度较高,图5.4所示

图5.4 滑动导柱、导套

云母片冲压工艺及模具设计

6模具零件的设计与计算

6.1工作零件

6.1.1冲裁凸、凹模刃口尺寸计算

1、冲裁凸、凹模刃口尺寸计算原则

计算冲裁凸、凹模刃口的依据为:①冲裁变形规律,即落料件尺寸与凹模刃口尺寸相等,尺寸与凸模刃口尺寸相同。②零件的尺寸精度。③合理的间隙值。④磨损规律,如圆形凹模尺寸磨损后变大,凸模尺寸磨损后变小,间隙磨损后变大。⑤冲模的加工制造方法。因而在计算入口尺寸时应按下述原则进行。

1)保证冲出合格的零件

根据冲裁变形规律,冲孔尺寸等于凸模刃口尺寸,落料件尺寸等于凹模刃口尺寸。所以冲孔时,应以凸模为基准。落料时,以凹模为基准。基准件的尺寸应在零件的公差范围内。冲孔间隙取在凹模上,落料时间隙取在凸模上。

2)保证模具有一定的使用寿命

新模具的间隙应是最小的间隙,磨损后到最大合理间隙。考虑到冲裁时凸、凹模的磨损,在设计凸、凹模刃口尺寸时,对基准刃口尺寸在磨损后增大的,其刃口的公称尺寸应取工件尺寸公差范围内较小的数值。对基准件刃口尺寸在磨损后减小的,其人口的公称尺寸应取工件尺寸公差范围内较大的数值。这样,在凸凹模磨损到一定程度的情况下,仍能冲出合格的零件。

3)考虑冲模制造修理方便,降低成本

为使新模具的间隙值不小于最小合理间隙,一般凹模公差标注成+d,凸模公差标注成p。间隙能保证的条件下不要把制造公差定的太紧。一般模具制造精度比工件精度高2至4级。若零件没有标注公差,对于非圆形件按国家标准“非配合尺寸的公差数值”IT14精度处理。本毕业设计对未标注公差的零件尺寸采用IT14精度处理。

2、冲裁刃口尺寸计算方法

制造冲模的关键主要是控制凸、凹模刃口尺寸及其间隙合理。由于模具加工方法不同,凸、凹模刃口尺寸计算公式和公差标注也不同。凸、凹模刃口尺寸的计算方法基本上可分为两类,分别加工与配合加工,对于形状复杂或薄料的冲裁件的冲裁,为了保证凸、凹模之间的间隙值,一般采用配合加工。此方法是先加工好其中一件(凸模或凹模)

1737544646 作为基准件,然后以此基准件来加工另一件,使他们之间保持一定的间隙。这种加工方法的特点是

⑴ 模具间隙是在配制中保证的,因此不需要校核|p||d|ZmaxZmin,所以加工基准时可以适当放宽公差,使其加工容易。

⑵ 尺寸标注简单,只需在基准件上标注尺寸和公差,配制件仅标注基准尺寸并注明装配时所留间隙值。

由于形状复杂工件各部分尺寸性质不同,凸模与凹模磨损情况也不同,有变大的、有变小的、也有不变的,必须对有关尺寸进行具体分析后,按前述尺寸计算原则区别对待,查得模具冲裁间隙值Zmin0.05mm,Zmax0.08mm,查得凸、凹模制造公差:p0.007,d0.010,查得,因数x=0.75, 取0.2 校核:Zmax-Zmin=0.08-0.05=0.03mm,pd0.0070.0100.017mm 满足校核条件: pdZmaxZmin

由于该工件时落料件,落料件尺寸的测量基准是大端尺寸,故落料件尺寸取决于凹模,而凸模刃口尺寸应按凹模人口尺寸来确定,即凸模应根据凹模按凹模配做。

冲压制件的尺寸精度主要决定于模具刃口的尺寸精度,合理间隙的数值也必须靠模具的刃口尺寸来保证。因此,正确确定模具刃口尺寸极其公差,是设计冲模的主要任务之一。对于落料凸模的计算,采用配合加工的形式制作。零件图未注尺寸公差,按ST8级选取,并按照“入体原则”标注,可得零件的公差要求如下图6.1所示

图6.1 零件图

形状不规则冲裁件的凹、凸模尺寸,在使用过程中磨损后会发生变大、变小、不变18

云母片冲压工艺及模具设计

三种情况即分别对应A、B、C三类。

(1)凹模磨损后,尺寸变大的有A1 ,A2,A3,A4,A5,A6,A7。由文献[3]表2-6可知摩损系数X1=0.5,X2=0.5,X3=0.5,X4=0.75,X5=0.75,X6=0.75,X7=0.5,d(2)由公式A d=(A-x)0 ﹙Δ 为工件公差﹚

