第一篇:复杂最值问题剖析
复杂最值问题剖析
华图教育 王小欢
行测中有题目是一类常见的题目是最值问题,这类题目一般情况下包括三种:第一种为最不利构造,题目特征是至少„„保证„„,做题方法是找出最不利的情形然后再加1;第二种为多集合反向构造,题目特征是至少„„都„„,做题方法三步走:反向,求和,做差;第三种题目是构造数列,题目特征是最„„最„„,做题方法是构造出一个满足题目的数列。如果在平时练习或考试的过程中,遇到了这三种题目,可直接按照相应的方法进行求解。但是,还有一些最值问题并不像上面三种问题叙述的那么简单,往往涉及的项目还比较多,需要先进行分析讨论。遇到这样的题目怎么分析,举两个例子剖析一下。
【例1】一个20人的班级举行百分制测验,平均分为79分,所有人得分都是整数且任意两人得分不同。班级前5名的平均分正好是16到20名平均分的2倍。则班级第6名和第15名之间的分差最大为多少分?
A.34 C.40
B.37 D.43 【解析】求班级第6名和第15名之间的分差最大,则第6名的成绩要尽可能的接近第5名的成绩,且前5名的成绩差距要尽可能的小,即前6名成绩是连续的自然数,第15名的成绩要尽可能的接近第16名的成绩,且后5名的成绩差距要尽可能的小,即后6名的成绩是连续的自然数。又由于班级前5名的平均分正好是16到20名平均分的2倍,则前5名的成绩决定了后5名的成绩。而同时满足这些条件的数列有多组,则可以使前5名的成绩为100、99、98、97、96,则第6名的成绩为95,由此,后5名得成绩为51、50、49、48、47,则第15名得成绩为52,此时与平均分为79分不矛盾,所以第6名和第15名之间的分差最大为95-52=43。因此,本题答案选择D选项。
【例2】有20人测验及格率是95%,平均分88,得分都是整数并且每人得分都不相同,问排名第十的人得分最低是多少?
A.88 B.89 C.90 D.91 【解析】为了使得排名第十的人的分数尽可能的低,应当使得其余排名的人的分数尽可能高。根据及格率为95%可知,有一人未及格,而未及格的人的分数最高为59分。因此19名及格的考生总成绩为88×20-59=1701分。
前九人的分数最高分别为100分,99分,98分,97分,96分,95分,94分,93分,92分,因此第十至第十九人的分数总和为1701-(100+99+98+97+96+95+94+93+92)=837分。假设这十个人的分数分别为91分至82分,那么这十个分数的和为865分,比实际分数多了865-837=28分。如果第十个人的分数减去1分,那么其余九个人的分数依次减去1分,这样他们的总分就要减去10分。由此可见第十个人的分数只能减去2分达到89分,这样才使得十个人的分数总和可能为837分。如果第十个人的分数为88分,那么这十个人的分数总和最多为835分。因此第十个人的分数最低只能是89分。
通过这两个例子,大家会发现,这样的最值问题也不过是“纸老虎”,看起来题目比较长,跟问题直接相关的信息又比较少,一般思路是考虑问题的反面作为出发点,如“求班级第6名和第15名之间的分差最大,则第6名的成绩要尽可能的接近第5名的成绩”,再如“为了使得排名第十的人的分数尽可能的低,应当使得其余排名的人的分数尽可能高”,一步步,抽丝剥茧般形成习惯性的套路,这样的问题自然就迎刃而解了。
第二篇:初一数学 最值问题
专题19
最值问题
阅读与思考
在实际生活与生产中,人们总想节省时间或费用,而取得最好的效果或最高效益,反映在数学问题上,就是求某个量的和、差、积、商的最大值和最小值,这类问题被称之为最值问题,在现阶段,解这类问题的相关知识与基本方法有:
