六年级上圆概念的总结(精选)

时间:2019-05-15 10:06:41下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《六年级上圆概念的总结(精选)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《六年级上圆概念的总结(精选)》。

第一篇:六年级上圆概念的总结(精选)

第一单元 圆概念总结

1.圆的定义:平面上的一种曲线图形。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等.

3.半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。6.在同一个圆里,所有的半径都相等,所有的直径都相等。7.在同一个圆里,有无数条半径,有无数条直径。

8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。用字母表示为: d=2r r =d

21用文字表示为:直径=半径×2 半径=直径÷2 9.圆的周长:围成圆的曲线的长度叫做圆的周长。

10.圆的周长总是直径的3倍多一些,圆的周长除以直径的商是一个固定的数,我们它叫做圆周率,用字母表示。圆周率是一个无限不循环小数。在计算时,取3.14。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。11.圆的周长公式:1.知道直径d:圆周长=×直径:C=d 2.知道半径r :圆周长=2××半径:C=2r 12.知道圆的周长C求直径:d=C

知道圆的周长

C求半径:r= C2

12、圆的面积:圆所占面积的大小叫圆的面积。13.求圆面积的公式:1.已知r时:Sr

2.已知d时:Sd2

3.已知C时:先求出半径(r= C2),然后用第一条公式

或者直接用公式:SC2222

15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。(✿)16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。(✿)17.一个环形,外圆的半径是R,内圆的半径是r(✿)

2S(Rr)它的面积是SRr 或

2218.半圆的周长等于圆的周长的一半加直径。

半圆的周长与圆周长的一半的区别在于,半圆有直径,而圆周长的一半没有直径。(✿)

半圆的周长公式:C=d2+d 或 C=r+2r 圆周长的一半:C=d2 或 C=r 19.半圆面积=圆的面积2 公式为:S=r2 20.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。

例如:在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。

21.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小 22.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。23. 有1条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

有2条对称轴的图形是:长方形

有3条对称轴的图形是:等边三角形

有4条对称轴的图形是:正方形

有无数条对称轴的图形是:圆

29.直径所在的直线是圆的对称轴。

(直径不出头,对称轴要出头)

扇形的弧长公式 编辑

角度制计算 , l是弧长,n是扇形圆心角,π是圆周率,r是底圆半径 弧度制计算,l是弧长,|α|是弧l所对的圆心角的弧度数的绝对值,r是底圆半径 2扇形面积公式 编辑

R是扇形半径,n是弧所对圆心角度数,π是圆周率,L是扇形对应的弧长。也可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度n,如下:

(L为弧长,R为扇形半径)推导过程:S=πr²×L/2πr=LR/2(L=│α│〃R)

第二篇:六年级上圆概念知识点总结

六年级上圆概念知识点总结

1.圆的定义:平面上的一种曲线图形。

2.画圆时圆规针尖所在的位置叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等.

3.半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。6.在同一个圆里,所有的半径都相等,所有的直径都相等。7.在同一个圆里,有无数条半径,有无数条直径。

8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。用字母表示为: d=2r r =d

21用文字表示为:直径=半径×2 半径=直径÷2 9.圆的周长:围成圆的曲线的长度叫做圆的周长。

10.圆的周长总是直径的3倍多一些,圆的周长除以直径的商是一个固定的数,我们它叫做圆周率,用字母表示。圆周率是一个无限不循环小数。在计算时,取3.14。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

11.圆的周长公式:1.知道直径d:圆周长=×直径:C=d 2.知道半径r :圆周长=2××半径:C=2r 3.半圆的周长=圆的周长除以2+直径

12.知道圆的周长C求直径:d=C

知道圆的周长C求半径:r= C2

12、圆的面积:圆所占面积的大小叫圆的面积。13.求圆面积的公式:1.已知r时:S2.已知d时:Sr2

2d2

3.已知C时:先求出半径(r= C2),然后用第一条公式

或者直接用公式:SC2

215.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。(✿)16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。(✿)17.一个环形,外圆的半径是R,内圆的半径是r(✿)

2S(Rr)它的面积是SRr 或 2218.半圆的周长等于圆的周长的一半加直径。

半圆的周长与圆周长的一半的区别在于,半圆有直径,而圆周长的一半没有直径。半圆的周长公式:C=d2+d 或 C=r+2r 圆周长的一半:C=d2 或 C=r 19.半圆面积=圆的面积2 公式为:S=r2 20.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。

例如:在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。

21.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小 22.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。23. 有1条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

有2条对称轴的图形是:长方形

有3条对称轴的图形是:等边三角形

有4条对称轴的图形是:正方形

有无数条对称轴的图形是:圆

29.直径所在的直线是圆的对称轴。(直径不出头,对称轴要出头)30.常用的3.14的倍数:

3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7

3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26

3.14×12=37.68 3.14×14=43.96 3.14×16=50.24 3.14×18=56.52 3.14×24=75.36 3.14×25=78.5 3.14×36=113.04 3.14×49=153.86 3.14×64=200.96 3.14×81=254.34

第三篇:圆概念总结

圆概念总结

1.圆的定义:圆是由曲线围成的平面封闭图形。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等.

