青岛版八上数学《分式的基本性质》教学反思

时间:2019-05-15 10:32:27下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《青岛版八上数学《分式的基本性质》教学反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《青岛版八上数学《分式的基本性质》教学反思》。

第一篇:青岛版八上数学《分式的基本性质》教学反思

教学反思

一、对课题及内容的反思

我们在七年级学习单项式和多项式时学习了整式:整式是单项式与多项式的统称。这节课我们所学的分式的概念应该是相对于整式来说的,但是如果按照书上的说法难免让学生觉得:整式都可以写成分式的形式,那么所有的整式都是分式,整式就是分式的一种。为了避免这种情况的出现,我们应该采用这种分式概念的定义:用A、B表示两个整式,A÷B就可以表示成 的形式.如果分母中含有字母,式子 就叫做分式.其中A叫做分式的分子,B叫做分式的分母.采用分式的这种定义,学生就能很好地把握分式的特点,把它与七年级学习的整式的概念区别开。我们作为老师,在上课的时候不能完全奉教材为“圣旨”,我们应该思考学生更能理解什么、更容易掌握什么、怎么说才能让他们更好地接受,尤其是课题。为了更好地教学,我们都应该好好地进行反思。

二、对教学过程的反思

在上这节课时,可以从分数的概念类比出分式的概念,这样学生更好比较记忆,找出他们的异同。在提出了分式的概念后,我们可以设置一些式子,让学生判断是否为分式,或者让学生自己举出几个分式的例子来,通过这种方式可以加深学生对知识点的理解,并且让学生从练习中把握好分式概念中重要的两点:

1、分母中含有字母.

2、如同分数一样,分式的分母不能为零.

在讲分式的基本性质时同样可以先根据分数的基本性质类比得出,再通过练习加深学生对知识点的理解。

老师在教学过程中要善于观察学生的反映,及时调整语言、措辞、以及适当的问题和教法,促进学生对知识点的掌握,除了自己设置问题外,还要给学生提问的机会和时间。

三、对学生课堂练习及作业的反思

课堂练习可以直接反映出学生对知识的掌握情况,老师需要在课堂中及时发现并解决好学生在学习中的问题。书上课堂练习的题型有两种,一种是连线题,一种是填空题。我发现学生连线题都做得很好,但是填空题有些错误。比如 部分学生不知道从何入手,这时我们应该让他们回想分式的基本性质,引导、提示他们观察分式分母间的联系:1-x=-(x-1),这样观察得出,由等式左边到右边需要把分式的分子分母同时乘以-1,这样题目的突破口找到了,题目也就不难解决了。

这堂课学生究竟掌握了多少知识?掌握得怎么样?这些问题可以从课后作业中得出答案,在批改作业的过程中,我们也能发现学生对知识点的掌握情况,把学生的易错点总结出来,分析错误多出在哪些知识点上,反思采用何种方法才能让学生更好地理解、掌握这些易错的知识点。

第二篇:《分式的基本性质》教学反思

一、成功之处

1、合作交流中收益。

通过思考问题,鼓励学生在独立思考的基础上,积极地参与到对数学问题的讨论中来,勇于发表自己的观点,善于理解他人的见解,在交流中获益。

2、体现学生是学习的主人,学会了类比的思想方法,培养了语言表达和概括知识的能力。

分数基本性质、分数约分的基础上,学习分式基本性质、分式约分方法。这一过程由学生自己学习、归纳,这样学生可以把新旧知识联系起来,学起来也不觉得困难,从而激起学生学习的积极性,同时也可以让学生体会到类比的思想。由学生自己归纳,体现了学生是学习的主人,可以培养学生的语言表达能力和总结知识的能力。

3、培养学生观察、分析问题的能力,提高学生的逻辑思维。

通过对等式的变形填空练习,让学生观察分子或分母变化,想分母或分子的变化,提高学生的思维能力。

4、整节课下来,效果还不错。

二、存在问题

1、学生基础差(思维基础和知识基础都差),对因式分解的知识点忘记的比记住的多,我花了将近三分之一的时间复习。当分母是多项式且能分解因式时,往往没想以先分解因式,或不会分解因式。

2、约分的结果有的不是最简分式或整式(公因式没找完)。

3、由于时间问题,练习做的不多。

三、思考与措施

1、完成教学任务与学生参与时间的矛盾。

课改是“以学生发展为本”,而其中重要的一点是让学生参与教学活动。而在这堂课的有限时间内中,给予学生思考、讨论和发表意见的时间还不够充分,这也是教师平时教学中的困惑和矛盾,如何来协调的确值得探讨。

