第一篇:江南大学发酵工程研究生面试英语翻译材料_62256
[1] Industrial biotechnology, also known as white biotechnology, is the application of modern biotechnology to the sustainable production of chemicals, materials, and fuels from renewable sources, using living cells and/or their enzymes.This field is widely regarded as the third wave of biotechnology, distinct from the first two waves(medical or red biotechnology and agricultural or green biotechnology).Much interest has been generated in this field mainly because industrial biotechnology is often associated with reduced energy consumption, greenhouse gas emissions, and waste generation, and also may enable the paradigm shift from fossil fuel-based to bio-based production of value-added chemicals.***************************************************************************************************** [2] In aerobic bioprocesses, oxygen is a key substrate employed for growth, maintenance and in other metabolic routes, including product synthesis.Due to its low solubility in broths, which are usually aqueous solutions, oxygen must be continuously provided by a gas phase, and thus the knowledge of oxygen transfer rate(OTR)is needed for bioreactor design and scale-up.The concentration of dissolved oxygen in the broth, a suspension of respiring microorganisms, depends on the OTR from the gas to the liquid phase, and on the rate of its consumption by the microorganism, the oxygen uptake rate(OUR).***************************************************************************************************** [3] An immobilized enzyme is an enzyme that is attached to an inert, insoluble material such as calcium alginate(produced by reacting a mixture of sodium alginate solution and enzyme solution with calcium chloride).This can provide increased resistance to changes in conditions such as pH or temperature.It also allows enzymes to be held in place throughout the reaction, following which they are easily separated from the products and may be used again—a far more efficient process and so is widely used in industry for enzyme catalysed reactions.An alternative to enzyme immobilization is whole cell immobilization.***************************************************************************************************** [4] The bioreactor is the heart of any biochemical process in which enzymes, microbial, mammalian or plant cell systems are used for manufacture of a wide range of useful biological products.To design a bioreactor, some objectives have to be defined.The decisions made in the design of the bioreactor might have a significant impact on overall process performance.Knowledge of reaction kinetics is essential for understanding how a biological reactor works.Other areas of bioprocess engineering such as mass and energy balances, mixing, mass transfer and heat transfer are also required.***************************************************************************************************** [5] One of the most important tools for industrial biotechnology is protein engineering.More often than not, a wild-type enzyme discovered in nature is not suitable for an industrial process.There is a need to engineer and optimize enzyme performance in terms of activity, selectivity on non-natural substrates, thermostability, tolerance toward organic solvents, enantioselectivity, and substrate/product inhibition in order for the enzymatic process to be commercially viable.***************************************************************************************************** [6] As product purification is an essential part of the bioprocess, it is also evident that the development and optimization of this part has to be performed in an integral way together with other key elements like biotransformation, fermentation or biocatalyst development.Changes in the bioprocess itself or in the reaction conditions like pH, temperature and solvent, can have a decisive influence on the crystallization, phase separation, extraction or adsorption behavior
of
product
and
impurities.The
combination