1、通过枚举选取.2、利用完全平方式性质.3、运用不等式(组)逼近求解.4、借用几何中的不等量性质、定理等.解答这类问题应当包括两个方面,一方面要说明不可能比某个值更大(或更小),另一方面要举例说明可以达到这个值,前者需要详细说明,后者需要构造一个合适的例子.例题与求解
【例1】
若c为正整数,且,,则()()()()的最小值是
.(北京市竞赛试题)
解题思路:条件中关于C的信息量最多,应突出C的作用,把a,b,d及待求式用c的代数式表示.【例2】
已知实数a,b满足,则的最小值是()
A.B.0
C.1
D.(全国初中数学竞赛试题)
解题思路:对进行变形,利用完全平方公式的性质进行解题.【例3】
如果正整数满足=,求的最大值.解题思路:不妨设,由题中条件可知=1.结合题意进行分析.【例4】
已知都为非负数,满足,记,求的最大值与最小值.(四川省竞赛试题)
解题思路:解题的关键是用含一个字母的代数式表示.【例5】
某工程车从仓库上水泥电线杆运送到离仓库恰为1000米的公路边栽立,要求沿公路的一边向前每隔100米栽立电线杆一根,已知工程车每次之多只能运送电线杆4根,要求完成运送18根的任务,并返回仓库,若工程车每行驶1千米耗油m升(在这里耗油量的多少只考虑与行驶的路程有关,其他因素不计).每升汽油n元,求完成此项任务最低的耗油费用.(湖北省竞赛试题)
解题思路:要使耗油费用最低,应当使运送次数尽可能少,最少需运送5次,而5次又有不同运送方法,求出每种运送方法的行驶路程,比较得出最低的耗油费用.【例6】
直角三角形的两条直角边长分别为5和12,斜边长为13,P是三角形内或边界上的一点,P到三边的距离分别为,,求++的最大值和最小值,并求当++取最大值和最小值时,P点的位置.(“创新杯”邀请赛试题)
解题思路:连接P点与三角形各顶点,利用三角形的面积公式来解.能力训练
A
级
1.社a,b,c满足,那么代数式的最大值是
.(全国初中数学联赛试题)
2.在满足的条件下,能达到的最大值是
.(“希望杯”邀请赛试题)
3.已知锐角三角形ABC的三个内角A,B,C满足A>B>C.用表示A-B,B-C,以及90-A中的最小值,则的最大值是
.(全国初中数学联赛试题)
4.已知有理数a,b,c满足a>b>c,且a+b+c=0,.那么的取值范围是
.(数学夏令营竞赛试题)
5.在式子中,代入不同的x值,得到对应的值,在这些对应的值中,最小的值是().A.1
B.2
C.3
D.4
6.若a,b,c,d是整数,b是正整数,且满足,,那么的最大值是().A.-1
B.-5
C.0
D.1
(全国初中数学联赛试题)
7.已知则代数式的最小值是().A.75
B.80
C.100
D.105
(江苏省竞赛试题)
8.已知,均为非负数,且满足=30,又设,则M的最小值与最大值分别为().A.110,120
B.120,130
C.130,140
D.140,150
9.已知非负实数,满足,记.求的最大值和最小值
(“希望杯”邀请赛试题)
10.某童装厂现有甲种布料38米,乙钟布料26米,现计划用这两种布料生产L,M两种型号的童装共50套,已知做一套L型号的童装需用甲种布料0.5米,乙种布料1米,可获利45元;做一套M型号的童装需用甲种布料0.9米,乙种布料0.2米,可获利30元,试问该厂生产的这批童装,当L型号的童装为多少套是,能使该厂获得利润最大?最大利润为多少?