2、要精练课堂教学过程,从而真正达到“课堂教学是为学生服务”这一宗旨。

第三篇:分式的基本性质教学案例

分式的基本性质教学案例

初二数学组 陈本通

教学目标

1、认知目标:通过类比分数的基本性质,使学生理解和掌握分式的基本性质;掌握约分的方法和最简分式的化简方法。

2、能力目标:使学生学习类比的思想方法,培养类比转化的思维能力;使学生掌握分式的基本性质,培养正确进行分式变形的运算能力。

3、情感目标:通过与分数的类比,导出分式的基本性质,渗透事物是联系及变化发展的辨证关系。即类比— —联系— —归纳— —发展。

教学重点及难点

重点是理解并掌握分式的基本性质。

难点是灵活运用分式的基本性质进行分式的恒等变形及最简分式的化简方法。

教学用具准备 教学流程设计 教学过程设计

一、情景引入 1.观察

在括号内填写每一步骤的依据

[通过填空和观察,使学生明确分数的计算和化简实质是进行分数的通分和约分,而通分和约分的依据是分数的基本性质] 2.思考

问题(1):还记得分数的基本性质吗?

问题(2):分式是否也有这样的性质?

[通过提问的方式先使学生回忆复习分数的基本性质,继而引导学生与分数的基本性质相类比,导出分式的基本性质,并让学生了解分式的基本性质是今后学习与研究分式变形的依据。] 3.讨论

(1)对照分数的基本性质,改写成分式的基本性质:

分式的分子与分母同时乘以(或除以)一个不为零的整式,分式的值不变,即:

其中M、N为整式,且

(2)两者有何区别和联系?

[通过讨论使学生理解从分数到分式是把“数”引伸到“式”.分数是分式的特殊情形。]

二、学习新课 1.概念辨析

分式中的A,B,M,N四个字母都表示整式,其中B必须含有字母,除A可等于零外,B,M,N都不能等于零.因为若B=0,分式无意义;若M=0或N=0,那么不论乘以或除以分式的分母,都将使分式无意义.2.例题分析 例1:(原题略)

[通过此例(书上的例题,稍有改动)的练习,使学生初步熟悉分式的基本性质,并注意分式基本性质中的关键词语。继而引出约分和最简分式的概念。] 例2 [通过简单例题(书上例1)的练习,使学生能正确找出分子分母的相同因式,然后将分式化简。并归纳出将分式化简到最简分式的方法。] [通过例三的练习,向学生强调化简分式的最后结果应是最简分式。练习中涉及到分式的变号法则,是一个教学难点,可适当举例让学生体会,但不必特别强调和给出分式的变号法则这一名称。] 3.巩固练习

课后练习10.2 [第一题可在导出分式的基本性质后练习,第二、三、四题可在相应例题1、2、3讲解后练习。也可集中练习,教师可根据实际情况选择。]

三、问题拓展

(1)对于分式的基本性质的应用学生较容易出错的情况辨析:

(2)对于利用分式的基本性质将分式的分子、分母化成整系数形式的习题,如不改变分式的值,把分式 中分子、分母的多项式各项系数化成整数,并使最高次项的系数为正.

(3)对于可将分式先化简再求值的题目的练习。

[以上这些问题可在学生学有余力的前提下,加深对分式的基本性质的理解和掌握。]

四、课堂小结

1、分式的基本性质?分式的基本性质是分式变形和运算的理论依据。

2、约分的方法?约分是实现化简分式的一种手段.通过约分将分式化成最简才是目的.而最简分式为分式间的进一步运算提供了便利条件。

五、作业布置 练习册10.2 课后反思:

1、这一章的内容与前面的分数有点类似,所以本章的有些内容都是类比分数的知识来讲的,类比是发现新问题的一种有效的思维方法。这一节也不例外,运用启发式的教学原则,类比分数的基本性质来讲解分式的基本性质,在教学设计中强调让学生比较分式的基本性质和分数的基本性质的区别与联系,目的是使学生进一步明确分式的基本性质的特点,培养学生独立获取知识的能力。

2、关于例题与练习的安排是按照由易到难、由简单到复杂的认知规律和心理特征设计的。以使学生通过一道简单的分数加法计算回忆起通分和约分的依据是分数的基本性质,然后类比引出分数的基本性质。在初步熟悉分式的基本性质之后,通过例题和习题训练学生正确运用分式的基本性质的能力,接着可选择问题拓展的一些题目使学生能够根据问题特征,灵活运用分式的基本性质,同时,培养学生分析问题与解决问题的能力。

