有机物溶解度解读

时间:2019-05-15 01:15:48下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《有机物溶解度解读》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《有机物溶解度解读》。

第一篇:有机物溶解度解读

A 物性类:

1、难溶于水且比水轻: 烃、高级脂肪酸、酯(油脂 难溶于水且比水重: 氯仿、四氯化碳、溴苯、硝基苯、TNT 等

2、常温下呈气态:C<4烃、一氯甲烷、甲醛

常温下呈固态:石蜡、冰醋酸、苯酚晶体、硬脂酸、软脂酸、脂肪、TNT 等

3、属于混和物: 天然气、焦炉气、汽油、煤油、福尔马林、高分子化合物、裂解气、石油液化气、天然油脂(豆油、脂肪等

4、属物理变化或化学变化: 石油分馏、煤的干馏、重油裂解、萘的升华、油脂氢化(硬化 等

5、两种有机物不论以何种比例混和,只要总质量一定,当含 C%相同时生成 CO2量一定;含 H%相同时生 成 H2O 量一定。

最简式相同的物质: 烯烃同系物之间、同分异构体之间、苯和乙炔 甲醛、乙酸和甲酸甲酯

乙醛、丁酸、乙酸乙酯、甲酸丙酯、丙酸甲酯 6.不同类有机物之间有分子量相等分子式不同:

(1烷烃与比它少一个 C 的饱和一元醛: 如乙烷和甲醛、丙烷和乙醛

(2脂肪烃和芳香烃(氢原子数在于 20个以上 如 C9H20和 C10H8、C10H22和 C11H10(即甲基萘(3饱和一元醇与比它少一个 C 的饱和一元酸: 如乙醇和甲酸、丙醇和乙酸 B.化性类: 7.1体积烯烃和饱和一元醇蒸气完全燃烧时需要 O2体积为 1.5n 8.耗氧量问题:物质的量相等的烃完全燃烧时,耗氧量的多少决定于(X+Y/4数值 质量相同的烃燃烧时,耗氧量的多少,决定于 CHy 中的数值, y 值越大,耗氧量越多,反之越少

质量相同的烃燃烧时,生成 CO2量决定于 CxH 中的值, x 值越大,生 成 CO2量越多,反之越少 9.实验问题:(1需要用到温度计的实验: 苯的硝化、石油分馏、乙醇脱水、乙酸乙酯水解(2需要用水浴加热的实验: 银镜反应、制硝基苯、制酚醛树脂、乙酸乙酯水解(3导管起冷凝回流作用的实验: 制溴苯、制硝基苯、制酚醛树脂(4导管口接近液面但不插入的实验: 制溴苯、制乙酸乙酯 10.鉴别有机物时常用试剂:

(1溴水:烯炔烃、二烯烃、苯酚、天然橡胶、油酸、油脂、SO2(2酸性高锰酸钾溶液:烯炔烃、二烯烃、苯酚、天然橡胶、油酸、油脂、含醛基物质

(3钠:醇、苯酚、低级羧酸(4氢氧化钠:苯酚、羧酸、酯

(5银氨溶液或新制氢氧化铜:含醛基物质、低级羧酸(6氯化铁溶液:苯酚、KSCN 溶液、KI 溶液、氢硫酸

11.烃及含氧衍生物完全燃烧产物: VCO2:VH2O == 1:1 烯烃、饱和一元醛、饱和一元酸、饱和一元酯 VCO2:VH2O == 2:1 乙炔、苯、苯酚

VCO2:VH2O == 1:2 甲烷、甲醇、尿素 CO(NH22 12.在 CxHy 中,烷烃的 x/y<1/2,炔烃、二烯烃或苯及同系物的 x/y>1/2,只要再能与题给条件建立方程关 系,得出 x 的唯一正整数解,不需分子量即可求出分子式。

13.有机反应常伴有副反应,注意条件:(1乙醇在 140℃、170℃时的两种脱水方式

(2有水生成的反应都需浓硫酸:苯的硝化、醇脱水、酯化反应(3与 H2加成,必需催化剂、加热:烯炔烃加氢、醛加氢(4需催化剂、加热、加压的只有 2个反应(5醇有催化氧化产物视-OH 位置而定