(江西省无锡市中考试题)
第三篇:二次函数最值问题
《二次函数最值问题》的教学反思
大河镇 件,设所获利润为y元,则y=(x-2.5)[500+200(13.5-x)],这样,一个二元二次方程就列出,这也为后面学习二次函数与一元二次方程的关系奠定了基础,针对上述分析,把所列方程整理后,并得到y=-200x2+3700x-8000,这里再利用二次函数y=ax2+bx+c(a≠0)的解析式中a、b、c的大小来确定问题的最值。把问题转化怎样求这个函数的最值问题。
b4acbb4acb根据a>0时,当x=-,y最小=;a<0时,当x=-,y最大=
2a4a2a4a的公式求出最大利润。
例2是面积的最值问题(下节课讲解)
教学反馈:讲得丝丝入扣,大部分学生能听懂,但课后的练习却“不会做”。反思一:本节课在讲解的过程中,不敢花过多的时间让学生争辩交流,生怕时间不够,完成了不教学内容,只能按照自己首先设计好的意图引领学生去完成就行了。实际上,这节课以牺牲学生学习的主动性为代价,让学生被动地接受,去听讲,体现不了学生是学习的主人这一关键环节。
反思二:数学教学的目标不仅是让学生学到一些知识,更重要的是让学生学会运用知识去解决现实问题,让学生“从问题的背景出发,建立数学模型”的基本流程,如例题中,可让学生从“列方程→转化为二次函数解析式→
b4acb当x=-时,y最大(小)=→解决问题”,让学生在实践中发现数2a4a学,掌握数学。
反思三:教学应当促进学生成为学习的主人,离开了学生积极主动学习,老师讲得再好,学生也难以接受,或者是听懂了,但不会做题的现象。传统的教学“五环节”模式已成为过去,新的课程标准需要我们用新的理念对传统的教学模式、教学方法等进行改革,让学生成为课堂的主角。
第四篇:剖析与二次函数图象有关的最值问题
剖析与二次函数图象有关的最值问题
摘要:对于二次函数的最值问题,我们在初中就开始接触,而且也是初中的重要教学内容,但也只是注重基础,涉及的也是简单的二次函数。随着知识的加深,二次函数的最值问题涉及的内容越发的广泛与深奥。作为二次函数中最基本的问题――最值问题,本文将从简易到复杂的知识进行剖析。
关键词:二次函数;最值
对于二次函数图象的最值问题,重点关注的主要是图象的对称轴和所给自变量的区间(即定义域)的界定。而且掌握二次函数的最值问题,首先需要将二次函数的图象形象的画出来。然后根据图象以及问题的条件界定来进行最值问题的求解。一、二次函数的图象
对于二次函数的图象,我们需要找到二次函数的对称轴,顶点以及开口方向,有时还需要界定某一到两个特殊的线与x-y轴的交点,才能较为准确的描绘出图象。
二次函数的的表达式有顶点式,交点式以及三点式,其一般的表达式为y=ax?+bx+c(a≠0),此图象的对称轴,开口方向以及顶点都取决于这一般表达式中的a、b、c三个系数。最重要的是求解对称轴,对称轴的计算公式为x=-b/2a。
其一般图形为: 二、二次函数图象的最值
1、二次函数在界定区间上的最值问题(最简单,直接的最值问题)
此类问题基本就是明确给定二次函数以及定义域区间的情况下,求最值的。解决方案就是找到此函数的对称轴,看其与定义区间的关系,在判断在此区间上函数的增减性,进而求出答案。
例如:已知二次函数y=x2-2x,求在区间[0,4]上的最值。
根据二次函数可以画出图象,对称轴为x=1,草图如下:
从图中可以看出在区间[0,4]上,y值先递减后递增,在对称轴x=1处取得最小值y=-1,在x=4处取得最大值y=8.2、二次函数在不定区间上的最值问题(相对上一个,有些复杂,需要分类)
此类问题是在明确给定二次函数,但是其自变量的定义区间是变动的(存在未知数)情况下求解最值的。然而此类问题的解决方法就是通过明确给定的二次函数画出图象,再根据对称轴与自变量的关系界定进行分类讨论,最后分别判断在此区间上的增减性,求得最值。