of fermentation/biotransformation with in situ recovery techniques continues to be of much importance.***************************************************************************************************** [7] The main goal of metabolic engineering is to improve the metabolic phenotype through genetic modifications.Most of the recent approaches to metabolic engineering have aimed to improve a particular biosynthetic capacity through engineering of the target pathway based on rational assumptions for its improvement.The resulting phenotypes are, however, often suboptimal and unsatisfactory due to the distant effects of genetic modifications or unknown regulatory interactions.It is therefore strongly desirable to take into account the overall metabolic regulation mechanism in metabolic engineering.Metabolic regulation may occur either at the enzyme level or at the gene level.***************************************************************************************************** [8] Great efforts have been made in the last decade to identify genes and pathways relevant to cells enhancing productivity, figure out the metabolic bottlenecks, understand the mechanism of protein synthesis, develop better nutrients and media formulation, increase growth rate, and design processes with the aim to increase overall productivity.New technologies have recently become available, which allow a thoroughly high throughput assessment of changes at gene(genomics)and protein(proteomics)levels involved in determining productivity in different environmental conditions, and establish functional relationships between cellular organization and productivity.***************************************************************************************************** [9] The oxygen transfer rate(OTR)in a bioreactor depends on the liquid side mass transfer coefficient, kL, the total specific surface area available for mass transfer, a, and the driving force in terms of concentrations.Since the two parameters, kL and a, can not be measured easily individually, they are usually lumped together as one single parameter called volumetric mass transfer coefficient, kLa.The available information on kLa in bioreactors is extensive.Many empirical correlations are proposed for kLa estimation.***************************************************************************************************** [10] A fed-batch is a biotechnological batch process which is based on feeding of a growth limiting nutrient substrate to a culture.The fed-batch strategy is typically used in bio-industrial processes to reach a high cell density in the bioreactor.Mostly the feed solution is highly concentrated to avoid dilution of the bioreactor.The controlled addition of the nutrient directly affects the growth rate of the culture and allows to avoid overflow metabolism(formation of side metabolites, such as acetate for Escherichia coli, lactic acid in cell cultures, ethanol in Saccharomyces cerevisiae), oxygen limitation(anaerobiosis).***************************************************************************************************** [11] Solid-state fermentation(SSF)has long been applied to the food industry.SSFs are processes carried out with microbes growing on nutrient impregnated solid substrate with little or no free water.SSF can be directly carried out with abundant low-cost biomaterials(starch, cellulose, lignin, hemicellulose, chitin, etc.)with minimal or no pretreatment, and thus is relatively simple, uses less energy than submerged fermentation(SmF), and can provide unique microenvironments conducive to microbial growth and metabolic activities.Currently, SSF is undergoing a renewed surge of interest, primarily because of the opportunities that SSF affords for increased productivity as compared to SmF.