中央空调系统节能改造方案

时间:2019-05-15 11:08:14下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《中央空调系统节能改造方案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《中央空调系统节能改造方案》。

第一篇:中央空调系统节能改造方案

中央空调系统水泵变频节能改造方案

一、概述

中央空调系统在现代企业及生活环境改善方面极为普遍,而且某此生活环境或生产工序中是属必须的,即所谓人造环境,不仅是温度的要求,还有湿度、洁净度等。至所以要中央空调系统,目的是提高产品质量,提高人的舒适度,集中供冷供热效率高,便管理,节省投资等原因,为此几乎企业、高层商厦、商务大楼、会场、剧场、办公室、图书馆、宾馆、商场、超市、酒店、娱乐场、体育馆等中大型建筑上都采用中央空调的,它是现代大型建筑物不可缺少的配套设施之一,电能的消耗非常之大,是用电大户,几乎占了用电量50%以上,日常开支费用很大。

由于中央空调系统都是按最大负载并增加一定余量设计,而实际上在一年中,满负载下运行最多只有十多天,甚至十多个小时,几乎绝大部分时间负载都在70%以下运行。通常中央空调系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷却泵却不能自动调节负载,几乎长期在100%负载下运行,造成了能量的极大浪费,也恶化了中央空调的运行环境和运行质量。

随着变频技术的日益成熟,利用变频器、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量;采用变频调速技术不仅能使商场室温维持在所期望的状态,让人感到舒适满意,可使整个系统工作状态平缓稳定,更重要的是其节能效果高达30%以上,能带来很好的经济效益。

二、水泵节能改造的必要性

中央空调是大厦里的耗电大户,每年的电费中空调耗电占60% 左右,因此中央空调的节能改造显得尤为重要。

由于设计时,中央空调系统必须按天气最热、负荷最大时设计,并且留10-20% 设计余量,然而实际上绝大部分时间空调是不会运行在满负荷状态下,存在较大的富余,所以节能的潜力就较大,其中,冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应调节,存在很大的浪费。

水泵系统的流量与压差是靠阀门和旁通调节来完成,因此,不可避免地存在较大截流损失和大流量、高压力、低温差的现象,不仅大量浪费电能,而且还造成中央空调最末端达不到合理效果的情况。为了解决这些问题需使水泵随着负载的变化调节水流量并关闭旁通。

再因水泵采用的是Y-△起动方式,电机的起动电流均为其额定电流的3 ~ 4倍,一台90KW的电动机其起动电流将达到500A,在如此大的电流冲击下,接触器、电机的使用寿命大大下降,同时,起动时的机械冲击和停泵时水垂现象,容易对机械散件、轴承、阀门、管道等造成破坏,从而增加维修工作量和备品、备件费用。

采用变频器控制能根据冷冻水泵和冷却水泵负载变化随之调整水泵电机的转速,在满足中央空调系统正常工作的情况下使冷冻水泵和冷却水泵作出相应调节,以达到节能目的。水泵电机转速下降,电机从电网吸收的电能就会大大减少。

其减少的功耗 △ P=P0 〔 1-(N1/N0)3 〕(1)式

减少的流量 △ Q=Q0 〔 1-(N1/N0)〕(2)式

其中N1为改变后的转速,N0为电机原来的转速,P0为原电机转速下的电机消耗功率,Q0为原电机转速下所产生的水泵流量。由上式可以看出流量的减少与转速减少的一次方成正比,但功耗的减少却与转速减少的三次方成正比。如:假设原流量为100个单位,耗能也为100个单位,如果转速降低10个单位,由(2)式△ Q=Q0 〔 1-(N1/N0)〕 =100 *〔 1-(90/100)〕 =10可得出流量改变了10个单位,但功耗由(1)式△ P=P0[1-(N1/N0)3]=100 *〔 1-(90/100)3 〕 =27.1可以得出,功率将减少27.1个单位,即比原来减少27.1%。

再因变频器是软启动方式,采用变频器控制电机后,电机在起动时及运转过程中均无冲击电流,而冲击电流是影响接触器、电机使用寿命最主要、最直接的因素,同时采用变频器控制电机后还可避免水垂现象,因此可大大延长电机、接触器及机械散件、轴承、阀门、管道的使用寿命。

三、中央空调系统构成及工作原理 图一所示:

1、冷冻机组:通往各个房间的循环水由冷冻机组进行“内部热交换”作用,使冷冻水降温为5~7℃。并通过循环水系统向各个空调点提供外部热交换源。内部热交换产生的热量,通过冷却水系统在冷却塔中向空气中排放。内部热交换系统是中央空调的“制冷源”。

2、冷冻水塔:用于为冷冻机组提供“冷却水”。

3、“外部热交换”系统:由两个循环水系统组成: ⑴、冷冻水循环系统由冷冻泵及冷冻管道组成。从冷冻机组流出的冷冻水由冷冻泵加压送入冷冻水管道,在各个房间内进行热交换,带走房间内的热量,使房间内的温度下降。⑵、冷却水循环系统由冷却泵、冷却水管道及冷却塔组成。冷冻机组进行热交换,使水温冷却的同时,必将释放大量的热量,该热量被冷却水吸收,使冷却水温度升高,冷却泵将升了温的冷却水压入水塔,使之在冷却塔中与大气进行热交换,然后再将降了温的冷却水,送回到冷冻机组,如此不断循环,带走冷冻机组成释放的热量。

4、冷却风机

⑴、室内风机:安装于所有需要降温的房间内,用于将由冷冻水冷却了的冷空气吹入房间,加速房间内的热交换; ⑵、冷却塔风机用于降低冷却塔中的水温,加速将“回水”带回的热量散发到大气中去。

中央空调系统的四个部分都可以实施节电改造。但冷冻水机组和冷却水机组的改造改造后节电效果最为理想,文章中我们将重点阐述对冷冻机组和冷却机组的变频调速技术改造。

四、中央空调变频系统改造方案

现将内蒙古某饭店的中央空调系统的变频节能改造方案做一具体介绍。1.中央空调原系统简介:

1.1该集饭店中央空调系统改造前的主要设备和控制方式:450冷吨冷气主机2台,型号为特灵二极式离心机,两台并联运行;冷冻水泵2台,扬程28米配有功率45KW,冷却水泵有2台,扬程35米,配用功率75KW。均采用两用一备的方式运行。冷却塔2台,风扇电机11KW,并联运行。室内风机4台,5.5KW,并联运行。

1.2原系统的运行及存在问题:该饭店是一家五星饭店,为了给客入营造一个良好的居住环境,饭店大部空间采用全封密的,且饭店大部分空间自然通风效果不好,所以对夏季冷气质量的要求较高。由于中央空调系统设计时必须按天气最热、负荷最大时设计,且留有10%-20%左右的设计余量。其中冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应的调节。这样,冷冻水、冷却水系统几乎长期在大流量、小温差的状态下运行,造成了能量的极大浪费。而且冷冻、冷却水泵采用的均是Y—△起动方式,电机的起动电流均为其额定电流的3—4倍,在如此大的电流冲击下,接触器的使用寿命大大下降;同时,启动时的机械冲击和停泵时的水锤现象,容易对机械器件、轴承、阀门和管道等造成破坏,从而增加维修工作量、维修费用、设备也容易老化。另外由于冷冻泵轴输送的冷量不能跟随系统实际负荷的变化,其热力工况的平衡只能由人工调整冷冻主机出水温度,以及大流量小温差来掩盖。这样,不仅浪费能量,也恶化了系统的运行环境、运行质量。特别是在环境温度偏低、某些末端设备温控稍有失灵或灵敏度不高时,将会导致大面积空调室温偏冷,感觉不适,严重干扰中央空调系统的运行质量。因为空调偏冷的问题经常接到客人的投诉,处理这些投诉造成不少人力资源的浪费。

根据实际情况,我们向该饭店负责人提出:利用变频器、人机界面、PLC、数模转换模块、温度模块、温度传感器等构成的温差闭环自动调速系统。对冷冻、冷却水泵进行改造,以节约电能、稳定系统、延长设备寿命。2.中央空调系统节能改造的具体方案

中央空调系统通常分为冷冻(媒)水和冷却水两个系统(如下图,左半部分为冷冻(媒)水系统,右半部分为冷却水系统)。根据国内外最新资料介绍,并多处通过对在中央空调水泵系统进行闭环控制改造的成功范例进行考察,现在水泵系统节能改造的方案大都采用变频器来实现。