(6酯类水解常用碱液作催化剂 , 但产物为醇和羧酸盐

第二篇:有机物极性及溶解性解读

课外毒物http://lk8459.upweb.net 有机物极性及溶解性的教学讨论

有机化合物大多难溶于水,易溶于汽油、苯、酒精等有机溶剂。原因何在? 中学课本、大学课本均对此进行了解释。尽管措词不同,但中心内容不外乎是:有机化合物一般是非极性或弱极性的,它们难溶于极性较强的水,易溶于非极性的汽油或弱极性的酒精等有机溶剂。汽油的极性在课本中均未做详细说明,故而在教学中常常做如下解释:所有的烷烃,由于其中的O键的极性极小,以及结构是对称的,所以其分子的偶极矩为零,它是一非极性分子。烷烃易溶于非极性溶剂,如碳氢化合物、四氯化碳等。以烷烃为主要成分的汽油也就不具有极性了。确切而言,上述说法是不够严格的。

我们知道,分子的极性(永久烷极)是由其中正、负电荷的“重心”是否重合所引起的。根据其分子在空间是否绝对对称来判定极性,化学键极性的向量和——弱极矩μ则是其极性大小的客观标度.常见烷烃中,CH4、C2H6分子无极性,C3H8是折线型分子,键的极性不能相互完全抵消,其μ≠为0.084D。至于其它不含支链的烷烃,分子中碳原子数为奇数时,一定不完全对称而具有极性;分子中碳原子数为偶数时,仅当碳原子为处于同一平面的锯齿状排布的反交叉式时,分子中键的极性才能相互完全抵消,偶极矩为零,但由于分子中C—C键可以旋转,烷烃分子(除CH4)具有许多构象,而上述极规则的锯齿状反交叉式仅是其无数构象“平衡混合物”中的一种,所以,从整体来说,除CH4、C2H6外,不带支链的烷烃均有极性。带有支链的烷烃,也仅有CH4、C2H6等分子中H原子被—CH3完全取代后的产物尽其用,2—二甲基丙烷、2,2,3,3—四甲基丁烷等少数分子不显极性,余者绝大多数都有一定的极性。由于烷烃中碳原子均以SP3杂化方式成键,键的极性很小,加上其分子中化学键的键角均接近于109°28′,有较好的对称性(但非绝对对称)故分子的极性很弱,其偶极矩一般小于0.1D.烷烃中,乙烯分子无极性,丙烯分子,1—丁烯分子均不以双键对称,μ分别为0.336D、0.34D。2—丁烷,顺—2—丁烯的μ=0.33D,反—2—丁烯的偶极矩为零,即仅以C=C对称的反式烯烃分子偶极矩为零(当分子中C原子数≥6时,由于C-CO键旋转,产生不同的构象,有可能引起μ的变化),含奇数碳原子的烯径不可能以C=C绝对对称,故分子均有极性。

二烯烃中,丙二烯(通常不能稳定存在)、1、3一丁二烯分子无极性,1、2一丁二烯分子μ为0.408D,2—甲基一1,3—丁二烯(异戊二烯)分子也为极性分子。炔烃中,乙炔、2—丁炔中C原子均在一条直线上,分子以C—C对称,无极性,但丙炔、1—丁炔分子不对称,其极性较大,μ分 课外毒物http://lk8459.upweb.net 别为0.78D和0.80D。

芳香烃中,苯无极性,甲苯、乙苯有极性,μ分别为0.36D、0.59D;二甲苯中除对一二甲苯外的另两种同分异构体分子不对称,为极性分子,显而易见,三甲苯中之间一三甲苯分子的μ为零,联苯、萘的分子也无极性。综上所述,烃的分子有无极性仍是取决于各自的对称程度是否将键的极性完全抵消。当某分子并不因其中C—CO键的旋转而引起碳干排布不同的构象时,构型则绝对对称,分子无极性。将其分子中H原子全部用——CH3所替代,分子的偶极矩仍为零。作为以烷烃为主要成分的汽油、石蜡,其中可能含有非极性的分子构象,但从整体来说,同绝大多数烃的分子一样,它们也是具有极性的,只是由于其中C—H键的极性极弱,其偶极矩极小。烃类的偶极矩一般小于1D,在不饱和烃中尚有以Sp2、Sp杂化方式成键的碳原子,键的极性及分子的极性均较相应的饱和烃强,炔烃的极性较烯烃强。至于烃的衍生物,常见的除四卤化碳,六卤乙烷、四卤乙烷、对一二卤苯、对一二硝基苯、间一三卤苯等非极性的烃分子中氢原子或—CH3被其它原子或原子团全部或部分以完全对称的方式所取代的产物等少数物质外,多数都具有极性,分子的偶极矩较相应的烃大,一般大于1D。