(6.1)

A1d =﹙45.5-0.56×0.5﹚ mm=mm A2d=﹙16-0.5×0.40﹚mm=mm A3d=﹙35-0.5×0.40﹚mm=mm A4d=﹙17.1-0.75×0.20﹚mm=mm A5d=﹙9.1-0.75×0.20﹚mm=mm A6d=﹙24.1-0.75×0.20﹚mm=mm A7d=﹙4.5-0.5×0.30﹚

mm=

mm ﹙2﹚凹模磨损后尺寸变小的有B1=R2.5,磨损系数x=0.5,由公式

Bd=﹙B﹢xΔ﹚0-δd

Bd1=﹙2.5﹢0.5×0.25﹚0-0.25×0.25=2.630-0.06mm ﹙3﹚凹模磨损后,尺寸不变的有C1,C2,C3,由公式Cd=Cd/2得: Cd1=15.5±0.25×0.2÷2=15.5±0.03mm Cd2=10±0.25×0.2÷2=10±0.03mm Cd3=14±0.25×0.2÷2=14±0.03mm 由上述计算可得,凹模形状及尺寸公差如下图6.2所示

图6.2 零件图

6.2)19

(1737544646 按计算尺寸和公差制造凸模后,再按凸模刃口实际尺寸并保证最小合理间隙Zmin配做凹模。

6.1.2凸模设计

凸模的长度应根据模具的具体结构确定,同时要考虑凸模的修磨量以及固定板与卸料板之间的安全距离等因素。本模具设计采用弹性卸料板,凸模的长度计算可按下式:

L=h1h2th

(6.3)

所以凸模长L=20+21+16+1+1=59mm 式中h1——凸模固定板的厚度mm;

h2——卸料板的厚度mm;

t——材料的厚度mm;

h——附加长度mm。包括凸模的修磨量,凸模进入凹模的深度(0.5~1mm),凸模固定板与卸料板之间的安全距离等。一般取h=15~20mm。,本次级进模具设计的凸模长度设计是以第六工位拉伸凸模高度h为基准,其余的凸模长度以此为基准进行必要的加长或缩短,凸模的尺寸按凹模配做。

6.2定位零件

模具上定位零件的作用是使毛坯或半成品在模具上能够置于正确的位置根据毛坯形状、尺寸及模具的结构形式,可以选用不同的定位方式。常见的定位零件有挡料销、导正销、侧刃、导料板、导料销和侧压装置等。挡料销用于限定条料送进距离、抵住条料的搭边或工作轮廓,起定位作用。挡料销有固定挡料销、活动挡料销和始用挡料销.固定挡料销分圆形与钩形两种,一般装在凹模上。圆形挡料销结构简单,制造容易,本模具采用圆形挡料销。

6.3出料零件

6.3.1卸料零件

卸料装置有固定卸料装置和弹压卸料装置两种,弹性卸料装置由卸料板、弹性元件(弹簧和橡胶)和卸料螺钉组成。弹性卸料既起卸料作用又起压料作用,所以冲裁零件质量较好,平直度较高,因此,质量要求较高的冲裁或薄板冲裁宜用弹性卸料装置。

本模具采用了弹性卸料装置,零件的厚度为1mm,考虑卸料力的问题在前面算过20

云母片冲压工艺及模具设计

了,厚度为30mm的橡胶,具体计算如下(1)确定橡胶的自由高度HIh工作h修磨

h工作t1mm,t为材料厚度

h修磨取5~10mm HI0.3156.3mm

所以H0(3.5~4)6.325.2mm(2)确定橡胶的横截面积A AF卸/P

查表6-9得P=1.05,所以A3032mm

2(3)橡胶的安装高度

H预(10%~15%)H05mm H装=H0-H预=25.2﹣5=20.0mm 在本副模具中,采用弹性卸料装置卸料,弹顶器推动推杆,推杆推动零件,然后进行卸料。如图6.3所示

图6.3 橡胶图

6.3.2顶件零件

在设计模具时,一般均采用卸料橡胶作为弹性元件,是模具中广泛使用的弹性元件,主要为弹性卸料、压料及出件装置等提供所要求的作用力和行程,采用橡胶作为弹性元件的优点是:橡胶允许承受的负荷比弹簧较大,而且安装方便、调整方便。