***************************************************************************************************** [12] Fermentation broths are complex, aqueous mixtures of cells, comprising soluble extracellular, intracellular products and any unconverted substrate or unconvertible components.Recovery and extraction of product is important in bioprocess engineering.In particular, separation is a useful technique;it depends on product, its solubility, size of the process, and product value.Purification of high-value pharmaceutical products using chromatography such as hormones, antibody and enzymes is expensive and difficult to scale up.The necessary steps to follow a specific process depend on the nature of the product and the characteristics of the fermentation broth.***************************************************************************************************** [13] Sterilisation is the action of eliminating microorganisms from a medium.Sterility is the absence of any detectable and viable microbes in a culture medium or in the gas phase.Sterilisation is a process that destroys all living organisms, spores and viruses in a pressurised vessel at high temperature.In the food and dairy industries, sterilisation is commonly used to preserve food products.At the laboratory scale, huge steel vessels with live stream at 105 kPa are commonly used for 20–30 minutes.This is a closed system known as an autoclave;therefore it is batch sterilisation.Wet steam is usually used for effective autoclaving.The high temperature and long duration may kill all living microorganisms, spores and viruses.
第二篇:江南大学发酵工程专业参考书目
重庆大学发酵工程专业
参考书目:《生物化学(第三版上下册)》 王镜岩等主编 高等教育出版社
《化工原理(上、下册)》 夏清陈常贵等 天津大学出版社
《微生物学教程(第二版)》 周德庆 高等教育出版社
微生物参考书: 1.诸葛健,李华钟主编,微生物学(第二版),科学出版社,2009 2.诸葛健,李华钟,王正祥主编,微生物遗传育种学,化学工业出版社,2008 3.周德庆,微生物学教程(第二版),高等教育出版社,2002
第三篇:江南大学发酵工程综合 考试大纲
课程名称:发酵工程综合
一、考试的总体要求
发酵工程原理与技术是生物工程专业一门最重要的专业核心课程。作为江南大学发酵工程、轻工技术与工程和生物工程专业硕士研究生入学考试的复试科目,考生应掌握发酵工程所涉及的生物化学和微生物学的基础理论知识和生物技术产业化过程涉及的工程知识,具备发酵工程相关的研究方法与技能,并要求对发酵工程研究领域的发展和前沿有一定的了解。要求考生掌握发酵工程的基本原理,具备一定的融汇贯通、独立思考的综合分析能力能力,主要考察学生分析和解决生物技术产业化中关键问题的能力。
二、考试的内容及比例
本课程考试内容涉及面较广,突出有关发酵过程的化学、生物学、生物化学和微生物学等基本原理,并结合工程学知识,内容包括发酵过程的微生物学和生物化学基本原理、发酵原辅料处理、培养基及其水的处理和无菌空气的制备,工业微生物菌种的扩大培养、各种发酵操作方式的工艺规律、下游工程的分离方法等发酵工程基础,发酵工业的主要设备的操作原理、性能及构造和设计方法以及固态发酵、基因工程菌发酵和动植物细胞培养等一些非常规发酵过程。具体考试内容和大致比例如下:
1、发酵工程的基本概念,约20%;
2、发酵原料的处理及培养基制备,约10%;
3、各种发酵操作方式的工艺原理和规律,约20%;
4、发酵过程的优化及其动力学研究,约10%;
5、发酵工程的装备,约10%;
6、下游工程的分离方法,约10%;
7、发酵工程的概况及其前沿进展,约20%。
三、试题类型及比例
1、名词解释: 约15%;
2、填空或判断题: 约15%;
3、简答题: 约30%;
4、问答题(含计算题): 约40%。
四、考试形式及时间
考试形式为笔试。考试时间为3小时。
五、主要参考教材
1.发酵工程原理与技术,李艳主编,高等教育出版社
2.微生物工程工艺原理(二版),姚汝华主编,华南理工大学出版社
第四篇:2013江南大学发酵工程综合复试题
2013年江南大学发酵工程复试真题
一、名词解释(每个5分,共45分)
1、功率准数
2、liquification and saccharification
3、fed-batch fermatation
4、Immobilized cells
5、菌种的衰退与复壮
6、死角
7、Metabolic engineering
8、发酵强度
9、致死温度和致死时间
二、问答题(105分)
1、固态发酵的特点,并举五个固态发酵的例子(10分)
2、简述微生物细胞的破碎方法(10分)
3、简述在空气过滤灭菌的工艺中,提高空气过滤效率的措施(10分)
4、简述预防噬菌体感染的措施(10分)
5、给一段英文文献,让从中找出所涉及的分离方法,并说明各方法的作用或目的。本人英语不太好,只知道里面涉及到超滤、离心,好像还有别的(12)
6、什么是KLa,影响KLa的因素(13分)
7、发酵生产中泡沫产生的原因;影响泡沫稳定性的因素;泡沫的产生对发酵的影响;控制泡沫的方式(15分)
8、一个综合题,25分,给出一个图表,是微生物生长曲线、溶氧、葡萄糖浓度及产物浓度四条曲线,让回答:(1):该产物是初级代谢产物还是次级代谢产物,说明理由;(2):是分批发酵、半分批发酵还是连续发酵,说明理由;(3):发酵过程中有无异常现象,若有,该如何解决;(4):根据自己的理解,给此发酵过程一些建议
第五篇:江南大学物流工程研究生简介
一、专业领域简介
物流工程指运用现代工程管理的思想与方法,对物流活动进行的规划与设计、实施与控制、组织与管理。从系统工程学角度看,现代物流系统的全过程包括需求预测、原材料采购、零部件支持和物料管理、物流中心选址、规划与设计以及运输、仓储、包装、配送、流通加工、信息等各种活动。这些物流活动离不开物流应用技术的支持。物流管理是管理与技术的交叉学科,与众多的学科相关联,如管理科学与工程、工业工程、控制工程、计算机与网络技术、环境工程、建筑与土木工程等。因此,需要运用综合工程技术与管理的手段和方法,解决物流实践中的技术与管理问题。
二、培养目标
本学科授予全日制专业硕士学位。按照教育部《关于做好全日制硕士专业学位研究生培养工作的若干意见》要求,遵循物流工程专业特点,制定本学科培养目标:掌握物流工程专业领域坚实的基础理论和宽广的专业知识、具有较强的解决实际问题的能力,能够承担物流工程专业技术或管理工作、具有良好的职业素养的高层次应用型专门人才。
物流工程硕士专业学位获得者应德智体全面发展,具有开拓进取、锐意改革、科学严谨的研究精神。应坚实系统地掌握与本学科有关的基础理论和专业知识,能独立从事专业技术工作,研究和解决本专业方面的实际问题。能运用一种以上外语较熟练地阅读专业书刊资料和撰写科技论文,基本达到能读、写、听、说的程度。
三、研究方向
(一)企业物流的管理与运作
现代企业物流管理是建立在系统论、信息论和控制论的基础上,根据物质资料实体流动的规律,应用管理的基本原理和科学方法,对物流活动进行计划、组织、指挥、协调、控制和监督,使各项物流活动实现最佳的协调与配合,以降低物流成本,提高物流效率和经济效益。
(二)物流系统规划与设计
物流系统是一个涉及领域非常广泛的综合系统,物流系统的规划与设计主要是对物流战略层面的计划与决策,将对象视为一个相互联系的有机整体,从全局的观点出发,进行全面的综合分析;在此基础上,进一步掌握物流系统分析、优化与整合的相关理论与方法以及物流系统方案的设计方法与物流系统的综合评价技术。
(三)供应链管理
在满足一定的客户服务水平的条件下,为了使整个供应链系统成本达到最小而把供应商、制造商、仓储、配送中心和渠道上等有效地组织在一起来进行的产品制造、转移、分销及销售的管理办法。供应链管理是一个动态的复杂系统,在配送网络的重构、库存控制、供应链集成与优化、产品设计、决策支持系统等方面是该方向研究的一些主要内容。
(四)物流产业规划与设计
依托相关物流服务设施降低物流成本、提高物流运作效率,改善企业服务有关的流通加工、原材料采购、便于消费地直接联系的生产活动,具有产业发展的性质,还包括物流园区规划、物流中心(配送中心)规划与设计等。