2.1、冷冻(媒)水泵系统的闭环控制

制冷模式下冷冻水泵系统的闭环控制

该方案在保证最末端设备冷冻水流量供给的情况下,确定一个冷冻泵变频器工作的最小工作频率,将其设定为下限频率并锁定,变频冷冻水泵的频率调节是通过安装在冷冻水系统回水主管上的温度传感器检测冷冻水回水温度,再经由温度控制器设定的温度来控制变频器的频率增减,控制方式是:冷冻回水温度大于设定温度时频率无极上调。

该模式是在中中央空调中热泵运行(即制热)时冷冻水泵系统的控制方案。同制冷模式控制方案一样,在保证最末端设备冷冻水流量供给的情况下,确定一个冷冻泵变频器工作的最小工作频率,将其设定为下限频率并锁定,变频冷冻水泵的频率调节是通过安装在冷冻水系统回水主管上的温度传感器检测冷冻水回水温度,再经由温度控制器设定的温度来控制变频器的频率增减。不同的是:冷冻回水温度小于设定温度时频率无极上调,当温度传感检测到的冷冻水回水温越高,变频器的输出频率越低。

2.2、冷却水系统的闭环控制

目前,在冷却水系统进行改造的方案最为常见,节电效果也较为显著。该方案同样在保证冷却塔有一定的冷却水流出的情况下,通过控制变频器的输出频率来调节冷却水流量,当中中央空调冷却水出水温度低时,减少冷却水流量;当中中央空调冷却水出水温度高时,加大冷却水流量,从而达到在保证中中央空调机组正常工作的前提下达到节能增效的目的。

现有的控制方式大都先确定一个冷却泵变频器工作的最小工作频率,将其设定为:

下限频率并锁定,变频冷却水泵的频率是取冷却管进、出水温度差和出水温度信号来调节,当进、出水温差大于设定值时,频率无极上调,当进、出水温差小于设定值时,频率无极下调,同时当冷却水出水温度高于设定值时,频率优先无极上调,当冷却水出水温度低于设定值时,按温差变化来调节频率,进、出水温差越大,变频器的输出频率越高;进、出水温差越小,变频器的输出频率越低。

2.3该中央空调节能系统具体装机清单如表二:

机组名称 机型 品牌 数量

冷冻水泵 45KW变频柜 ABB ACS800 两套

冷却水泵 75KW变频柜 ABB ACS800 两套

风机组 11KW变频柜 ABB ACS800 两套

室内风机 5.5KW变频柜 ABB ACS800 四套

配件 PLC 西门子S7300 一台

人机界面 西门子 一台

温度传感器 丹佛斯 两个

温度模块 欧姆龙 两个

数字转换模块 欧姆龙 两个

2.4介绍变频节电原理:

变频节能原理:由流体传输设备(水泵、风机)的工作原理可知:水泵、风机的流量(风量)与其转速成正比;水泵、风机的压力(扬程)与其转速的平方成正比,而水泵、风机的轴功率等于流量与压力的乘积,故水泵、风机的轴功率与其转速的三次方成正比(即与电源频率的三次方成正比)。变频器节能的效果是十分显著的,这种节能回报是看到见的。特别是调节范围大、启动电流大的系统及设备,通过图三可以直观的看出在流量变化时只要对转速(频率)稍作改变就会使水泵轴功率有更大程度上的改变,就因此特点使得变频调速装置成为一种趋势,而且不断深入并应用于各行各业的调速领域。

根据上述原理可知:改变水泵、风机的转速就可改变水泵、风机的输出功率。

图中阴影部分为同一台水泵的工频运行状态与变频运行状态在随着流量变化所耗功率差。

2.5介绍系统电路设计和控制方式

根据中央空调系统冷却水系统的一般装机,建议在冷却水系统和冷冻水系统各装两套ABB ACS800一体化变频调速控制柜,其中冷却变频调速控制柜供两台冷却水泵切换(循环)使用,冷冻变频调速控制柜供两台冷冻水泵切换(循环)使用。变频节能调速系统是在保留原工频系统的基础上加装改装的,变频节能系统的联动控制功能与原工频系统的联动控制功能相同,变频节能系统与原工频系统之间设置了联锁保护,以确保系统工作安全。利用变频器、人机界面、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量,为了达到节能目的提供了可靠的技术条件。如图四所示:

2.6系统主电路的控制设计

根据具体情况,同时考虑到成本控制,原有的电器设备尽可能的利用。冷冻水泵及冷却水泵均采用一用一备的方式运行,因备用泵转换时间与空调主机转换时间一致,均为一个月转换一次,切换频率不高,决定将冷冻水泵和冷却水泵电机的主备切换控制利用原有电器设备,通过接触器、启停按钮、转换开关进行电气和机械互锁。确保每台水泵只能由一台变频器拖动,避免两台变频器同时拖动同一台水泵造成交流短路事故;并且每台变频器任何时间只能拖动一台水泵,以免一台变频器同时拖动两台水泵而过载。

2.7系统功能控制方式

上位机监控系统主要通过人机界面完成对工艺参数的检测、各机组的协调控制以及数据的处理、分析等任务,下位机PLC主要完成数据采集,现场设备的控制及连锁等功能。具体工作流程:开机:开启冷水及冷却水泵,由PLC控制冷水及冷却水泵的启停,由冷水及冷却水泵的接触器向制冷机发出联锁信号,开启制冷机,由变频器、温度传感器、温度模块组成的温差闭环控制电路对水泵进行调速以控制工作流量,同时PLC控制冷却塔根据温度传感器信号自动选择开启台数。当过滤网前后压差超出设定值时,PLC发出过滤堵塞报警信号。送风机转速的快慢是由回风温度与系统设定值相比较后,用PID方式控制变频器,从而调节风机的转速,达到调节回风温度的目的。停机:关闭制冷机,冷水及冷却水泵以及冷却塔延时十五分钟后自动关闭。保护:由压力传感器控制冷水及冷却水的缺水保护,压力偏低时自动开启补水泵补水。

2.8介绍系统节能改造原理

1、对冷冻泵进行变频改造控制原理说明如下:PLC控制器通过温度模块及温度传感器将冷冻机的回水温度和出水温度读入控制器内存,并计算出温差值;然后根据冷冻机的回水与出水的温差值来控制变频器的转速,调节出水的流量,控制热交换的速度;温差大,说明室内温度高系统负荷大,应提高冷冻泵的转速,加快冷冻水的循环速度和流量,加快热交换的速度;反之温差小,则说明室内温度低,系统负荷小,可降低冷冻泵的转速,减缓冷冻水的循环速度和流量,减缓热交换的速度以节约电能;

2、对冷却泵进行变频改造由于冷冻机组运行时,其冷凝器的热交换量是由冷却水带到冷却塔散热降温,再由冷却泵送到冷凝器进行不断循环的。

冷却水进水出水温差大,说明冷冻机负荷大,需冷却水带走的热量大,应提高冷却泵的转速,加大冷却水的循环量;温差小,则说明,冷冻机负荷小,需带走的热量小,可降低冷却泵的转速,减小冷却水的循环量,以节约电能。

3、冷却塔风机变频控制通过检测冷却塔水温度对冷却塔风机进行变频调速闭环控制,使冷却塔水温度恒定在设定温度,可以有效地节省风机的电能额外损耗,能达到最佳节电效果。

4、室内风机组变频控制通过检测冷房温度对变风机组的风机进行变频调速闭环控制,实现冷房温度恒定在设定温度。室内风机组变频控制后可达到理想的节电效果,并且空调效果较佳。2.5系统流量、压力保障

本方案的调节方式采用闭环自动调节控制,冷却水泵系统和冷冻水泵系统的调节方式基本相同,用温度传感器对冷却(冷冻)水在主机上的出口水温进行采样,转换成电量信号后送至温控器将该信号与设定值进行比较运算后输出一类比信号(一般为4—20MA、0—10V等)给PLC,由PLC、数模转换模块、温度传感器、温度模块进行温差闭环控制,手动/自动切换和手动频率上升、下降由PLC控制,最后把数据传关到上位机人机界面实行监视控制。变频器根据PLC发出的类比信号决定其输出频率,以达到改变水泵转速并调节流量的目的。冷却(冷冻)水系统的变频节能系统在实际使用中要考虑水泵的转速与扬程的平方成正比的关系,以及水泵的转速与管损平方成正比的关系;在水泵的扬程随转速的降低而降低的同时管道损失也在降低,因此,系统对水泵扬程的实际需求一样要降低;而通过设定变频器下限频率的方法又可保证系统对水泵扬程的最低需求。供水压力的稳定和调节量可以通过PID参数的调整。当供水需求量减少时,管道压力逐渐升高,内部PID调节器输出频率降低,当变频器输出频率低至0HZ时,而管道在一设定时间内还高于设定压力,变频器切断当前变频控制泵,转而控制下一个原工频控制泵,变频器在水泵控制转换过程中,逐渐轮换使用水泵,使每个水泵的利用率均等,增加系统、管道压力的稳定性和可靠性。