卸料螺钉属于标准件,在此次毕业设计冲压模具中选用。主要的选用数量如下:卸料螺钉个数n=4。

6.4 导向零件

导套、导柱都是圆柱形的,加工方便,容易装配,是模具行业应用最广泛的导向装

1737544646 置,本模具采用滑动式导柱、导套,并导柱导套配合选用H7/h6配合:

导柱为:导柱D28×150 材料为20钢 导套为:导套D38×100材料为20钢 数量为2对,热处理:渗碳加表面淬火

6.5 其他零件

1、模架选用的是:后侧导柱模架形式,导向装置在后侧,横向或纵向送料都比较方便,而且导向平稳,一般用于较小的冲模。

2、凸模固定板是将凸模固定在模座上,其平面轮廓尺寸可与凹模、卸料板外形尺寸相同但还要考虑紧固螺钉(及销钉)的位置。固定板的凸模安装孔与凸模采用过渡配合H7/m6、H7/n6,压装后将凸模端面与固定板一起磨平。凸模固定板形式有圆形和矩形两种,本模具采用矩形形式,其规格是:160mm×160mm×20mm 材料选用45钢,如图6.4所示

图6.4 凸模固定板图

3、垫板的作用是直接承受和扩散凸模传递的压力,以降低模座所受的单位压力,防止过大的冲裁力模座被局部压陷,影响模具正常工作。其厚度一般取4~12mm,规格是:160mm×160mm×10mm 材料选用T8A,热处理之后硬度达到58~62HRC,如图6.5所示

云母片冲压工艺及模具设计

图6.5垫板图

4、中小型模具一般通过模柄将模具固定在压力机滑块上。对于大型模具则用螺钉、压板直接将上模座固定在滑块上。常用的模柄有旋入式模柄、压入式模柄、凸缘模柄、槽型模柄、通用模柄、浮动模柄和推入式模柄等,本模具采用的是压入式模柄,如图6.6所示

图6.6 模柄结构

1737544646 压入式模柄的优点是,它与上模座孔连接,采用过渡配合H7/m6,并加销钉防转。这种模柄可较好地保证轴线与上模座的垂直度,使得压力中心线重合,提高了模具生产精度,提高了模具的运动精度和使用寿命。模柄支撑面应垂直于模柄轴线(垂直度不应超过0.02:100)。压入式模柄配合面的表面粗糙度Ra应达到1.6~o.8μm,模柄压入模座后,应将底面磨平。

云母片冲压工艺及模具设计

7设备选择

7.1设备吨位确定

冲压设备选用是冲压工艺设计过程中的一项重要的内容。压力机的主要技术参数是反应一台压力机的工艺能力、能加工零件的尺寸范围以及有关生产率的指标。这些参数也是模具设计中选择冲压设备、确定模具结构的重要依据。必须根据冲压工序的性质、冲压力、变形功、模具结构型式、模具的闭合高度和轮廓尺寸以及生产批量、生产成本、产品质量等诸多因素,结合单位现有设备条件进行。

7.1.1设备类型的选择

设备类型的选择要依据冲压件的生产批量、工艺方法与性质及冲压件的尺寸、形状与精度等要求来进行。

由参考文献[5],初步选择开式通用机械式压力机。

7.1.2设备规格的选择

设备规格的选择应根据冲压件的形状大小、模具尺寸及工艺变形力来进行。从模具设备上安装并能开始工作的顺序来考虑,其设备规格的主要参数有以下几个。

1)行程 压力机行程的大小,应该保证坯料的方便放进与零件的方便取出。例如:对于拉深工序所用的压力机行程,至少应保证:压力机的行程S>2h(h为零件的高度)。

2)装配模具的相关尺寸 压力机的工作台面尺寸应大于模具的平面尺寸,还应有模具安装与固定的余地,但过大的余地对工作台受力不利;工作台面中间孔的尺寸要保证漏料或顺利的安装模具顶出料装置;大吨位压力机滑块上应加工出燕尾槽,用于固定模具,而一般开式压力机滑块上有模柄孔尺寸,为两件哈夫式夹紧模柄用。

3)闭合高度 压力机的闭合高度是指滑块处于下死点时,滑块底面至工作台上表面之间的距离。压力机的闭合高度是可通过连杆丝杠在一定范围内调节的。当连杆调至最短,滑块处于下止点时,滑块底面到工作台上表面之间的距离称为压力机的最大闭合高度,相反,连杆调至最长时,两者之间的距离称为最小闭合高度。由于缩短连杆对其刚度有利,同时在修模后模具的闭合高度可能要减小,因此一般模具的闭合高度要接近于压力机的最大装模高度,在实用上为:

Hmax-H1-5mm≥H≥Hmin-H1+10mm

(7.1)

1737544646 Hmax、Hmin、H1、H分别为压力机的最大闭合高度、压力机的最小闭合高度、垫板厚度和模具闭合高度

如果模具的闭合高度H大于压力机的最大闭合高度,冲模将不能在该压力机上工作。反之,H小于压力机的最小闭合高度时,可加垫板。

设备吨位 设备吨位的选择,首先要以冲压工艺的所需要的变形力为前提。要求设备的名义压力要大于所需的变形力,而且,还要有一定的力量储备。

查参考文献[3]表1.5(开式压力机技术参数),初选择160kN的开式压力机J23-16,其技术参数如下:

公称压力:160kN

滑块行程:55mm

滑块行程次数:120次/min 最大闭合高度:220mm 封闭高度调节量:60mm 工模柄尺寸:φ40×50mm 作台尺寸:前后300mm、左右450mm 7.2设备校核

7.2.1压力行程

该模具的闭合高度有178mm,选择的压力机的滑块行程为55mm,压力机的行程满足要求。

7.2.2压力机工作台面尺寸

由于模具外形尺寸为:前后250mm,左右215mm,而压力机工作台面尺寸为:前后300mm、左右450mm,所以满足条件。主要参数均符合条件因此最终160kN的压力机。压力机的选择也是至关重要的,压力机提供的压力过大,会把冲压件冲坏,甚至损坏整一副模具和压力机在选择之后必须要校核才能使用。

云母片冲压工艺及模具设计

结 论

在落料模设计中,采用二维的画法,从对工件的分析,再对其加工工艺的选择与对比,然后选择最佳的成形工艺方案;然后进行条料宽度,再到对模具加工方法的构思和模具形状的设计以及冲压工艺的计算。通过对本套落料模的设计、计算,使我对落料模的设计流程有了更深一层的了解,包括落料件的工艺分析、工艺方案的确定、模具结构形式的选择、必要的工艺计算、主要零部件的设计、压力机型号的选择、总装图及零件图的绘制。

在设计过程中,有些数据、尺寸是一点也马虎不得,只要一个数据有误,就得全部改动,使设计难度大大的增加。在这次设计中,我感觉要完成好一次设计不仅要有扎实的专业知识,使用CAD、UG等绘图软件绘图,这就要有过硬的计算机基础,并且善于查阅资料,与别人多交流,才能完成本次设计。

通过这次自己设计冲压模具,让我对冲压模有了更加深刻的了解,使我能够综合运用各种冲压模具设计资料上的知识,懂得了在遇到难题时该如何去查找资料来解决问题,进一步巩固、加深和拓宽所学知识。同时也发现自己的不足,专业知识不够扎实,所以在今后的学习中不仅要学好应该所学的,还要尽可能多的去拓展我们在其它方面的领域,只有更好地充实自己,拓宽自己的视线,才能更好地把握和发挥自己所学过的知识,就更好地应用于实践当中。

1737544646

参考文献

[1] 郝滨海.冲压模具简明设计手册[G].北京:化学工业出版社,2005.1 [2] 杨玉杰.钣金入门捷径[M].北京机械工业出版社,2005.4 [3] 熊志卿.冲压工艺与模具设计.高等教育出版社,2011.6

[4] 高锦张.塑性成形工艺与模具设计[M].北京:机械工业出版社,2006.5 [5] 史铁梁.模具设计指导[M].北京:机械工业出版社,2003.8 [6] 钟翔山.冲压模具精选88例设计分析.化学工业出版社,2010.1 [7] 李志刚.模具大典[G].江西科学技术出版社,2003.1 [8] 高雪强.机械制图.机械工业出版社,2008.8

[9] 梁炳文.实用板金冲压图集[M].第2集.北京:机械工业出版社,1999.8 [10]杨玉英.实用冲压工艺及模具设计手册[M].北京:机械工业出版社,2004.7 [11]王新华.冲模设计与制造实用计算手册[M].北京:机械工业出版社,2003.7 [12]李名望.冲压模具设计与制造技术指南.化学工业出版社,2008.6