3、要加强对学生的训练。老师讲完例题后,要让学生自己做题,在做题过程中体会分式的基本性质和分式的变号法则,以加深理解,到后面的分式变形和分式运算才会运用自如。

第四篇:分式的基本性质教案

10.2

分式的基本性质

七年级(下)第九章

教学目标

1、认知目标:通过类比分数的基本性质,使学生理解和掌握分

式的基本性质;掌握约分的方法和最简分式的化简方法。

(知道分式的基本性质,学会简单的约分,知道最简分式)

2、能力目标:使学生学习类比的思想方法,培养类比转化的思

维能力;使学生掌握分式的基本性质,培养正确进行分式变形的运算能力。

(知道分式的基本性质与分数的基本性质之间非常类似)

3、情感目标:通过与分数的类比,导出分式的基本性质,渗透

事物是联系及变化发展的辨证关系。即类比— —联系— —归纳— —发展。

(让她感受课堂的快乐以及一起学习的愉悦)教学重点及难点

重点是理解并掌握分式的基本性质。

难点是灵活运用分式的基本性质进行分式的恒等变形及最简分式的化简方法。

(区分最简分式,把分式约分变为最简分式)

教学过程设计

一、情景引入

1.观察

在括号内填写每一步骤的依据

计算:

11解:(由她来完成这个题目)+63

=+66 =6

1= 2

[通过填空和观察,使学生明确分数的计算和化简实质是进行分数

9x3(1)某人先写出分式,再写出分数?说这两个是相等的,请问他的根据是什么?15x53y-6xy2(2)某人先写出分式,再写出分式说这两个是相等的,请问他的根据是什么??5x10x2y

[通过此例(书上的例题,稍有改动)的练习,使学生初步熟悉分式的基本性质,并注意分式基本性质中的关键词语。继而引出约分和最简分式的概念。] 例2 化简:6x2y(1);29xyx+y(2);22x-y-2x+3x2(3).2x

(教师板书一道后,站在她旁边看着她模仿完成其中一道)[通过简单例题(书上例1)的练习,使学生能正确找出分子分母的相同因式,然后将分式化简。并归纳出将分式化简到最简分式的方法。] 例3:化简?(1)x-2;2x-4x+4x2-x-6(2);2x-915b-5a(3).2a-6b

[通过例三的练习,向学生强调化简分式的最后结果应是最简分式。练习中涉及到分式的变号法则,是一个教学难点,可适当举例让学生体会,但不必特别强调和给出分式的变号法则这一名称。]

第五篇:分式的基本性质课堂实录

分式的基本性质课堂实录

(一)教学过程

【复习提问】

1.分式的定义?2.分数的基本性质?有什么用途?

【新课】

1.类比分数的基本性质,由学生小结出分式的基本性质:

分式的分子与分母乘以(或除以)同一个不等于零的整式,分式的值不变,即:

,(其中是不等于零的整式.)

2.加深对分式基本性质的理解:

例1 下列等式的右边是怎样从左边得到的?

(1);

由学生口述分析,并反问:为什么?

解:∵

∴.

(2);

学生口答,教师设疑:为什么题目未给的条件?(引导学生学会分析题目中的隐含条件.)

解:∵

∴.

(3)

学生口答.

解:∵,∴

例2 填空: .

(1);

(2);

(3);

(4).

把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据.

例3 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数.

(1);

分析学生讨论:①怎样才能不改变公式的值?②怎样把分子分母中各项系数都化为整数?

解:

(2)

解:

例4 判断取何值时,等式

学生分组讨论后得出结果: .

成立?

(二)随堂练习.

1.当为何值时,与的值相等()

A.B.C.D.

2.若分式

A.B.C.有意义,则,满足条件为()

D.以上答案都不对

3.下列各式不正确的是()

A.B.

C.D.

4.若把分式

的和都扩大两倍,则分式的值

A.扩大两倍 B.不变 C.缩小两倍 D.缩小四倍

(三)总结、扩展 1.分式的基本性质.

可代表任何非零整式.

2.性质中的3.注意挖掘题目中的隐含条件.

4.利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数学化繁为简的策略,并为分式作进一步处理提供了便利条件.