3.半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。圆内最长的线段是直径

6.在同一个圆内,所有的半径都相等,所有的直径都相等。

7.在同一个圆内,有无数条半径,有无数条直径。

8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。用字母表示为:d=2r r=1/2d

用文字表示为:半径=直径÷2 直径=半径×2

车轮为什么是圆的?答:因为圆心到圆上各点的距离相等,所以圆在滚动时,圆心在一条直线上运动,这样的车轮运行才稳定。

9.圆的周长:围成圆的曲线的长度叫做圆的周长。或者,圆一周的长度就是圆的周长。

10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值是一个固定的数,我们把它叫做圆周率,用字母表示。圆周率是一个无限不循环小数。在计算时,取3.14。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

11.圆的周长公式:C圆=πd =2πr

12.圆的面积:圆所占面积的大小叫圆的面积。

13.圆所占平面的大小叫圆的面积。把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;长方形的长相当于圆周长的一半,宽相当于圆的半径。

14.如果用S表示圆的面积, r表示圆的半径,那么圆的面积公式:S圆=πr2

15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

17.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=R²-r² 或 S=(R²-r²)。

(其中R=r+环的宽度.)

18.半圆的周长等于圆的周长的一半加直径。半圆的周长与圆周长的一半的区别在于,半圆有直径,而圆周长的一半没有直径。

19.半圆的周长公式:C=d2+d 或 C=r+2r 圆周长的一半=r

第四篇:六年级上册数学概念总结

六年级上册数学概念总结

第一单元 分数乘法概念总结

1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。

例如: 的意义是:表示求5个 的和是多少。

2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(为了计算简便,能约分的要先约分,然后再乘。)

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。2CY齿轮油泵 例如: 的意义是:表示求5的 是多少。

的意义是:表示求 的 是多少。

4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。(为了计算简便,可以先约分再乘。)

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

5.整数乘法的交换律、结合律和分配律,对分数乘法同样适用。

6.乘积是1的两个数互为倒数。

7.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。1的倒数是1。0没有倒数。

真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。

8.一个数(0除外)乘以一个真分数,所得的积小于它本身。

9.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

10.KCB-300 一个数(0除外)乘以一个带分数,所得的积大于它本身。

11.如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

例如:a×= b×= c×(a、b、c都不为0)因为<<,所以b > a > c。

12.乘法应用题有关注意概念。高压渣油泵

(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的句子中找,“的”前“比”后的规则(3)当句子中的单位“1”不明显时,把原来的量看做单位“1”。(4)乘法应用题中,单位“1”是已知的。

(5)单位“1”不同的两个分率不能相加减。可调压渣油泵(6)分率与量要对应。

①多的比较量对多的分率;

②少的比较量对少的分率;

③增加的比较量对增加的分率;

④减少的比较量对减少的分率;

⑤提高的比较量对提高的分率;

⑥降低的比较量对降低的分率;KCB齿轮油泵 ⑦工作总量的比较量对工作总量的分率;

⑧工作效率的比较量对工作效率的分率;

⑨部分的比较量对部分的分率;

⑩总量的比较量对总量的分率;

第三单元 分数除法概念总结

1.分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。高压渣油泵 例如:

表示:已知两个数的积是 与其中一个因数,求另一个因数是多少。

2.分数除以整数(0除外),等于分数乘这个整数的倒数。整数除以分数等于整数乘以这个分数的倒数。

3.一个数除以分数的计算法则:一个数除以分数,等于这个数乘以分数的倒数。4.

分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

5.两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。

6.比值通常用分数、小数和整数表示。

7.比的后项不能为0。

8.同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商; 9.

根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。

10.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。

11.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

12.一个数(0除外)除以一个真分数,所得的商大于它本身。

13.一个数(0除外)除以一个假分数,所得的商小于或等于它本身。14.一个数(0除外)除以一个带分数,所得的商小于它本身。

解分数应用题注意事项:

1.找单位“1”的方法:从含有分数的句子中找,“的”前“比”后的规则。当句子中的单位“1”不明显时,把原来的量看做单位“1”。

2.找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。

单位“1”×分率=比较量 ;

比较量÷分率=单位“1”

3.注意比较量与分率的对应:

①多的比较量对多的分率;

②少的比较量对少的分率;

③增加的比较量对增加的分率;螺杆油泵

④减少的比较量对减少的分率;⑤提高的比较量对提高的分率 ⑥降低的比较量对降低的分率;