[13]林承全.胡绍平.冲压模具课程设计指导与范例.北京:化学工业出版社,2008.1 [14]Sang B.Park.An expert system of progressive die design for electron gun grid parts.Journal of Materials Processing Technology 88(1999)216–221 [15]J.Magee, L.J.De Vin, Process planning for laser-assisted forming, Journal of Materials Processing Technology 120(2002):322-326 [16]A.T.Male, Y.W.Chen, C.Pan, Y.M.Zhang, Rapid prototyping of sheet metal components by plasma-jet forming, Journal of Materials Processing Technology 135(2003):340-346

云母片冲压工艺及模具设计

致谢

本论文(设计)是在指导老师悉心教导、严格要求和大力支持下完成的。从论文的选题、方案论证到论文的撰写和修改过程中,都倾注了雷敏娟老师的大量心血。

通过对本套落料模的设计、计算,使我对落料模的设计流程有了更深一层的了解,包括落料件的工艺分析、工艺方案的确定、模具结构形式的选择、必要的工艺计算、主要零部件的设计、压力机型号的选择、总装图及零件图的绘制。

在设计过程中,有些数据、尺寸是一点也马虎不得,只要一个数据有误,就得全部改动,使设计难度大大的增加。在这次设计中,我感觉要完成好一次设计不仅要有扎实的专业知识,还要有过硬的计算机基础作保障,因为其中涉及很多绘图的地方,并且善于查阅资料,与别人多交流,才能取长补短,很好的完成这次设计。

所以说我们今后的学习中不仅要学好应该所学的,还要尽可能多的去拓展我们在其它方面的领域,只有更好地充实自己,拓宽自己的视线,才能更好地把握和发挥自己所学过的知识,就更好地应用于实践当中。

第一次进行冲压模具设计,由于理论知识粗浅和实际经验有限,难免存在不足、错误的地方,敬请批评指正。在设计过程中参考了部分相关的文献资料,在此对其作者和对在设计过程中提供帮助与支持的同学们表示由衷的感谢。

同时,对我们设计过程中的指导老师雷敏娟老师表示衷心的感谢,感谢她对此次设计过程中提供大量指导性意见和建议。

下载【汽车工艺】背门内板冲压数值模拟及工艺改进word格式文档
下载【汽车工艺】背门内板冲压数值模拟及工艺改进.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《冲压工艺及模具设计》课程设计任务书

    《冲压工艺及模具设计》课程设计 任 务 书 南京工程学院编 江苏省高等教育自学考试委员会办公室 二〇一二年八月 冲压工艺及模具课程设计任务书 一、课程性质及其设置目的与......

    汽车密封件装配工艺分析及改进问题

    汽车密封件装配工艺分析及改进问题 关于汽车密封件装配工艺的改进问题有哪些?东晟密封件告诉您过度施压汽车密封件(油封)骨架变形,导致密封失效;油封没见压装的干涉,改进措施是合......

    冲压工艺及模具设计六[范文大全]

    第六章 冲压工艺规程内容简介: 掌握冲压工艺过程设计步骤、一般冲压工艺方案的确定以及相应的模具结构设计。 章节内容: 6.1 冲压工艺过程设计步骤 6.2 冲压工艺方案的确定......

    冲压工艺及模具设计简答题(共5篇)

    1冲裁变形过程:弹性变形阶段;塑形变形阶段;断裂分离阶段 2板料塑性弯曲的变形特点:应变中性层位置的内移;变形区内板料的变薄和增长;变形区板料剖面的畸变翘曲和破裂。 3相对弯曲......

    前板冲压工艺分析及连续模式设计毕业实习报告

    实习报告 1.实习概况 1.1实习目的和任务 毕业实习是土木工程专业教学计划的重要组成部分,是贯彻党的教育方针,加强理论与实践相结合的重要的实践性教学环节。通过实习,使学生能......

    冲压工艺及模具设计实验教案(五篇材料)

    《冲压工艺及模具设计》实验教案 适用专业:材料成型及控制工程实验室: 实验教师: 材料成型控制实验室毕庆霞 实验一 冲模拆装实验 一、实验目的 1、了解常用冲压模具的结构及......

    五金冲压工艺及模具简介培训试题

    五金冲压工艺及模具简介培训试题 部门:姓名:工号: 一、 填空题:(每空1分) 1. 冲压加工就是在_______下,利用装在压力机上的______对材料施加______,使材料产生局部或整体______变形......

    冲压工艺及模具设计 课程教案(第9讲)

    冲压工艺及模具设计 课程教案(第9讲) 授课类型理论课 授课时间 2 节 授课题目(教学章节或主题): 第三章 弯曲工艺及模具设计 5、弯曲力矩与弯曲力的计算; 6、影响回弹角的因素;......