(四)布置作业

(五)板书设计

分式的基本性质 教学设计

教学设计思想

通过类比分数的基本性质及分数的约分、通分,推测出分式的基本性质、约分和通分,通过例题、练习来巩固这些知识点。

教学目标 知识与技能

1.总结分式的基本性质;

2.利用分式的基本性质对分式进行“等值”变形;

3.说出分式通分、约分的步骤和依据,总结分式通分、约分的方法; 4.说出最简分式的意义,能将分式化为最简分式。过程与方法

经历与他人合作探究分式的基本性质及应用的过程,通过类比分数的基本性质,推测出分式的基本性质。

情感态度价值观

体会知识点之间的联系,在已有数学经验的基础上,提高学数学的乐趣。教学重点、难点

重点:1.分式的基本性质;2.利用分式的基本性质约分、通分;3.将一个分式化简为最简分式、将分式通分。

难点:分子、分母是多项式的分式的约分和通分。教学方法

启发引导,讲练结合 教学媒体 课件 课时安排 1课时

教学设计过程

(一)复习引入 1.分式的定义;

2.分数的基本性质?有什么用途? 通过回顾我们可以得出:

一般地,对于任意一个分数 有,其中a,b,c是数。

(二)讲授新课 活动1 思考:

1.类比分数的基本性质,你能想出分式有什么性质吗? 2.怎样用式子表示分式的基本性质?

通过类比分数的基本性质,我们可以推想出分式的基本性质:

分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变。用式子表示为: 活动2 例2 填空

仔细分析,看分母如何变化,是“多”还是“少”?想分子如何变化;看分子如何变化,是“多”了还是“少”了,想分母如何变化。

解答见教科书7~8页。活动3 思考

1.类比分数的基本性质的用途(通分和约分),思考分式的基本性质会有什么用途呢? 2.有上例你能想出如何对分式进行通分和约分吗? 学生自主学习教科书8~9页中有关通分与约分的定义,类比分数的通分与约分,思考怎样对分式进行通分与约分。

老师启发引导,学生小组讨论,总结出分式应如何进行约分与通分。例3 约分 重点关注:

1.约分的依据。

2.约分的关键是公因式。3.公因式如何确定。

4.约分后的最后结果应为最简分式。即:分子、分母没有公因式。(化为最简分式有什么意义?)

例4 通分

阅读教科书上的有关最简公分母的定义。重点关注:

1.通分的依据。

2.通分的关键是确定几个分式的公分母。3.如何确定几个分式的公分母。活动4 思考:

1.分数和分式在约分和通分的做法上有什么共同点? 2.这些做法根据了什么原理?

通过本思考,进一步理解分数与分式的联系,学生对分数已有一定的认识基础。通过分式与分数的类比,将有助于理解掌握新内容,进一步发展学生的抽象思维能力。

播放课件

(三)练习教科书的练习。

(四)小结

学生思考,试着独立完成,然后再分组讨论、交流本节所学的内容: 1.分式的基本性质。2.分式的约分方法。

下载青岛版八上数学《分式的基本性质》教学反思word格式文档
下载青岛版八上数学《分式的基本性质》教学反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    分式的基本性质教案

    分式的基本性质教案 教学设计思想 通过类比分数的基本性质及分数的约分、通分,推测出分式的基本性质、约分和通分,通过例题、练习来巩固这些知识点。 教学目标 知识与技能......

    分式基本性质的应用

    谈谈分式基本性质的应用 由分式的基本性质,我们有下面的推理: ab  a1b1 ab , ab  a1b1  ab  ab 。从这两个式子的结论来看,我们得 到这样的事实:分式的分子、分母和分式本身的符......

    分式的基本性质说课稿

    分式的基本性质说课稿 呼图壁县第五中学 教材分析: 一、 教材的地位及作用 “分式的基本性质(第1课时)”是人教版八年级数学下册第十五章第一节“分式” 的重点内容之一,是在小......

    分式及其基本性质说课稿

    分式及其基本性质说课稿 一、课题介绍 选自北京版八年级上册第十章第一节“分式及其基本性质”,根据课标的理念,对于本节课,我将从教材分析、教学重难点、教法学法分析、教学过......

    分式的基本性质说课稿

    《分式的基本性质》说课稿 今天我说课的内容是《分式的基本性质》。下面我将从:教材分析、学生与学法分析、教法分析、教学过程分析、教学课后反思几个方面进行说明。 一、......

    9.1分式及其基本性质教学设计

    9.1分式及其基本性质教学设计 【教学目标】 (1)用分式表示现实情景中的数量关系,体会分式的模型思想. (2)了解分式、有理式的概念. (3)了解分母不为零时分式有意义,能确定使分式的值为......

    《分数的基本性质》数学教学反思

    这节课的成功可以用“设计巧,效率高,气氛活”九个字来概括。先说巧和活,教材中讲分数的基本性质是从比较的大小引入,教师巧妙地改为“猴王分饼”,分给猴1一块,猴2要两块,猴3要三块;......

    10.2 分式的基本性质讲义

    2014年青优评比上课环节 10.2分式的基本性质(1)讲义 姓名:班级:. 一.分式的基本性质: 1.文字叙述:分式的分子和分母乘(或除以),分式的值不变. 2.用式子表示: AA, (其中M). BB 二.随堂练习: 随堂......