由此可见,有机物的分子除少数为非极性分子外,大多数是具有极性的。其偶极矩不小还比水大,如一氯甲烷为1.87D、一氯乙烷为2.05D、溴苯为

1.70D、乙醛为2.69D、丙酮为2.88D、硝基酸为4.22D、乙醇为16.9D,有机物的极性并不都很弱。当然,与无机物相比较,有机物是弱极性,作为常见的有机物之一的汽油,尽管其主要成分的偶极矩不大,在教学中往往将汽油及烷烃等视为非极性的。但烷烃等有无极性是个是非问题,在教学中尤其在师范除校化学专业的教学中,不宜进行如此处理而不加任何说明。否则,容易引起学生错觉,往往不加考虑地认为烷及烃的分子都绝对对称的、均无极性,而将问题简单化、绝对化、对本身的业务进修及今后的教学工作都会带来一些不必要的麻烦。所以,不管因为什么原因在教学中至少都必须明确说明有机物的弱极性与非极性的前提是与无机物整体相比较,汽油等物质因主要成分的极性很弱,通常视为非极性。CH3CI、硝基苯等极性较强,为何它们不溶于水?有些教科书上将相似相溶规律中的相似仅提及溶质、溶剂的极性是很不够的。尽管溶质溶剂极性的相似是其能否相互溶解的一个重要因素,但并不是唯一的。物质的溶解性还取决于它们分子结构、分子间作用力的类型与大小的相似。例如,水和乙醇可以无限制的相互混溶、煤油与乙醇只是有限度地相互溶解,而水和煤油几乎完全不相溶。对于这些事实,如果只从分子极性的角度来考虑是难以令人满意的,但我们可以从分子结构上得到解释。水和乙醇的分子都是由一个一OH与一个小的原子或原子团结合而成,其结构很相似,分子间都能形成氢键,因此能无限制地相互相混。无疑,随着醇分子中烃基的增大,它与水 课外毒物http://lk8459.upweb.net

分子结构上的相似程度将降低,醇在水中的溶解度也将随之减小。煤油主要是分子中含有8—16个碳原子的烷烃的混和物,因乙醇分子中含有一个烷烃的烃基,结构上有相似之处,它们能互溶,但乙醇分子中含有一个跟烃基毫不相干的—OH。因此,它们的相互溶解是有一个的限度的。水的分子结构与煤油毫无相似之处,煤油不溶于水、极性较强的CH3CI、溴苯、硝基苯不溶于水也就不奇怪了。至于低分子量的羧、酸、醇、醛、酮等易溶于水,则可以从其分子的极性及其分子与水分子能形成氢键得到解释。由此可见,对于相似相溶这条经验规则的应用,我们应从溶质、溶剂的分子结构、分子间作用力的类型和大小及其偶极矩等多个方面来考虑,忽视哪一点,都可能带来一些不必要的疑惑,这无论在中学还是大学的教学中都应引起足够的重视。

附:有机物在水中的溶解性规律

一、相似相溶原理

1.极性溶剂(如水)易溶解极性物质(离子晶体、分子晶体中的极性物质如强酸等);

2.非极性溶剂(如苯、汽油、四氯化碳、酒精等)能溶解非极性物质(大多数有机物、Br2、I2等);

3.含有相同官能团的物质互溶,如水中含羟基(—OH)能溶解含有羟基的醇、酚、羧酸。

二、有机物的溶解性与官能团的溶解性

1.官能团的溶解性:

(1)易溶于水的官能团(即亲水基团)有—OH、—CHO、—COOH、—NH2。(2)难溶于水的官能团(即憎水基团)有:所有的烃基(—CnH2n+

1、—CH=CH2、—C6H5等)、卤原子(—X)、硝基(—NO2)等。2.分子中亲水基团与憎水基团的比例影响物质的溶解性:

(1)当官能团的个数相同时,随着烃基(憎水基团)碳原子数目的增大,溶解性逐渐降低;

例如,溶解性:CH3OH>C2H5OH>C3H7OH>„„,一般地,碳原子个数大于5的醇难溶于水。

(2)当烃基中碳原子数相同时,亲水基团的个数越多,物质的溶解性越大; 例如,溶解性:CH3CH2CH2OH

例如,常见的微溶于水的物质有:苯酚 C6H5—OH、苯胺 C6H5—NH2、苯甲酸 C6H5—COOH、正戊醇

CH3CH2CH2CH2CH2—OH(上述物质的结构简式中“—”左边的为憎水基团,右边的为亲水基团);乙酸乙酯

CH3COOCH2CH3(其中—CH3和—CH2CH3为憎水基团,—COO—为亲水基团)。

(4)由两种憎水基团组成的物质,一定难溶于水。

例如,卤代烃 R-X、硝基化合物R-NO2,由于其中的烃基R—、卤原子—X和硝基—NO2均为憎水基团,故均难溶于水。

三、液态有机物的密度

1.难溶于水,且密度小于水的有机物

例如,液态烃(乙烷、乙烯、苯、苯的同系物„„),液态酯(除乙酸乙酯和甲酸甲酯是可以溶于水外如硬脂酸甘油酯„„),一氯卤代烷烃(1-氯乙烷„„),石油产品(汽油、煤油、油脂„„)

注:汽油产品分为直馏汽油和裂化汽油(含不饱和烃)。2.难溶于水,且密度大于水的有机物

例如:四氯化碳、氯仿、溴苯、二硫化碳

第三篇:《溶解度》说课稿

《溶解度》说课稿

临夏市第一中学 石振兴

尊敬的各位领导,同仁们大家好!今天我说课的题目是《溶解度》,根据化学课程标准“化学源于生活,实践于生活”的理念,对于本节课,我将以“教什么,怎么教和为什么这样教的理念”,从教材分析、学情分析、教学目标等方面来对本节课进行如下分设计。

一、教材分析

本课题分为饱和溶液和溶解度两部分,以学生亲身参与的两个“活动与探究”和两个“讨论”为线索组织教学过程。两个活动后通过讨论引入溶解度的概念,再练习巩固和应用溶解度概念,最后通过讨论引出气体溶解度的概念。

学生虽然对于一般物质溶解后形成溶液的现象比较熟悉,但是从定量的角度去认识物质的溶解性以及溶液的种种状态却很少思考。上一课题从定性的角度研究了溶液,本课题将从定量的角度来研究物质在一定量的水中溶解的限度问题。

基于以上分析我认为本课第二课时的重点、难点是: 【重点、难点】

1.重点了解溶解度的含义,探究溶解度曲线。2.难点溶解度的概念的认识。

二、学情分析

学生已学了溶液的形成,虽然对于一般物质溶解后形成溶液的现象比较熟悉,但是从定量的角度去认识物质的溶解性以及溶液的种种

状态却很少思考。对生活中的现象虽熟悉却不一定会解释,如家里冲糖水时,加到一定量时就不再溶了等等,所以本节课通过一些生活中实验引入本课的内容,加深对概念的理解,激发学生的学习热情。

三、教学目标

基于以上分析,本节课要达到以下“三维目标”: 【知识和技能】

1、通过假设实验探究,讨论分析溶解度的概念。

2、了解物质溶解度的涵义并会运用知识解释生活中现象 【过程与方法】

初步培养活动与探究的一般程序:提出问题→建立假设→设计方案→分析实验→比较、归纳→得出结论。

【情感态度与价值观】

通过探究溶解度曲线,逐步建立用辩证的、发展的思想观点来看待事物的变化,引导学生体验数据处理过程,并培养学生互相协作、友好相处的健康心态。

四、教学方法

为了达成以上教学目标,我准备采用“启发——再现,引导——探究,归纳——总结”的教学方法。

五、教学过程

下面谈谈授课过程的设计,授课过程分为五个环节: <引入课题> 我先设计了课前小测验:

什么溶液是饱和溶液? 什么溶液是不饱和溶液? 它们之间的转化是怎样的? 如何比较两种物质的溶解能力大小? 并根据假设的实验是否合理,引导同学如果要比较多种物质的溶解能力,仅用“大”或“小”不能分得清,由此总结得出溶解度概念。

创设这些情境与问题是为了把同学们引入角色,通过思考及回答形成一个良好的学习氛围,尤其对两个联系生活实际似简单又一下说不清的问题,激发了同学产生对知识要求了解的心理需求,这时引入课题《溶解度》的概念自然是水到渠成。

<步入重点> 在老师讲述溶解度涵义后,我设计了两个练习:使学生对书本上的定义有了完整、精确的理解。

接着以表格的形式列出来了物质在不同温度是的溶解度。然后,探究溶解度曲线——包括绘制溶解度曲线、分析和应用溶解度曲线、比较溶解度数据表和溶解度曲线的区别,同学们展开了讨论,从分析的启迪中逐步对溶解度涵义及溶解度曲线有了进一步认识,使这个过去一直用数据来解释的问题变得让人更容易理解与接受。

这一教学过程是以分析为主要线索,以教师的设疑、演示、点拔和学生的观察、分析、释疑关联互动为主要教学手段。为启发式教学创设了成功的前提,加上具有坡度的思考性题目与之相结合,诱导和激发了同学思维的积极性。

<突破难点> 为了突破这个难点,在分析溶解度概念时,我展示了一些数据表并设计了关于NaCl、KCl两道练习题,通过学生自己动手思考、讨论,很快加深了对溶解度涵义及溶解度曲线有了进一步认识。最后,简单介绍了气体的溶解度,并结合有关汽水的讨论,说明气体的溶解度与压强和温度密切相关。

六、教学反思

通过本节课教学设计,我体会到启发—研究教学模式的实施是当前形势下素质教育对课堂教学的要求,它打破了传统教育中“一言堂”的被动局面,倡导一种以人为本、注重身心与智力全面发展的素质教育观。本课中启发—研究教学模式在实施策略方面始终围绕如何引导学生主动参与,从培养学生观察实验、分析问题到学会从一个现象概括出对一类问题的认识与理解,无不体现了培养人的思维素质和追求新知识的科学精神。

第四篇:溶解度教案

溶解度教案

教学目标 知识目标:

1.使学生理解溶解度的概念,了解温度对一些固体物质溶解度的影响;了解溶解度曲线的意义;

2.使学生对气体溶解度受温度、压强的影响关系,有一个大致的印象

3.使学生掌握有关溶解度的几种基本计算

能力目标:

会利用溶解度曲线查找常见物质在一定温度下的溶解度和溶解度随温度变化的趋势。情感目标:

通过对不同物质溶解度的比较和外界条件对物质溶解度的影响的分析,体会事物内外因关系和质变与量变辩证关

教学建议

关于溶解度曲线的意义

固体物质的溶解度随温度变化有两种表示方法,一种是列表法,如教材中表7-1;另一种是坐标法,即在直角坐标系上画出坐标曲线,如课本图7-1。可以先向学生说明溶解度曲线绘制原理(不要求学生绘制),再举例讲解如何应用这种曲线图。固体的溶解度曲线可以表示如下几种关系:

(1)同一物质在不同温度时的不同溶解度的数值;

(2)不同物质在同一温度时的溶解度数值;(3)物质的溶解度受温度变化影响的大小;(4)比较某一温度下各种物质溶解度的大小等。

进行这些分析之后,教师还可以就某物质在曲线上的任一点,请同学回答其表示的含义,来验证学生是否已了解溶解度曲线。例如,横坐标是60,纵坐标是110的点表示什么含义。学生应该回答(1)代表60℃时硝酸钾在水中的溶解度是110克;(2)代表60℃时,100克水里,达到饱和时可溶解硝酸钾100克等等。当然,可以提出教材中表7-l中未列出的温度,例如让学生说出35℃时硝酸钾的溶解度是多少,这时学生可以利用溶解度曲线顺利地作出回答,使学生体会到曲线图在这方面所表现的特点。关于溶解性和溶解度的区别与联系