五、中央空调系统进行变频改造的优点

变频节能改造后除了可以节省大量的电能外还具有以下优点:、只需在中中央空调冷却管出水端安装一个温度传感器(如图,安装在冷却水系统中中央空调冷却水出水主管上的B处),简单可靠。、当冷却水出水温度高于温度上限设定值时,频率直接优先上调至上限频率。3、当冷却水出水温度低于温度下限设定值时,频率直接优先下调至下限频率。而采用冷却管进、出水温度差来调节很难达到这点。4、当冷却水出水温度介于温度下限设定值与温度上限设定值时,通过对冷却水出水温度及温度上、下限设定值进行PID计算,从而达到对频率进行无极调速,闭环控制迅速准确。、节能效果更为明显。当冷却水出水温度低于温度上限设定值时,采用冷却管进、出水温度差来调节方式没有将出水温度低这一因素加入节能考虑范围,而仅仅由温度差来对频率进行无极调速,而采用上、下限温度来调节方式充分考虑这一因素,因而节能效果更为明显,通过对多家用户市场调查,平均节电率要提高5 %以上,节电率达到20 %以上。

额定电流变化,减小了大电流对电机的冲击;

六、ABB ACS800系列一体化变频器的优点 1.采用独特的空间矢量(SVPWM)调制方式; 2.操作简单,具有键盘锁定功能,防止误操作; 3.内置PID功能,可接受多种给定、反遗信号;

4.具有节电、市电和停止三位锁定开关,便于转换及管理; 5.保护功能完善,可远程控制;

6.超静音优化设计,降低电机噪声;

7.安装比较方便,不用破坏原有的配电设施及环境; 8.稳定整个系统的正常运行,抗干扰能力强;

9.具有过载、过压、过流、欠压、电源缺相等自动保护功能及声光报警功能。

七、结束语

在科技日新月异的今天,积极推广变频调速节能技术的应用,使其转化为社会生产力,是我们工程技术人员应尽的社会责任。对落后的设备生产工艺进行技术革新,不仅可以提高生产质量、生产效率,创造可观的经济效益。对节能、环保等社会效益同样有着重要的意义。随着变频器应用普及时代的来临,我公司已将变频器的应用扩展到传统中央空调改造的领域,不仅扩大了变频器的应用市场,而且为中央空调应用也提出了新的课题。预计在不久的将来,由于变频调速技术的介入,中央空调系统将真正地进入经济运行时代,希望上述工作对于同仁们在传统的电气传动设备技术改造和推进高新技术产品的普及应用工作中能有所启示和借鉴。

第二篇:中央空调系统变频节能改造方案

中央空调系统变频节能改造方案

点击数: 465

刘佳畅

摘要 在我国经济快速发展的大背景下,能源(水、电、油)的消耗在企业中所占的比重越来越高,也受到愈来愈大的重视。同时由于房地产的快速发展需求,中央空调的市场需求呈现强劲的增长趋势。在市场容量不断增大的吸引下,越来越多的厂家加入到商用中央空调的领域。变频技术应用于中央空调系统,对提升中央空调自动化水平、降低能耗、减少对电网的冲击、延长机械及管网的使用寿命,都具有重要的意义。

关键字 中央空调系统;水泵;风机;变频器

Abstract

Keywords 概述

中央空调系统在现代企业及生活环境改善方面极为普遍,而且是某些生活环境或生产工序中所必须配备的,即所谓人造环境,不仅是温度的要求,还有湿度、洁净度等。之所以要求配置中央空调系统,目的在于提高产品质量,提高人的舒适度,而且集中供冷供热效率高,便于管理,节省投资等。为此,几乎所有企业、高层商厦、商务大楼、会场、剧场、办公室、图书馆、宾馆、商场、超市、酒店、娱乐场、体育馆等中大型建筑上都采用中央空调,它是现代大型建筑物不可缺少的配套设施之一,但由于它的电能消耗非常之大,是用电大户,几乎占了用电量的50%以上,因此其日常开支费用很大。

中央空调系统都是按最大负载并增加一定余量设计的,而实际上在一年中,满负载下运行最多只有十多天,甚至十多个小时,绝大部分时间负载都在70%以下运行。通常,中央空调系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷却泵却不能自动调节负载,几乎长期在100%负载下运行,造成了能量的极大浪费,也恶化了中央空调的运行环境和运行质量。

随着变频技术的日益成熟,利用变频器、PLC、D/A转换模块、温度传感器、温度模块等部件的有机结合,可构成温差闭环自动控制系统,自动调节水泵的输出流量。采用变频调速技术不仅能使商场室温维持在所期望的状态,让人感到舒适满意,使整个系统工作状态平缓稳定,更重要的是其节能效果高达30%以上,能带来很好的经济效益。中央空调系统构成及工作原理

如图1所示,中央空调系统主要由以下几个部分组成。2.1 冷冻机组

通往各个房间的循环水经由冷冻机组进行“内部热交换”作用,使冷冻水降温为5~7℃。并通过循环水系统向各个空调点提供外部热交换源。内部热交换产生的热量,通过冷却水系统在冷却塔中向空气中排放。内部热交换系统是中央空调的“制冷源”。2.2 冷冻水塔

用于为冷冻机组提供“冷却水”。2.3 “外部热交换”系统

此系统由两个循环水系统组成:

1)冷冻水循环系统由冷冻泵及冷冻管道组成。

从冷冻机组流出的冷冻水由冷冻泵加压送入冷冻水管道,在各个房间内进行热交换,带走房间内的热量,使房间内的温度下降;

2)冷却水循环系统由冷却泵、冷却水管道及冷却塔组成。冷冻机组进行热交换,使水温冷却的同时,必将释放大量的热量,该热量被冷却水吸收,促使冷却水温度升高,冷却泵将升了温的冷却水压入水塔,使之在冷却塔中与大气进行热交换,然后再将降了温的冷却水,送回到冷冻机组,如此不断循环,带走冷冻机组所释放的热量。

2.4 冷却风机

1)室内风机安装于所有需要降温的房间内,用于将由冷冻水冷却了的冷空气吹入房间,加速房间内的热交换。2)冷却塔风机用于降低冷却塔中的水温,加速将“回水”带回的热量散发到大气中去。

中央空调系统的四个部分都可以实施节电改造,但冷冻水机组和冷却水机组改造后的节电效果最为理想。因此我们将重点阐述对冷冻机组和冷却机组的变频调速技术改造,次要说明冷却风机的变频调速技术改造。3 中央空调系统变频改造的具体方案

现将淅江省嘉兴市某集团公司办公楼的中央空调系统的变频节能改造方案做一具体介绍。3.1 中央空调原系统存在的问题

该集团中央空调系统改造前的主要设备和控制方式:

1)450 t冷气主机2台,型号为特灵二极式离心机,两台并联运行; 2)冷冻水泵2台,扬程28 m,配用功率45 kW;

3)冷却水泵有2台,扬程35m,配用功率75 kW,冷冻水泵与冷却水泵均采用一用一备的方式运行; 4)冷却塔2台,风扇电机11 kW,并联运行,室内风机4台,5.5 kW,并联运行。

该集团是一家合资企业,为了给员工营造一个良好的工作环境,办公楼大部分空间采用全封密的模式,因此公司大部分空间自然通风效果不好,所以对夏季冷气质量的要求较高。除了一些节假日外,其它时间中央空调都是全开的。由于中央空调系统设计时按天气最热、负荷最大时设计,且留有10%~20%的设计余量。其中冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应的调节。这样,冷冻水、冷却水系统几乎长期在大流量、小温差的状态下运行,造成了能量的极大浪费。原系统中冷冻、冷却水泵采用的均是Y-△起动方式,电机的起动电流均为其额定电流的3~4 倍,在如此大的电流冲击下,接触器的使用寿命大大下降;同时,启动时的机械冲击和停泵时的水锤现象,容易对机械部件、轴承、阀门和管道等造成破坏,从而增加维修工作量、维修费用,设备也容易老化。