例如:已知二次函数y=x2/2-x-5/2,求在[t,t+1]上的最小值。
根据二次函数y=x2/2-x-5/2可以得出对称轴x=1,图象开口向上,再分类,画草图。
第一类:当对称轴x=1在所给区间的左侧,即t?R1,草图如下:
从图中可以看出,在区间[t,t+1]上,函数递增,最小值为x=t时,y=t2/2-t-5/2。
第二类:当对称轴x=1在所给区间的右侧,即t+1?Q1→t?Q0,草图如下:
从图中可以看出,在区间[t,t+1]上,函数递减,最小值为x=t+1时,y=t2/2-3。
第三类:当对称轴x=1在所给区间的内,即t<1 从图中可以看出,在区间[t,t+1]上函数先减后增,最小值为x=1时,y=-3。 若是还需求最大值,前两种可以直观的看出,而最后一种需要对比在x=t以及x=t+1时y值得大小。此时t的范围还需划分。 当x1=t时,y1=t2/2-t-5/2,当x2=t+1时,y2=t2/2-3 y1-y2=1/2-t,从式子中可以看出当0 3、不确定的二次函数在固定区间下的最值问题 此问题是在明确给出定义域而二次函数存在未知系数(图象不确定)的情况下,求最值的问题。此类问题可以先将二次函数有一般形式转换为顶点式,找出其对称轴,开口方向以及区间位置。最重要的是找到其对称轴,然后根据未知系数分类进行求解,最后判断增减性,求最值。 例如:已知二次函数y=bx2+4bx+b2-1,求在区间[-4,1]上的最大值。 根据二次函数y=bx2+4bx+b2-1,写成顶点式y=b(x+2)2+b2-4b-1,可以看出对称轴为x=-2,在区间[-4,1]上,只需根据图象开口方向来判断区间的最大值。 第一类:当b=0时,y=-1,无最大最小值之说 第二类:当b<0时,图象开口向下,草图如下: 从图中可以看出,在区间[-4,1]上函数先增后减,最大值为当x=-2时,y=b2-4b-1。 第三类:当b>0时,图象开口向上,草图如下: 从图中可以看出,在区间[-4,1]上函数先减后增,最大值为区间的临界点,需要判定。 当x1=-4时,y1=b2-1 当x2=1时,y2=b2+5b-1 因为b>0,可以看出y1=b2-1 4、二次函数已知区间和最值求未知函数的系数(此类最为复杂,分类情况较多) 此类函数是在明确给出自变量区间,以及在区间内最值得一个(最大或最小),求解未知函数的系数。此类问题通常不会给定对称轴,因此需要进行分情况进行判定来求解,再根据其给出的最值来求出位置系数,此类问题通常的解有时会与条件分类的情况不相符,因此不要因为求出一个就大意,要注意情况与解的一致性。 例如:已知二次函数y=x2-2ax-1,已知函数在区间[0,2]上的最小值为-2,求a的值。 根据二次函数y=x2-2ax-1,写成顶点式y=(x-a)2-a2-1,对称轴为x=a,图象开口向上,然后进行分类 第一类:当a?Q0时,画出草图如下: 从图中可以看出,函数在区间[0,2]上是递增的,最小值为当x=0时,y=-1,与题中最小值为-2不相符。此分类舍弃。 第二类:当a?R2时,画出草图如下: 从图中可以看出,函数在区间[0,2]上是递减的,最小值为当x=2时,y=3-4a,因为题中给出最小值为-2,所以3-4a=-2求得a=5/4<2与条件不符的,舍弃。 第三类:当0 从图中可以看出,函数在区间[0,2]上是先减后增的,最小值为当x=a时,y=-a2-1因为题中给出最小值为-2,所以-a2-1=-2求得a=1或者-1,再根据分类条件0 综上得出a=1。 还存在第二种情况,图象的开口方向与未知参数有关,则划分情况求解释更需注意。 例如:二次函数y=ax2-2ax-1,已知函数在区间[0,2]上的最小值为-2,求a的值。 先根据二次函数y=ax2-2ax-1,将其换算成顶点式为y=a(x-1)2-a-1,可以得知对称轴为x=1,但开口方向不确定,需要分类进行求解。 