物质的溶解性与物质的溶解度之间,既有联系,又有区别。为了使学生深刻理解溶解度的概念,就必须先了解物质溶解性的知识,在教学中要帮助学生区分这两个概念。物质的溶解性,即物质溶解能力的大小。这种能力既取决于溶质的本性,又取决于它跟溶剂之间的关系。不论其原因或影响物质溶解能力的因素有多么复杂,都可以简单地理解为这是物质本身的一种属性。例如食盐很容易溶解在水里,却很难溶解在汽油里;油脂很容易溶解于汽油,但很难溶解于水等等。食盐、油脂的这种性质,是它们本身所固有的一种属性,都可以用溶解性这个概念来概括。然而溶解度则不同,它是按照人们规定的标准,来衡量物质溶解性的一把“尺子”。在同一规定条件下,不同溶质,在同一溶剂中所能溶解的不同数量,就在客观上反映了它们溶解性的差别。因此,溶解度的概念既包含了物质溶解性的含义,又进一步反映了在规定条件下的具体数量,是溶解性的具体化、量化,是为定量研究各物质的溶解性而作的一种规定后形成的概念。关于气体溶解度的教学建议

对于气体溶质溶解度的表示方法有三点应向学生做常识性介绍:

(1)定基地描述物质溶解性时,不论气体还是固体在本质上是一致的,只是规定的条件和表示方法上有所不同:固体溶解度用质量(克)表示,规定溶剂的量是100克;气体溶解度则是用体积表示,规定溶剂的量是1个体积(一般以升为单位)能溶解若干体积气体,而其它条件如达到饱和、一定温度等都是一样的。

2)所以规定不同标准,是因为气体的体积容易测量、而质量不易称量,因此就用体积来表示。

(3)由于气体溶解度受压强的影响很大,所以规定其溶解度时,对于压强作出规定—101千帕。这一点可以用打开汽水瓶盖后,放出二氧化碳气体所形成的泡沫为例来加以说明。气体溶解度在实际测定时比较复杂,非标准状况下的数据,还应该换算成标准状况下的值。初中学生很难掌握,因此对这部分内容不必过多要求,只要知道如何表示,就可以了。

第五篇:溶解度化学教案

知识目标:

1.使学生理解溶解度的概念,了解温度对一些固体物质溶解度的影响;了解溶解度曲线的意义;

2.使学生对气体溶解度受温度、压强的影响关系,有一个大致的印象;

3.使学生掌握有关溶解度的几种基本计算。能力目标:

会利用溶解度曲线查找常见物质在一定温度下的溶解度和溶解度随温度变化的趋势。情感目标:

通过对不同物质溶解度的比较和外界条件对物质溶解度的影响的分析,体会事物内外因关系和质变与量变辩证关系。

教学建议

关于溶解度曲线的意义

固体物质的溶解度随温度变化有两种表示方法,一种是列表法,如教材中表7-1;另一种是坐标法,即在直角坐标系上画出坐标曲线,如课本图7-1。可以先向学生说明溶解度曲线绘制原理(不要求学生绘制),再举例讲解如何应用这种曲线图。

固体的溶解度曲线可以表示如下几种关系:

(1)同一物质在不同温度时的不同溶解度的数值;

(2)不同物质在同一温度时的溶解度数值;

(3)物质的溶解度受温度变化影响的大小;

(4)比较某一温度下各种物质溶解度的大小等。

进行这些分析之后,教师还可以就某物质在曲线上的任一点,请同学回答其表示的含义,来验证学生是否已了解溶解度曲线。例如,横坐标是60,纵坐标是110的点表示什么含义。学生应该回答(1)代表60℃时硝酸钾在水中的溶解度是110克;(2)代表60℃时,100克水里,达到饱和时可溶解硝酸钾100克等等。当然,可以提出教材中表7-l中未列出的温度,例如让学生说出35℃时硝酸钾的溶解度是多少,这时学生可以利用溶解度曲线顺利地作出回答,使学生体会到曲线图在这方面所表现的特点。关于溶解性和溶解度的区别与联系