另外,由于冷冻泵轴输送的冷量不能跟随系统实际负荷的变化,其热力工况的平衡只能由人工调整冷冻主机出水温度,结果只能是用大流量获得小温差。这样,不仅浪费能量,也恶化了系统的运行环

境与运行质量。特别是在环境温度偏低、某些末端设备温控稍有失灵或灵敏度不高时,将会导致大面积空调室温偏冷,感觉不适,严重干扰中央空调系统的运行质量。

针对上述实际情况,对该集团的中央空调系统实施了利用变频器、人机界面、PLC、数模转换模块、温度模块、温度传感器等构成的温差闭环自动调速系统的方案。主要对冷冻、冷却水泵进行了变频调速技术改造,达到节约电能、稳定系统、延长设备寿命,提高环境舒适度的目的。3.2 中央空调系统节能改造的具体方案

对该中央空调节能系统进行变频节能改造的具体装机清单如表1所列。

3.2.1 变频节电原理

由流体传输设备(水泵、风机)的工作原理可知:水泵、风机的流量(风量)与其转速成正比;水泵、风机的压力(扬程)与其转速的平方成正比;而水泵、风机的轴功率等于流量与压力的乘积,故水泵、风机的轴功率与其转速的三次方成正比(即与电源频率的

三次方成正比)。变频器节能的效果是十分显著的,这种节能回报是看得见的。特别是调节范围大、启动电流大的系统及设备,通过图2 可以直观地看出在流量变化时只要对转速(频率)稍作改变就会使水泵轴功率有更大程度上的改变,此特点使得使用变频器进行调速成为一种趋势,而且不断深入并应用于各行各业的调速领域。根据上述原理可知:改变水泵、风机的转速就可改变水泵、风机的输出功率。

图中阴影部分为同一台水泵的工频运行状态与变频运行状态在随着流量变化所消耗的功率差。3.2.2 系统电路设计和控制方式

根据中央空调系统冷却水系统的一般装机形式,建议在冷却水系统和冷冻水系统各装两套传动之星SD-YP 系列一体化变频调速控制柜,其中冷却变频调速控制柜供两台冷却水泵切换(循环)使用,冷冻变频调速控制柜供两台冷冻水泵切换(循环)使用。变频节能调速系统是在保留原工频系统的基础上改装的,变频节能系统的联动控制功能与原工频系统的联动控制功能相同,变频节能系统与原工频系统之间设置了联锁保护,以确保系统工作安全。利用变频器、人机界面、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量,为达到节能的目的提供了可靠的技术条件。如图3所示,给出了主电路具体的改造方案。

3.2.3 系统主电路的控制设计

根据具体情况,同时考虑到成本控制,尽可能地利用原有的电器设备。冷冻水泵及冷却水泵均采用一用一备的运行方式,因备用泵转换时间与空调主机转换时间一致,切换频率不高,所以冷冻水泵和冷却水泵电机的主备切换控制利用原有电器设备,通过接触器、启停按钮、转换开关进行电气和机械互锁。确保每台水泵只能由一台变频器拖动,避免两台变频器同时拖动同一台水泵造成交流短路事故;并且每台变频器任何时间只能拖动一台水泵,以免一台变频器同时拖动两台水泵而过载。3.2.4 系统功能控制方式

上位机监控系统主要通过人机界面完成对工艺参数的检测,各机组的协调控制以及数据的处理、分析等任务;下位机PLC主要完成数据采集,现场设备的控制及联锁等功能。具体工作过程中,开机时,开启冷水及冷却水泵,由PLC控制冷水及冷却水泵的启停,由控制冷水及冷却水泵的接触器向制冷机发出联锁信号,开启制冷机,由变频器、温度传感器、温度模块组成的温差闭环控制电路对水泵进行调速以控制工作流量,同时PLC控制冷却塔根据温度传感

器信号自动选择开启台数;当过滤网前后压差超出设定值时,PLC发出过滤堵塞报警信号;送风机转速的快慢是由回风温度与系统设定值相比较后,用PID方式控制变频器,从而调节风机的转速,达到调节回风温度的目的。停机时,关闭制冷机,冷水及冷却水泵以及冷却塔延时15 min 后自动关闭。保护时,由压力传感器控制冷水及冷却水的缺水保护,压力偏低时自动开启补水泵补水。

3.3 系统节能改造原理

变频节能系统示意图如图4所示。

1)对冷冻泵进行变频改造PLC控制器通过温度模块及温度传感器将冷冻机的回水温度和出水温度读入控制器内存,并计算出温差值;然后根据冷冻机的回水与出水的温差值来控制变频器的转速,调

节出水的流量,控制热交换的速度。温差大,说明室内温度高系统负荷大,应提高冷冻泵的转速,加快冷冻水的循环速度,加大流量,加快热交换的速度;反之温差小,则说明室内温度低,系统负荷小,可降低冷冻泵的转速,减缓冷冻水的循环速度,减小流量,降低热交换的速度以节约电能。

2)对冷却泵进行变频改造由于冷冻机组运行时,其冷凝器的热交换量是由冷却水带到冷却塔散热降温,再由冷却泵送到冷凝器进行不断循环的。冷却水进水出水温差大,说明冷冻机负荷大,需冷却水带走的热量大,应提高冷却泵的转速,加大冷却水的循环量;温差小,则说明,冷冻机负荷小,需带走的热量小,可降低冷却泵的转速,减小冷却水的循环量,以节约电能。

3)冷却塔风机变频控制通过检测冷却塔水的温度对冷却塔风机进行变频调速闭环控制,使冷却塔水温恒定在设定温度,可以有效地节省风机的电能额外损耗,能达到最佳节电效果。

4)室内风机组变频控制通过检测冷房温度对变风机组的风机进行变频调速闭环控制,实现冷房温度恒定在设定温度。室内风机组变频控制后可达到理想的节电效果,并且使空调效果更佳。

3.4 系统流量、压力保障

本方案的调节方式采用闭环自动调节控制,冷却水泵系统和冷冻水泵系统的调节方式基本相同,用温度传感器对冷却(冷冻)水在主机上的出口水温进行采样,转换成电量信号后送至温控器将该信号

与设定值进行比较运算后输出一模拟信号(一般为4~20 mA、0~10 V等)给PLC,由PLC、D/A转换模块、温度传感器、温度模块进行温差闭环控制,手动/自动切换和手动频率上升、下降由PLC控制,最后把数据传送到上位机人机界面实行监视控制。变频器根据PLC 发出的模拟信号决定其输出频率,以达到改变水泵转速并调节流量的目的。

冷却(冷冻)水系统的变频节能系统在实际使用中要考虑水泵的转速与扬程的平方成正比的关系,以及水泵的转速与管损平方成正比的关系。在水泵的扬程随转速的降低而降低的同时管道损失也在降 低,因此,系统对水泵扬程的实际需求一样要降低; 而通过设定变频器下限频率的方法又可保证系统对水泵扬程的最低需求。供水压力的稳定和调节量可以通过PID参数的调整。当供水需求量减少时,管道压力逐渐升高,内部PID调节器输出频率降低,当变频器输出频率低至0 Hz时,而管道在一设定时间内还高于设定压力,变频器切断当前变频控制泵,转而控制下一个原工频控制泵,变频器在水泵控制转换过程中,逐渐轮换使用水泵,使每个水泵的利用率均等,增加系统、管道压力的稳定性和可靠性。中央空调系统进行变频改造的优点

变频节能改造后除了可以节省大量的电能外还具有以下优点:

1)电机起动是软起动,电流从0 A到额定电流变化,减小了大电流对电机的冲击; 2)电机软起动转速从0 开始缓慢升速,可以有效减少水泵或风机的机械磨损;

3)变频器是高性能的电力电子设备,具有较强的电机保护功能,能延长系统各部件的使用寿命; 4)使室温维持恒定,让人感到舒适;

5)经过改造后,可以使系统具有较高的可靠性,减少了环境噪音,减少了维修维护工作量。5 传动之星SD-YP系列一体化变频器的优点 1)采用独特的空间矢量(SVPWM)调制方式; 2)操作简单,具有键盘锁定功能,防止误操作; 3)内置PID功能,可接受多种给定、反馈信号;