第一类:当a=0时,y=-1与已知条件不相符,舍弃。 第二类:当a>0时,可以画出草图: 从图中可以看出,在区间[0,2]函数先减后增,最小值为对称轴即x=1时的y=-a-1,由已知条件最小值为-2,得出a的值为1,符合条件a>0。 第三类:当a<0时,可以画出草图: 从图中可以看出,在区间[0,2]上函数先增后减,最小值为区间端点值,需要进行比较。当x=0时,y=-1;当x=2时,y=-1,而此种情况下,最小值只能是-1,与已知条件相违背,舍弃。 所以综上得出a=1。 对于这两道题相对来说简单,要么给定了开口方向,要么给定了对称轴而且区间端点关于对称轴对称。但是有时题中既不会给定对称轴也不给定开口方向,就需要结合这两道题综合考虑未知系数的值,题目就会相对复杂。你只需要找准全部的区间,并且针对分类情况,将所有的值求出即可。 通过剖析二次函数图象的最值问题,可以看出关键点在于图象的对称轴以及区间的界定,以及在分情况求解中条件的限定。其实对于二次函数图象的最值问题,能画出大概的草图会有利于对于最值的把握,但是也不能一概而论,毕竟是草图,不能主观判断。记住这几点,然后在求解二次函数的图象的最值问题时就会显得游刃有余。 参考文献: [1]黄庭柏.浅谈如何引导学生学好二次函数[A].国家教师科研专项基金科研成果(华声卷2)[C].2015 [2]冯法.浅谈二次函数在高中数学中的重要作用[A].2015年9月现代教育教学探索学术交流会论文集[C].2015 [3]吴选根.26.3实际问题与二次函数(4)[A].2012年河北省教师教育学会教学设计主题论坛论文集[C].2012 [4] 史建军.一道最值问题的推广、完善与另解[J].中学数学研究.2016 [5] 施伦.轨迹法求一类线段的最值[J].中小学数学(初中版).2016 [6] 蒋飞.二次函数常见错误剖析[J].数学大世界(初中版)2014年 二次函数的最值问题 雷州市第一中学 徐晓冬 一、知识要点 对于函数fxax2bxca0,当a0时,fx在区间R上有最 值,值域为。当a0时,fx在区间R上有最 值,值域为。 二、典例讲解 例 1、已知函数fxx2x2,(1)、若x2,0,求函数fx的最大值和最小值。(2)、若x1,1,求函数fx的最大值和最小值。(3)、若x0,1,求函数fx的最大值和最小值。 例 2、已知函数fxx2x2,xt,t1,求函数fx的最小值。 变式 1、已知函数fxx2x2,xt,t1,求函数fx的最大值。 点评:本题属于二次函数在动区间上的最值问题,由于二次函数的对称轴是固定的,区间是变动的,属于“轴定区间动”,由于图象开口向上,所以求最小值1要根据对称轴x与区间t,t1的位置关系,分三种情况讨论;最大值在端2点取得时,只须比较ft与ft1的大小,按两种情况讨论即可,实质上是讨论对称轴位于区间中点的左、右两种情况.例 3、已知函数fxx22mx2,x1,2,求函数fx的最小值和最大值。 例 4、已知函数fxmx2x2,x1,2,求函数fx的最小值和最大值。点评:二次函数最值与抛物线开口方向,对称轴位置,闭区间三个要素有关。求最值常结合二次函数在该区间上的单调性或图象求解,在区间的端点或二次函数图象的顶点处取得最值。 三、练习 1、已知函数fxx26x8,x∈[1,a]的最小值为f(a),则实数a的取值范围是______________。 2、已知二次函数fxx22ax1a在区间[0,1]上有最大值为2,求实数a的值. 3、已知函数y4x24axa22a在区间0,2上有最小值3,求a的值。 4、若fx12a2acosx2sin2x的最小值为ga。(1)、求ga的表达表;(2)、求能使ga 5、已知fx43ax22xaaR,求f(x)在[0,1]上的最大值. 1的a的值,并求出当a取此值时,fx的最大值。2第五篇:二次函数的最值问题