物质的溶解性与物质的溶解度之间,既有联系,又有区别。为了使学生深刻理解溶解度的概念,就必须先了解物质溶解性的知识,在教学中要帮助学生区分这两个概念。

物质的溶解性,即物质溶解能力的大小。这种能力既取决于溶质的本性,又取决于它跟溶剂之间的关系。不论其原因或影响物质溶解能力的因素有多么复杂,都可以简单地理解为这是物质本身的一种属性。例如食盐很容易溶解在水里,却很难溶解在汽油里;油脂很容易溶解于汽油,但很难溶解于水等等。食盐、油脂的这种性质,是它们本身所固有的一种属性,都可以用溶解性这个概念来概括。然而溶解度则不同,它是按照人们规定的标准,来衡量物质溶解性的一把“尺子”。在同一规定条件下,不同溶质,在同一溶剂中所能溶解的不同数量,就在客观上反映了它们溶解性的差别。因此,溶解度的概念既包含了物质溶解性的含义,又进一步反映了在规定条件下的具体数量,是溶解性的具体化、量化,是为定量研究各物质的溶解性而作的一种规定后形成的概念。

关于气体溶解度的教学建议

对于气体溶质溶解度的表示方法有三点应向学生做常识性介绍:

(1)定基地描述物质溶解性时,不论气体还是固体在本质上是一致的,只是规定的条件和表示方法上有所不同:固体溶解度用质量(克)表示,规定溶剂的量是100克;气体溶解度则是用体积表示,规定溶剂的量是1个体积(一般以升为单位)能溶解若干体积气体,而其它条件如达到饱和、一定温度等都是一样的。

(2)所以规定不同标准,是因为气体的体积容易测量、而质量不易称量,因此就用体积来表示。

(3)由于气体溶解度受压强的影响很大,所以规定其溶解度时,对于压强作出规定—101千帕。这一点可以用打开汽水瓶盖后,放出二氧化碳气体所形成的泡沫为例来加以说明。

气体溶解度在实际测定时比较复杂,非标准状况下的数据,还应该换算成标准状况下的值。初中学生很难掌握,因此对这部分内容不必过多要求,只要知道如何表示,就可以了。关于溶解度的教学建议

1.对学生来说,物质在水中溶解是一件非常熟悉的事情。但是对学生而言,溶解度是一个全新的概念,它对表征物质溶解性的大小的规定不像质量分数那样容易理解,因此溶解度观念的建立时教学中的一个难点。在教学中宜从学生的现有经验出发,可以从质量分数的概念出发去建立溶解度的概念。对于溶解度概念的表述应加以适当的分析,以帮助学生理解和记忆概念。

2.要注意实验在学生形成概念时的重要作用。本节安排了若干实验,可以有教师边讲边演示,有条件的学校也可以安排学生亲自动手做。

3.注意发挥学生的学习主动性,引导合组织他们积极参与学习过程。本节在教学的编排上特意设置了以学生活动为主的内容,具有活动性和开放性相结合的特点,要精心组织好相关活动,有条件的学校根据学生的设计、论证,应对学生设计的方案予以实施。

对具体活动的建议如下:

[实验4-9]:(1)取过量硝酸钾和一定量的水,制成饱和溶液。然后按下面两种思路进行操作,第一,设法将饱和溶液除去,测定剩下的未溶固体;第二,设法将固体除去,在将饱和溶液蒸干。至于如何除去饱和溶液、如何除去未溶固体,则完全由学生取设计。建议先发散,再归纳、再评价、再实施。(2)本实验关键问题在于温度的控制,教师应根据溶解度曲线设定要求学生测定的温度。为了获得较稳定的温度值,建议用水浴的方法,水浴中的水量可适当大一些。

根据相关数据用描点法画出硝酸钾、氯化钠的溶解度曲线。这是另一种学生活动方式。数据点在图中后所连成的曲线可能不够平滑,教师应讲明可能的原因,并说明处理方法。关于溶解度计算的教学建议

关于溶解度的计算,教材只列举了三种类型。若没溶解度为r,饱和溶液为a,溶剂量为b,溶质量为c(均以克为单位),三种类型是:

(1)已知b、c 求r(2)已知r、a 求b或c(3)已知r、c 求b 这几种类型的计算都统一于固体溶解度的概念,即在一定温度下,饱和溶液有以下关系式:

教学中可以通过对三种类型例题的分析,归纳出上述关系式,以便学生在理解的基础上记忆。

为了提高学生的审题能力和解题的规范性,也可以按下列格式要求,例如课本中例2:

解:设1000克氯化铵饱和溶液里含氯化铵的质量为x。

温度 饱和溶液 = 溶质 + 溶剂

20℃ 137.2克 37.2克 100克

1000克 x

需水的质量为:1000克-271克=729克

答:20℃时,配制1000克氯化铵饱和溶液需氯化铵271克,水729克。

教学设计方案1 重点:溶解度的概念,固体溶解度曲线的含义与应用 难点:溶解度的概念,固体溶解度曲线的含义与应用 教学过程:

[引言]通过前面的学习我们已经知道,酒精可以任意比例与水互溶,那么,在一定温度下,一定量的溶剂所能溶解的溶质的质量有没有一个限度呢?我们用什么方法来表示这种限度呢?

[板书]第三节 溶解度

[思考]

从日常生活中寻找实例,说明气体在水中溶解性受哪些外界条件的影响,这些条件对气体的溶解性产生怎样的影响。

[板书]

一、溶解度

[讲解]溶解性是物质的一个重要性质,怎样才能比较精确地表示一种物质在水中溶解性的大小呢?

[板书]1.固体物质的溶解度

在一定温度下,某固态物质在100g溶剂里达到饱和状态时所溶解的质量,叫做这种物质在这种溶剂里的溶解度。

[布置思考题]理解溶解度概念时应注意哪些问题?

[板书]关键词:一定温度(指条件);100g溶剂;饱和溶液;克(单位)。

[布置讨论题]“20℃时食盐溶解度是36g”的含义是什么?

[板书]2.溶解度曲线

[讲解]在平面直角坐标系中溶解度的大小与温度有关。可以以横坐标表示温度,以纵坐标表示溶解度,画出物质的溶解度随温度变化的曲线,这种曲线叫做溶解度曲线。

[板书]溶解度随温度变化的曲线叫做溶解度曲线。[展示教学挂图]

下载有机物溶解度解读word格式文档
下载有机物溶解度解读.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    有机物练习

    有机物练习O1.(16分)已知:OHCCH+CH CHO+ CHO 以乙炔为原料,通过下图所示步骤能合成有机物中间体E(转化过程中的反应条件及部分产物已略去)。HC4102OOH)E(H其中,A、B、C、D分别代表一种......

    初三化学教案 溶解度

    第三节溶解度 (2课时) 一.知识教学点 1.固体溶解度的概念 2.溶解度曲线 3.气体溶解度 二.重、难、疑点及解决办法 1.重点:(1)建立溶解度的概念(2)了解溶解度曲线 2.难点:正确了......

    初三化学教案--溶解度

    初三化学教案--溶解度 化学教学案 课题 课题2 溶解度 课型 新授课 教学目标 1. 了解饱和溶液的概念 2. 溶解度的概念 3. 根据溶解度在日常生活中的应用,培养学生理论联系实际的......

    《溶解度》教学反思

    《溶解度》教学反思 《溶解度》教学反思 溶解度本节课以了解“饱和溶液涵义”为中心目标,以活动与探究为载体,以问题为主线,围绕一定温度、一定量溶剂“两个要素”大胆取舍,进行......

    溶解度 教案(二)

    溶解度 教案(三) 一、教学目标 1.理解固体物质溶解度的概念。了解溶解度和溶解性的区别和联系。2.进一步练习给试管里的液体加热、向试管里滴加液体和振荡试管的操作;培养学生设......

    高中化学有机物总结

    一、 物理性质 甲烷:无色无味难溶乙烯:无色稍有气味难溶乙炔:无色无味微溶 (电石生成:含H2S、PH3 特殊难闻的臭味)苯:无色有特殊气味液体难溶有毒乙醇:无色有特殊香味混溶易挥发乙......

    有机物基础知识总结

    姓名:考号:分数: 有机化合物基础知识点总结练习 一、甲烷的分子式结构式、电子式、空间结构构型;烷烃的通式是:。甲烷的化学性质(用化学方程式表示) (1)能发生反应: (2)能发生反应:二、乙......

    有机物命名学案

    有机物命名学案(3) 一、烷烃的命名 1.烃基 写出下列烃基的名称或结构: CH3CH2—__________CH2===CH—__________ 苯基________________苯甲基______________ 写出丁烷(C4......