4)具有节电、市电和停止三位锁定开关,便于转换及管理; 5)保护功能完善,可远程控制; 6)超静音优化设计,降低电机噪声;

7)安装比较方便,不用改变原有的配电设施及环境; 8)稳定整个系统的正常运行,抗干扰能力强;

9)具有过载、过压、过流、欠压、电源缺相等自动保护功能及声光报警功能。6 结语

在科技日新月异的今天,积极推广变频调速节能技术的应用,使其转化为社会生产力,是我们工程技术人员应尽的社会责任。对落后的设备生产工艺进行技术革新,不仅可以提高生产质量、生产效率,创造可观的经济效益,对节能、环保等社会效益同样有着重要的意义。随着变频器应用普及时代的来临,不仅扩大了变频器的应用市场,而且为中央空调应用也提出了新的课题。预计在不久的将来,由于变频调速技术的介入,中央空调系统将真正地进入经济

运行时代,希望上述工作对于同仁们在传统的电气传动设备技术改造和推进高新技术产品的普及应用工作中能有所启示和借鉴。

第三篇:中央空调节能方案

中央空调节能方案

在建筑能耗中,中央空调能耗一般占到了40%——60%的比例,因此如何有效降低空调能耗就成为建筑节能的重中之重。

中央空调的节能可通过以下两种方法进行:

(1)管理节能:在保障建筑物舒适的前提下,通过对行为的约束管理或通过调整设备的不合理运行状态来达到节能的目的。

(2)技术节能:技术节能是通过先进的科学技术,通过对建筑物内用能设备的改进来达到节能的目的,技术节能有两种方法,一种是提高用能设备的效率,另一种是通过技术手段设备的调整运行状态,从而避免不必要的能源浪费。

总之,要想真正是实现建筑物的节能不仅要利用技术有段进行节能改造,而且还必须配合有效的管理节能手段,只有两者有效的配合才能达到节能的最大化。

一、管理节能

目前我国建筑内的中央空调系统大部分设计都趋于保守,存在配置过大,管理不便的现象,空调设计很少从节能的角度来进行考虑,这种状况无疑增加了中央空调的能耗。为了达到节能的效果,需要做到“功能适当,运行合理”,在保持舒适度的前提下,尽可能地降低能耗,同时应该有切实可行的管理手段,使得系统运行科学、合理,操作简单、方便。

要实现对重要空调的管理节能我们必须首先能够找到空调系统存在哪些能耗浪费的地方,设备存在怎样的不合理运行状态等,只有找到了原因,我们才能够找到相应的解决途径,因此,要想实现中央空调系统的节能,就必须对中央空调的系统进行节能诊断。

1、主机

空调主机是空调系统中装机容量最大的设备,物业部门一般对其维修保养都很重视,基本能做到运行状况的连续记录,但是记录数据往往没有用于指导设备的高效运行,为了有效地对中央空调进行诊断,我们可以根据运行记录的数据对系统存在的问题做出诊断。

在一般的电制冷主机运行记录表中,都会记录主机的蒸发温度和冷水出水温度,一般对于水冷方式的主机来说,蒸发温度要比出水温度低3——4℃,实际值若超出这个数值,则说明蒸发器或制冷剂有问题,应注意检修。同时,一般冷凝温度要比冷却水出水温度高2——4℃,若实际运行情况超出此值,大多是主机的冷凝器有问题,应注意及时清洗。

在实际的运行中往往出现这样的情况:冷水的供回水温差在2——3℃之间,说明空调末端符合不大,但是冷却水出水温度很高,且冷凝压力很高,导致主机的负荷在90%以上。这种情况基本是冷凝器出了问题,在进行及时清理后,主机的负荷会大幅度下降,节约大量的能耗。

另外,通过记录主机的冷冻水流量、供回水温度,及压缩机电流等参数的监测,我们就可以计算出主机的性能系数cop,并可以对主机的运行效率有一个大致的判断。如果主机的运行效率过低,将会导致能源的浪费,对此应该找出原因并加以改善。

对主机的节能诊断,还要观察不运行的冷冻机的水阀是否关闭,若阀门不关将会导致回水箱的部分热水经过该主机旁通到了供水箱,在供水箱内发生了冷水跟热水混合的现象,这样将会导致大量的能源浪费。

同理,冷冻水分水箱和集水箱之间的旁通阀若处于未关状态,或者存在一台冷机对开两台冷冻泵的现象时,也会出现冷热水混合的现象,导致能源的浪费,这个问题应引起我们的注意。

2、冷却水

在实际的冷却水运行中往往存在着不运行冷却塔的阀门不关的情况,这样造成的后果是热水经过该冷塔后与其他正常运行的冷却塔的冷水混合,进入了主机,导致主机冷凝器的进水温度偏高,主机的cop减小,主机的能耗增加,浪费大量能源。解决该问题的办法是将不运行的冷塔的进出水阀门关掉。

另外,通常吸收式空调主机因真空度降低或制冷剂污染造成制冷剂效率降低;冷却塔常因失修(如布水轮不转动)导致散热效率下降,主机或冷却塔的效率是否降低可按下述方法大致鉴别:

(1)主机输出制冷量减少(冷冻水运行供水温度大于设置温度);

(2)冷却水进水温度高,主机曾报警,冷却水进出口温差小于5℃;

(3)冷冻水供水温度高,末端用户曾报热投诉,冷冻水供回水温差小于5℃。

如果主机或冷却塔出现了效率降低的情况,就应及时维修,以免造成能源浪费。

3、冷冻水

目前的冷冻水系统中,往往存在着水泵选型过大的问题,造成的结果是,一方面功率偏大造成能耗的浪费,另一方面是水泵偏离标准工况运行,导致水泵长期工作在低效区,水泵效率偏低导致能源的浪费,此种情况解决的办法是更换水泵或者采用变频调速的手段来实现节能。

冷冻水管路如果存在水力不平衡问题将会使整个系统的能耗增加。一般空调运行中存在一个误区,认为空调末端效果差是由于总水量偏小,所以往往会通过增加水泵开启台数或者换大流量水泵来解决。但实际的原因大多是由于工程竣工后空调水系统从未做过水力平衡,导致部分末端数量不足,而部分末端水量过剩,而工作人员往往为了满足水量不足这部分末端的换热要求,只能增大总水量,从而使得其他末端的水量变大,白白浪费了一些能源。

因此,冷冻水流量分配诊断内容应该为测量系统各分支的冷冻水量和进回水温度,从而判断各分支冷量的提供情况,一次判断系统是否存在水力不平衡现象。

对水力不平衡的解决方法是:找出水力不平衡的原因,如果是因为个别风机盘管支路堵塞,可对此修复;若因局部末端负荷水压不足,应考虑采用调整水力平衡调节阀或增加小型管道泵的可能性。

二、技术节能

以上介绍的是通过行为管理来达到节能的目的,事实证明这是一种最简单有效的节能方式,在某种程度上可以达到一定的节能效果,但是管理节能的方式也有一定的局限性,因为它不能从根本上解决中央空调所存在的巨大能源浪费问题。

一般来说,中央空调系统的设计通常按建筑物所在地的极端气候条件来计算其最大冷负荷(或最大热负荷),并由此确定空调主机的装机容量及空调水系统的供水流量。然而,实际上每年只有极短时间出现最大冷负荷(或最大热负荷)的情况。因此,中央空调系统在绝大部分时间里,都是在部分负荷(远小于其额定容量)条件下运行。据统计,实际空调负荷平均只有设备能力的50%左右,因而出现了“大马拉小车”的现象,这无疑造成了大量的能源白白浪费。

另一方面,空调负荷又具有变动性。由于受季节交替、气候变幻、昼夜轮回、使用变化及人流量增减等各种因素变化的影响,中央空调系统的负荷具有起伏变化和不恒定的特点。如果中央空调的运行方式不能根据负荷的变化而调节,始终在额定容量(即满负荷状态)下运行,势必造成巨大的能源浪费。

随着科技的发展,现在,不少空调主机已能够根据负荷变化自动随之减载或加载,但输送空调水(冷冻水和冷却水)的水泵如果不能跟随负荷的变化做出相应的调节,始终在额定功率下运行,仍然会造成输送能量的很大浪费。