⑦工作总量的比较量对工作总量的分率;

⑧工作效率的比较量对工作效率的分率;

⑨部分的比较量对部分的分率;

⑩总量的比较量对总量的分率;

4.单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。

5.单位“1”的特点:

①单位“1”为分母;

②单位“1”为不变量。

第三单元 分数四则混合运算和应用题概念总结

1.分数四则混合运算的顺序与整数四则混合运算的运算顺序相同。在有一级运算和二级运算的计算中,要先算二级运算再算一级运算,即:先乘除后加减。在同级运算中,应按从左到右的顺序依次计算。

2.在分数四则混合运算中,可以应用运算定律使计算简便。

运算定律包括:加法的交换律、加法的结合律、乘法的交换律、乘法的结合律、乘法的分配律。

第五篇:浙教版初三几何圆概念

1、圆的有关概念:

(1)、确定一个圆的要素是圆心和半径。

(2)连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。圆上任意两点间的部分叫做圆弧,简称弧。小于半圆周的圆弧叫做劣弧。大于半圆周的圆弧叫做优弧。

(3)在同圆或等圆中,能够互相重合的弧叫做等弧。

(4)顶点在圆上,并且两边和圆相交的角叫圆周角。

(5)经过三角形三个顶点可以画一个圆,并且只能画一个,经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形,外心是三角形各边中垂线的交点;

(6)直角三角形外接圆半径等于斜边的一半。与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交点。

2、圆的有关性质

(1)在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等,所对的弦的弦心距相等。推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等。

(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。弦的垂直平分线经过圆心,并且平分弦所对的两条弧。平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。推论2圆的两条平行弦所夹的弧相等。

(3)圆周角定理:一条弧所对的圆周角等于该弧所对的圆心角的一半。

推论:1在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。

推论2:半圆或直径所对的圆周角都相等,都等于90。90 的圆周角所对的弦是圆的直径。

推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

(4)切线的判定与性质:判定定理:经过半径的外端且垂直与这条半径的直线是圆的切线。性质定理:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点切垂直于切线的直线必经过圆心。

(5)定理:不在同一条直线上的三个点确定一个圆。

(6)圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长;切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角。

(7)圆内接四边形对角互补,一个外角等于内对角;圆外切四边形对边和相等;

(8)弦切角定理:弦切角等于它所它所夹弧对的圆周角。

(9)和圆有关的比例线段:相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。从圆外一点引圆的两条割线,这一点到每条割线与圆交点的两条线段长的积相等。

(10)两圆相切,连心线过切点;两圆相交,连心线垂直平分公共弦。

下载六年级上圆概念的总结(精选)word格式文档
下载六年级上圆概念的总结(精选).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    六年级上《圆的认识》教学反思

    《圆的认识》教学反思 ——刘寒青 从生活实际引入,激发学生的探索欲望,为了激发学生的积极性和好奇心,课一开始,我让学生观察绑绳子的钥匙转动感知图形图,再让学生自己说一说周围......

    六年级上学期《圆的认识》说课稿1

    《圆的认识》说课设计 宜良县九乡小学:韩俊林 大家好!今天我说课的题目是《圆的认识》。下面我将从教材、教法学法、教学过程、板书设计、媒体应用、练习设计几个方面来作......

    六年级圆的知识点相关公式总结

    小学六年级圆的知识点有关公式总结 求周长:知道直径c=πd 知道半径c=2πr求直径:知道半径知道周长 求半径:知道直径知道周长 求圆面积: 知道半径知道直径知道周长 求圆环面积: 知......

    六年级上教学总结

    六年级上教学总结 六年级上教学总结1 六年级上学期综合实践教学工作总结这个学期我担任六年级的综合实践这一门课程,在开学初,我就针对综合课本上的若干课题,结合我们所拥有的......

    六年级上品德总结

    六年级(2)班品德与社会教学工作总结 (2017-2018学年度 第一学期) 一学期来,我按照课程特点制定实施了教育教学工作计划,对学生进行了一系列的教育。品德与社会课程旨在促进学生......

    个人总结 六年级上

    小学语文教师个人工作总结 南关小学 刘丽丽 2015.2 小学语文教师个人工作总结 一个学期的工作即将结束,这个学期我担任六年级语文兼班主任工作,开学以来,我认真履行教师职责......

    六年级上 教学 总结

    六年级数学上学期教学总结 本学期,我担任六年级毕业班的数学教学任务。我积极探索新的教学方法,全面提高教育教学质量,最大限度地调动学生学习积极性,提高教学质量,现将本期来的......

    六年级上语文总结

    六年级上册语文课本知识点总结 第一单元——美妙大自然 课题: 1、山中访友 2、山雨3、草虫的村落4、索溪峪的“野”单元目标:学会细心观察大自然的美丽风姿,并表达出自己独特的......