目前,国内的中央空调系统,由于没有先进的技术手段支持,基本上都采用传统的定流量控制方式,即空调冷冻(温)水流量、冷却水流量和冷却风风量都是恒定的。也就是说,只要启动空调主机、冷冻水泵、冷却水泵和冷却塔风机都在工频状态下运行。

定流量控制方式的特征是系统的循环水量保持定值不变,当负荷变化时,通过改变供水或回水温度来匹配,定流量供水方式的优点是系统简单,不需要复杂的控制设备。但这种控制方式存在以下问题:

(1)无论末端负荷大小如何变化,空调系统均在设计的额定状态下运行,系统能耗始终处于设计的最大值,能源浪费很大。

(2)舒适型空调系统是一个多参量、非线性、时变性的复杂系统,由于末端负荷的频繁波动,必然造成系统循环溶液(载冷剂、冷却剂、制冷剂溶液)的运行参量偏离空调主机的最佳工作状态,导致主机热转换效率(cop值)降低,系统长期在低效率状态下运行,也会增加系统的能源消耗。

为了解决中央空调的能源浪费问题,社会各界都已开始研究中央空调系统的节能途径,希望通过先进的技术手段来实现节能。目前主要的节能控制思想主要有以下几种:

1、水泵变频节电

直接在水泵电机前加装变频器通过人工调整频率,去除水泵余量而节能。

2、简单pID变频控制

利用压差或温差作为控制参量,采用pID(比例、积分、微分)算法控制变频器工作频率,使水泵流量跟随负荷变化,从而达到水泵节能的目标。

(1)恒压差控制

中央空调冷冻水系统的恒压差控制原理图

在冷冻水系统供、回水总管间设置水力压差传感器,通过检测压差△p控制变频器,为水泵提供变速调节。

其控制原理是以保持冷冻水供、回水压差的恒定为依据,来调节用户侧冷冻水的供水流量,从而达到节能的目的,其控制过程如下:

当空调实际负荷减少时,随着末端众多二通阀的关闭,冷冻水供、回水压差会增大(偏离了设定值),压差传感器检测出压差的变化后,将信息传送到变频器,变频器的输出频率随之降低。是冷冻水泵电机转速降低,供水流量减少,使冷冻水供、回水压差减少并回到设定值,系统用户侧进入低流量状态。由于水泵电机转速降低,从而达到节约电能的目的。

反之当空调实际负荷增加时,随着末端众多二通阀开启,冷冻水供、回水压差会变小(偏离了设定值),压差传感器检测出压差的变化后,将信息传送到变频器,变频器的输出频率随之升高,使冷冻水泵电机转速提高,高水流量增加,是冷冻水供、回水压差增大并重新趋于设定值,系统用户侧进入新的流量运行状态。

(2)恒温差控制

中央空调水系统的恒温差控制原理图

在水系统供、回水总管上分别设置温度传感器T出和T入,通过pLC检测供、回水温差△T的变化来控制变频器,为水泵提供变速调节。

其控制原理是以保持供、回水温差的恒定为依据,来调节用户侧水系统的供水流量,从而达到节能的目的。其控制过程如下:

采用恒温差对空调系统的水泵电机进行控制,它根据需要设定水系统的正常工作温差,并给出最高和最低的运行水温差,在此范围内,可人工调节所需的运行温差。

当空调实际负荷减少时,随着末端众多二通阀的关闭,水系统供、回水温差会变小(偏离了设定值),pLC检测出温差的变化后,经比例积分微分(pID)运算并控制变频器的输出频率随之降低,使水泵电机转速降低,供水流量减少,使供、回水温差增大并回到设定值,系统用户侧进入低流量运行状态,由于水泵电机转速的降低,从而达到节约电能的目的。

反之,当空调实际负荷增加时,随着末端众多二通阀的开启,水系统供、回水温差会增大(偏离了设定值),pLC检测出温差的变化后,经pID运算并控制变频器的输出频率随之升高,使水泵电机转速提高,供水流量加大,使供、回水温差减小并重新趋于设定值,系统用户侧进入新的流量运行状态。

以上所述的恒压差和恒温差控制方式都是依据单参量数据采集对系统进行比例、积分、微分(pID)控制。pID历史悠久、原理简单、使用方便、投资较低,在工业控制领域获得了极好的应用,具有较好的控制效果。但中央空调系统是一个十分复杂的系统,这种以压差或温差作为控制效果参量的pID调节,在中央空调控制中存在较大的局限性,主要在于:

没有全面采集空调系统的运行参数,也没有对空调系统各个环节进行全面控制,系统设计是有局限性的、不完整的,不可能实现系统综合优化与最佳节能。

比例积分微分(pID)控制中最重要的工程参数比例系统K、积分时间常数TI和微分时间常数TD,一旦选定后,如果人不去调节,它是不定不变的,不可能跟随受控参量的变化而自动调整。也就是说,工程参数整定之后,就用同一种参数去对付各种不同的运行工况。实际上,中央空调系统是一个时变性的动态系统,其运行工况受季节变化、气候条件、环境温度、人流量等诸多种因素的综合影响,是随时变化的,且始终处于波动之中。因此,静态参数的pID控制方法不可能达到最佳的控制效果。

pID工程参数的整定在很大程度上依赖于精确的数学模型,而中央空调系统是一个多变量的、复杂的、时变的系统,其过程要素之间存在着严重的非线性,大滞后及强耦合关系,一般难以获得精确的数学模型。对这样的系统,传统的pID控制很难实现较好的控制效果。实践证明,恒压差或恒温差的单参量控制,很容易引起水系统参量振荡,长时间都不能到达设定值的稳定状态,即影响了系统的稳定性,又降低了空调效果的舒适性。

由于中央空调系统的被控对象是空调区域内各个房间的温度场,它与空调系统进行热交换的工况相当复杂,制约因素太多。中央空调系统是一个时滞、时变、非线性、多参量且参量之间耦合很强的复杂系统。其复杂性表现为:

结构的高度复杂性;

环境和符合特性的高度不确定性,导致控制参数不易在线调节;

大时滞,多个惯性环节;

大惰性;

高度非线性;

多变量,时变性,复杂的信息结构。

这些都是难以用精确的数学模型或方法来描述,因此,基于精确模型的传统控制难以解决这种复杂系统的控制。

3、智能模糊控制方式

对于中央空调这种复杂系统,很难用精确的数学模型进行描述,或者所得数学模型不是过于复杂就是较为粗糙,以精确性为主要特点的经典数学,对于这类控制问题往往难以奏效。

如果把人(操作人员、管理人员或专家)的操作经验、知识和技巧归纳成一系列的规则,存放在计算机中,使控制器模仿人的操作策略,就可以实现中央空调系统的人工智能模糊控制。其控制的基本思想就是按照中央空调主机所要求的最佳运行参数去控制中央空调系统的运行,根据系统的运行工况及制冷工质参数的变化,通过模糊控制器动态调整空调系统运行参数,确保空调主机施工处于优化的最佳工作点上,使主机始终保持具有高的热转换效率,有效地解决了传统中央空调系统在低负荷状态下热转换效率下降的难题,提高了系统的能源利用率。

中央空调系统是一个较复杂的系统工程,要实现中央空调系统的最佳运行和节能,从局部去解决问题(如采用通用变频器pID控制)是不可能办到的,必须针对空调系统的各个环节(包括主机、冷冻水系统、冷却水系统等)统一考虑,全面控制,使整个系统协调运行,才能实现最佳综合节能。

1)冷冻水系统蚕蛹最佳输出能量控制

当环境温度,空调末端负荷发生变化时,各路冷冻水供回水温度、温差、压差和流量亦随之变化,流量计、压差传感器和温度传感器将检测到的这些参数送至模糊控制器,模糊控制器依据所采集的实时数据及系统的历史运行数据,实时计算出末端空调负荷所需的制冷量,以及各路冷冻水供回水温度、温差、压差和流量的最佳值,并以此调节各变频器输出频率,控制冷冻水泵的转速,改变其流量使冷冻水系统的供回水温度、温差、压差和流量运行在模糊控制器给出的最优值。

(2)冷却水系统采用系统效率最佳控制

当环境温度,空调末端负荷发生变化时,中央空调主机的负荷率将随之变化,主机的效率也随之变化。

由于主机效率与冷却水入口温度有关,冷却水入口温度降低,有利于提高主机效率,降低主机能耗。但冷却水温度降低,将导致冷却水泵和冷却塔的能耗升高。因此,只有将主机能耗、冷却水泵能耗、冷却塔风机能耗三者统一考虑,才能找到一个系统最佳效率点,是整个制冷系统能效比最高。

要达到系统效率最佳控制,冷却水入口温度应随室外气温变化进行动态调节。

(3)系统控制原理图

当中央空调系统负荷变化造成空调主机及其水系统偏离最佳工况时,模糊控制器根据数据采集得到各种运行参数值,如系统供回水温度等,经推理运算后输出优化的控制参数值,对系统运行参数进行动态调整,确保主机在任何负荷条件下,都有一个优化的运行环境,始终处于最佳运行工况,从而保持效率(cop)最高,能耗最低,实现主机节能10%——30%,水泵系统节能60%以上,事实证明只能模糊控制方式是在空调控制领域最为先进的节能控制策略,该方式可以达到很好的节能效益和社会效益。

第四篇:宿舍生活热水系统节能改造方案

宿舍生活热水系统节能改造方案

一、项目概况

深圳市卓益节能设备有限公司利用自主研发的卓益中央热水机及控制系统,推出中央热水节能解决方案。方案可完全替代各类型热水锅炉。产品广泛用于宾馆、酒店、洗浴中心、学校、机关、住宅公寓、医院等需要需要大量生活热水的场所。可完全全替代吨以下的小型热水锅炉。也可作为太阳能、空气能热泵的辅助供热,以弥补太阳能、空气能热泵难以在低温下供热的情况。具有出热水速度快、节能环保、自动控制无需专人值守、山水量配置灵活、检修方便等优点。经济性和环保性能远优于普通锅炉(无须办理繁杂的消防安检手续和特许使用证件)可单机或联机模块组合使用,是替代锅炉、电煤等传统供热设备节能改造的最佳产品。

二、公司简介

深圳市卓益节能环保设备有限公司是业内技术领先的综合节能解决方案提供商。公司通过为酒店、宾馆、桑拿洗浴、餐饮、食品加工、机关、学校、医院等企事业单位提供供热、供暖、供蒸汽、供开水解决方案及相关产品,解决传统煤电供热设备环境污染严重和能源利用效率低下等问题。卓益节能拥有业界最完整的燃气节能产品和节能综合解决方案,通过全系列的节能蒸汽机、节能热水机、节能开水机、节能汤桶、节能油炸机等产品和节能综合解决方案及服务,灵活满足不同行业、不同客户的差异化需求。

卓益公司坚持以持续技术创新为客户不断创造价值,公司研发团队由具有国内领先的热交换技术专家、设计工程师组成,凭借研发成员多年的供暖、供热、供蒸汽、锅炉从业背景,结合最新的软件技术、先进的企业管理理念,形成业内一流的研发和管理团队。研发中心在引进国外尖端技术的同时,结合国内行业应用经验,经过多年潜心实验、摸索、研发改进,推出业内领先的六大系列燃气节能产品。产品采用先进的计算计辅助设计和仿真软件,整机一体化成型、模块化设计。公司拥有激光切割、CNC机加中心、自动喷涂等先进生产设备,通过先进的工业化设计和生产方式,为客户提供高质量的产品。

相对于传统的煤电加热设备,卓益公司节能产品的节能率达30%~60%,节能蒸汽机、节能热水机、节能开水机、中央开水系统、节能汤桶等系列产品采用模块化设计,具有一键式操作、自动化控制、安全可靠、易维护、长寿命、低运行成本等特点。设备常压工作,无须办理繁杂的高压容器使用许可证,无需专人值守,无需专用机房。协助客户从人力配置、场地要求、使用成本、设备成本、维护成本五大方面减少投入、增加效益。

经营范围:节能热水机、中央热水机、商用热水机、节能中央开水机、节能蒸汽设备、供暖热水设备、节能燃气具的研发、销售、及上门安装,国内贸易,合同能源管理,节能工程的设备,软件系统集成。

主营产品或服务:炊事设备, 其他节能设备, 其他锅炉及配件, 生活饮用水处理设备

三、中央热水机系统原理

燃气节能中央热水机/炉系列,整机由燃气电磁阀(可调节控制火力大小)、不锈钢高效燃烧器、电子脉冲点火器、不锈钢盘管换热器、强排抽风机、智能控制总成、安全保护装置等要件构成。使用液化石油气、天然气、人工煤气等气体燃料,运用最新燃烧热交换技术设计制造,热效率达95%以上,出水升温速度快,流量大,具有节能环保、不易结水垢、24小时不间断出水、自动控制无需专人值守、检修方便等优点。经济性和环保性能比远优于普通锅炉(无须办理繁杂的消防安检手续和特许使用证件)可单机或联机模块组合使用,单机每小时可供热水5吨(温升25度),是替代锅炉、电煤等传统供热设备节能改造的最佳产品。

产品广泛用于宾馆、酒店、洗浴中心、学校、机关、住宅公寓、医院、图书馆、商场、蔬菜大棚等需要大量生活热水或需要集中供暖、供热、生活分户式供暖、供热的各种场所。可完全替代2吨以下的小型锅炉。也可作为太阳能、空气能热泵的辅助供热,以弥补太阳能、空气能热泵难以在低温下供热的情况。

中央热水机功能特点:

1、操作方便:一键式开关,电子自动点火,随开随关,自动进水,使用方便;

2、开水供应量大:可连续不间断提供大量开水,单机最大可供应5吨热水,可多机并联使用,3、恒温控制:连续恒温开水输出,温度最高80度,任意可调;

4、噪音低:采用自然引风方式,比传统鼓风式降低噪音60%以上,小于国家标准26倍;

5、环保、低排放:CO的排放量仅为国家标准的0.0029%,低于国家标准69倍;

四、生活热水系统

根据公寓楼的布置情况,因地制宜将每栋公寓楼划分为各自热水系统,每栋楼单独为一个系统,地源热泵生活热水系统图如图1所示。

图1 每栋公寓楼有约300间宿舍,住宿学生1500人,设计热水需求量为每人50升/天,学生使用热水系数为0.6,4栋公寓楼总共热水需求量为180吨左右。室内热水供水管网设计。

热水供水管网主要用于将热水从机房保温水箱输送至每个宿舍供学生使用,宿舍内热水供水管网如图2所示。

图2 每栋宿舍的热水供水管网都设计采用上供下回的供回方式,供回水管采用同程连接,保证每个宿舍学生一打开热水阀便有热水。每个宿舍安装一套预付费热水计量系统,学生均需通过自己的校园一卡通按预设的单价购置热水后方可使用,学生用水按流量计费,用多少水收多少费,避免纠纷,

第五篇:山东大学主教学楼中央空调节能改造工程

山东大学主教学楼中央空调节能改造工程

摘要:针对重庆大学主教学楼中央空调系统的特点和要求,我们将分层能量计量和用电计量集成到EA系统。EA能源顾问系统能够对重庆大学主教学楼的中央空调系统的运行信息的全面采集及综合分析处理,实现冷水机组与冷冻水系统、冷却水系统和冷却塔系统的匹配和协调运行,实现变负荷工况下整个系统综合性能优化,可保障冷机控制系统在任何负荷条件下,都高效率地运行,最大限度地降低整个系统的能耗。

关键词:山东大学,主教学楼,中央空调,节能改造

Abstract: aiming at the main teaching chongqing university of the central air conditioning system characteristics and requirements, we will be layered energy measurement and electricity meters integrated to EA system.EA energy adviser to chongqing university system to the main teaching of the central air conditioning system operation of information collection and comprehensive analysis and processing of comprehensive, realize water chillers and chilled water system, cooling water system and cooling tower system matching and harmoniously, realize the variable load conditions the whole system comprehensive performance optimization, guaranteeing cold machine control system in any load conditions, high efficiency operation, maximize reduce the energy consumption of the whole system.Keywords: shandong university, the main teaching building, central air conditioning, energy saving transformation

中图分类号:TE08文献标识码:A 文章编号:

主教学楼中央空调节能改造概况及分析

1、改造概况

山东大学主教学楼是集教学、科研、办公、会议于一体的综合性大楼,位于重庆大学A区心脏地带,西邻经营学院,北临嘉陵江,南邻民主湖,总建筑面积70032平方米,建筑高低99米,分裙楼

一、裙楼二和塔楼三部分,地下三层,总空调面积37032平方米。

学校为了提高主教楼中央空调计量监控和节能经济运行,决定对相关系统进行节能改造,包括:

1、冷冻泵、冷却泵和冷却塔进行变频改造;

2、对冷机及控制系统进行节能改造;

3、对中央空调分楼层计量及楼层分项用电进行计量改造;

根据我们对项目的了解和实地的现场考察,我们发现此项目之前有一套机房控制系统,且为江森自控的产品系列,所以这个项目无论从硬件还是软件方面都非常适合应用我们的Energy Advisor能源管理系统,我们可以实现真正的无缝化通讯控制和能源计量。

从上述我们对该系统的了解可以得知:Energy Advisor能源管理系统是专门针对变频改造和冷机控制而设计的能源管理系统,Energy Advisor不仅通过先进、可转换的控制技术对控制系统进行优化,而且很重要的是它可以通过简洁、方便的可视化界面,能对整个系统的能源状态和节能情况有个直观的数字化计量,此系统比其它产品的出众之处也正是基于对整个能源系统的完整展示和计量分析。下面我们就具体方案进行详细阐述。

2、需求分析

2.1冷冻泵、冷却泵和冷却塔进行变频改造部分

我们根据系统的设计图纸要求,冷冻泵为2用2备,对其中的2台加装变频器,其功率为55KW, 冷却水泵为2用2备,对其中的2台加装变频器,其功率为75KW,循环泵为一用一备,对其中一台加装一台功率为22KW的变频器,水源热泵机组的水泵为2台,其中一台加装45KW的变频器,屋顶冷却塔风机共4台,分别加装3台22KW(5.5kw×5)的变频器,一台11KW(5.5kw×2)变频器,我们将变频器控制柜就近安放在启动柜附近,以方便安装和管理。

2.2对冷机及控制系统的节能改造

重庆大学冷水机组共4台,冷冻水循环泵6台,冷却水循环泵6台,我们去现场对江森自控的冷机系统进行了检测,发现原来安装的设备全部完好并能正常使用,为了给用户节约成本,不造成重复投资,将保留现场完好的现场设备;但我们如果进行节能监测和节能改造还需要加装部分设备以对其能耗进行更好的监测,主要设备包括:在冷水机组和冷冻和冷却出水侧分别安装流量计,以监测冷机的水流量情况,在每台冷水机组加装功率表,对其耗能情况进行实时监视,功率表的数据可以连入控制系统,通过通讯线传输到网络,实时显示在机房Energy Advisor系统的控制屏中。在屋顶安装室外温湿度传感器,当室外温度较低时,用以控制进入制冷机组冷凝器的冷却水温度不低于主机要求的最低启动温度。

2.3对中央空调分楼层计量及楼层分项用电进行计量改造

根据要求和图纸所示,要求我们的系统对于中央空提提供能量进行分层统计,在每层的空调水系统的供回水管上需加装水管温度传感器监测供回水温差,同时在水管上加装水流量传感器,从而根据这两个参数计算出相应的负荷和耗能。在每层的配电柜线路上安装功率表,监测每层动力、插座和照明的用电量,功率表接入控制系统并传输到网络,空调系统和功率使用情况会最终显示在机房Energy Advisor系统的控制屏中,我们可以通过软件平台清楚明了的知道空调使用功率和耗电量的情况,并可以进行能耗分析、财务计费、趋势模拟和报表打印。

4、冷机系统控制策略

由现场控制器及网络控制引擎组成冷机控制网络,操作站通过以太网与群控网络连接,操作系统为微软WINDOWS系统,完全图形化操作,人机界面简洁直观,轻松实现系统数据显示及控制功能,且操作站故障不影响自控系统的运行。冷机控制系统原理图见附件。

系统机房监控内容一般包含以下几部分:

 在每台冷水机组、冷冻水泵、冷却水泵、冷却塔安装功率表,以提取一定周期内的功率消耗情况,从而为能源使用状态提供数据。

 监控每台冷水机组的冷冻水和冷却水两侧水温度、压力、水流开关状态、电动阀门状态,监控设备状态。

 在每台冷水机组的冷冻水侧安装水流量计,以监测冷冻水的水流量。

 在冷冻水泵、冷却水泵和冷却塔根据设备数量安装相应负荷的变频器,并安装水压力传感器,监测前后端压力。

 监测冷冻水总供回水、冷却水总供回水温度传。

 监测冷冻水分集水器分的压力,调控分集水器间的压差调节阀,使分集水器间的压力在规定范围内。

 监控主机、冷却塔、水泵等设备运行情况;其中冷冻机组、冷却塔相关的水泵和电动阀门、风扇的启停、运转台数完全由程序根据系统设置及负荷需求进行自动控制,无须人工干预,操作管理便捷、节省能源。

 系统内所有设备发生故障,在操作站即有报警信息及明显表示,程序自动启动备用设备,并不再试图启动故障设备,直至故障消除,报警复位。

连锁控制:

A、起动:首先开冷却塔碟阀→开冷却塔风机→开冷却水碟阀→开冷却水泵→开冷冻水碟阀→冷却水塔风机(延时60秒)→开冷冻水泵→最后开冷水机组

B、停止:首先停止冷水机组(延时5-10分钟)→关冷冻泵→关冷冻水碟阀→关冷却水泵→关冷却水碟阀→最后关冷却塔风机→关冷却塔碟阀

系统将自动记录单台冷水机组的累计运行时间,根据机组的累计运行状况来采取超前和滞后控制,尽量使冷水机组达到平均使用,便于用户进行统一的维护和保养。

控制系统将对上述冷水机组参数和状态全部进行监测,并及时的向用户提供机组当前的最新状况。当机组出现故障时,系统将显示故障的具体位置和具体原因,帮助用户尽快解决问题。

总结:

整个项目改造完毕,我们做到了整个系统做到了

1)实现了低频低压的软启动,软停车,使运行更加平衡;

2)启动及加速过程冲击电流小,加速过程中最大启动电流不超过1.5倍额定电流,大大减小了对电网的冲击;

3)节能效果显著,据实测,在低速段节能明显,一般可达30%左右,降低运行成本;

4)延长水泵的使用寿命;

5)所有系统实时监控,能源使用率最大化。

注:文章内所有公式及图表请用PDF形式查看。

下载中央空调系统节能改造方案word格式文档
下载中央空调系统节能改造方案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    集团机关中央空调系统节能运行改造技术总结(精选五篇)

    集团机关中央空调系统节能运行改造 技术总结 按设计我集团机关制冷系统有三台制冷机组,机组位于集团公司机关能源中心。两台RTHDD1D1E1型螺杆式冷水机组一用一备组合为一个子......

    空压机节能改造方案

    空压机节能改造方案 一, 前言 佛山今博自动化设备有限公司是一家专业于驱动控制系统研发、设计、生产与销售的高新技术企业。本公司在工业应用领域拥有丰富的经验和雄厚的技......

    中央空调系统

    中央空调系统由冷热源系统和空气调节系统组成。制冷系统为空气调 节系统提供所需冷量,用以抵消室内环境的冷负荷;制热系统为空气调节系统提供所需热量,以抵消室内环境的热负荷......

    粮油公司蒸汽系统节能改造

    粮油公司蒸汽系统节能改造 某粮油公司是一家日处理油料700吨的食用油生产企业。2011年,新建日处理油料350吨的色拉油车间。在进行蒸汽系统设计时,与我们苏州瑞克阀门的工程师......

    照明节能改造方案对比

    照明节能改造方案对比 根据照明灯具现场统计,现有照明用电功率为32.7750KW,按照车间24小时/天长明灯占50%,路灯与车间12小时/天照明占25%,生活与办公照明平均8小时/天照明占25%......

    空压机变频节能改造方案

    目 录 第一部分 变频节能改造背景 一、 基本情况 二、 变频调速技术 第二部分 空压机的改造缘由 一、 空压机介绍 二、 存在的主要问题 三、 变频改造的优点 第三部分 实......

    电梯节能设备改造方案

    电梯节能设备改造方案 ——前景光电DTDH电梯电能回馈装置改造为例 [导读] DTDH系列电梯电能回馈装置自动测量再生发电量的大小,并自动作出响应,用户除阈值外无需设定任何参数......

    房屋节能改造方案种类

    2013.9 砖 瓦世 界 科技纵横 SCIENCE & TECHNOLOGY 39 研究与探讨 0 引言 目前既有居住建筑普遍存在能耗高、效率低、围护结构保温隔热性能差、室内热环境恶劣、夏季空调耗......