第一篇:等差数列中的最值问题
等差数列及其前n项和(2)
——等差数列中的最值问题
数学组
一、教学目标
1、掌握等差数列的通项公式和前n项和公式的形式和应用。
2、掌握常见题型的解法及常用思想方法。
3、掌握等差数列求最值问题的多种不同方法,并能对最值问题进行归纳总结。
二、教学重点和难点
重点:等差数列求最值问题的常用解法。难点:通过例题的讲解引导学生对等差数列的最值问题进行归纳和总结,并理解何种形式会有最大值,何种形式会有最小值。
三、教学过程
1、复习旧知,回顾等差数列的常用公式:(1)通项公式ana1n1d
nn1na1and(2)前n项和公式Snna1 22(3)等差中项概念A1 2(ab)(4)等差数列的判定方法
定义法:an1an常数(nN*)an为等差数列; 中项公式法:2an1anan2(nN*)an为等差数列; 通项公式法:anknb(nN*)an为等差数列; 前n项求和法:Snpn2qn(nN*)an为等差数列
(复习时主要以口述为主,必要的公式进行板书,主要让学生进行回顾,强调等差数列的通项公式和前n项和公式的形式,即通项公式是关于n的一次函数,前n项和公式是关于n的二次函数,且常数项为0,为后面课程的讲述埋好伏笔。)
2、教授新课:
复习用书《高考总复习学案与测评》第87页,题型四:等差数列中的最值问题 例
4、在等差数列an中,已知a120,前n项和为Sn,且S10S15,求当n取何值时,Sn有最大值,并求出它的最大值。
分析:要求n为何值时,Sn有最大值,可从Sn的形式入手思考,Sn是关于n的二次函数,可以从函数的角度求出Sn的最大值。解:(方法一)因为a120,且S10S15可得
51091514d15a1d 解得d
322n(n1)51255253125dn2n(n)2所以Snna1 266622410a1又因为nN,所以比较n12时,S12130 n13时,S13130 因此,n12或者n13时,Sn的最大值为130.思考:在用Sn是关于n的二次函数求最值时,如何避免复杂的计算,比如本题中的配方? 引导学生讨论得到只要取离对称轴最近的整数处的和,即可得到最值,而对称轴可以由二次函数中的公式得到,这样可以避免复杂的计算,以便提高计算的准确度。
3、小组合作讨论
思考:为什么等差数列会存在最值,是不是所有的等差数列都有最值呢?什么样的等差数列存在最大值,什么样的等差数列又存在最小值?
通过观察数列、归纳特点并讨论可得两类数列存在最值,(1)若a10,d0,数列有最大值(2)若a10,d0,数列有最小值
思考:那有没有更简单的方法来得到等差数列何时取到最值呢? 由数列的增减情况可以得到只要找出何时出现正负转折项,在该项处即得到等差数列前n项和的最值。
以a10,d0的数列为例,若前7项为正,第8项开始为负,则前7项和为最大值。练习:(方法二)学生用此方法求出例4中的最值,并与前一种方法进行比较。
4、归纳等差数列最值问题的求法
方法
一、利用Snpn2qn是关于n的二次函数,在离对称轴最近的整数处取得最值。方法
二、利用等差数列的单调性,求出正负转折项。
思考:本题还有没有什么特点能够使得我们很快得出哪一项开始出现正负转折? 引导学生观察得出(方法三)
因为S10S15,所以a11a12a13a14a150 由等差数列的性质可以得出a130 所以a120,a140
所以,n12或者n13时,Sn的最大值为130.
5、课内训练
复习用书《高考总复习学案与测评》第85页例4的举一反三题
已知数列an的前n项和Snn224n(nN),(1)求an的通项公式;(2)当n为何值时,Sn达到最大?最大值是多少?
6、小结
等差数列前n项和的两种常用解法,并能在具体题目中选择合适的方法进行求解。
第二篇:等差数列问题探究六则
等差数列问题探究六则
探究1:等差数列的证明问题
提升对an1and(常数)本质的认识,只要后项减前项为同一个常数,就能证明数列an是等差数列.根据条件,判断下列数列是否为等差数列?
22(1)an(2)an1an2;(3)1an4;111; an1an
an1ann1; n122(4)lgan1lgan2;(5)
2an12an2;(6)
思考1.已知数列an及bn是两个无穷等差数列,公差分别是d1和d2,求证:anbn成等差数列,并求它的公差.思考2.已知a,b,c的倒数成等差数列,求证:等差数列.思考3.(2012年江苏20)已知各项均为正数的两个数列{an}和{b
n}满足:
2bbnnan1nN.设bn11,nN,求证:数列是等差数列.ananabc,的倒数也成bcacababc
探究2:含绝对值的数列问题
已知等差数列an的首项a116,公差d
(1)此等差数列中从第几项开始出现负数?
(2)当an最小时,求n.3.4探究3:三个数或四个数成等差数列问题
1.三个数成等差数列,它们的和是15,它们的平方和等于83,求这三个数.2.成等差数列的四个数之和为26,第二个数和第三个数之积为40,求这四个数.探究4:等差数列通项的若干性质探究.1.已知xy,两个数列x,a1,a2,a3,y和x,b1,b2,b3,b4,y都是等差数列,且公差分别为d1和d2,求d1:d2.2.已知an是等差数列,当mnpq(m,n,p,qN*)时,是否有
amanapaq?如果是,请给出证明.并思考能否对该结论作进一步推广?
例:在等差数列an中,已知a2a7a1512,则a8______.3.(1)已知an是等差数列,且apq,aqp(pq),求apq.n
(2)若已知数列an的通项公式为:an(3p)24n3,则p的值为________.4.(1)在等差数列数列an中,2anankank(nk0)是否成立?
(2)如果在数列an中,2anankank(nk0),你能得到什么结论?
探究5:数阵数表问题
下列数阵称为“森德拉姆筛”,其特点是每行每列都是等差数列.2 3 4 5 6 3 5 7 9 11 4 7 10 13 16 5 9 13 17 21 6 11 16 21 26 7 13 19 25 31 „
„
„
„
„
定义第i行第j列的项为aij,求数列aij的通项公式.„13 „19 „25 „31 „37 „„
„
探究6:等差数列探究性问题
1.在一个等差数列中,如果其中有一项为连续三项?
变式:(2009北大、北师大等高水平学校自主招生试题)已知由正数组成的无穷等差数列中有3项13,25,41.求证:2009是其中一项.2.已知数列an满足:a11,an1(n2n)an(n1,2,3,),其中为常数.(1)当a21时,求与a3的值;
(2)数列an是否可能为等差数列?若可能,求出它的通项公式;若不可能,请说明理由.26151,能否成为该等差数列的,那么
3x16xx
第三篇:等差数列专题
等差数列的运算和性质专题复习
【方法总结1】
(1)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想解决问题.
(2)数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.
【方法总结2】
1.一般地,运用等差数列的性质,可以化繁为简、优化解题过程.但要注意性质运用的条件,如m+n=p+q,则am+an=ap+aq(m,n,p,q∈N*),需要当序号之和相等、项数相同时才成立.
2.将性质mnpqamanapaq与前n项和公式Sn
题过程.
3.等差数列的常用性质
(1)通项公式的推广:an=am+(n-m)d(n,m∈N*).
(2)若{an}为等差数列,且m+n=p+q,则am+an=ap+aq(m,n,p,q∈N*).
(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为md的等差数列.
(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.
(5)S2n-1=(2n-1)an.(6)若n为偶数,则S偶-S奇ndn为奇数,则S奇-S偶=a中(中间项). 2n(a1an)结合在一起,采用整体思想,简化解
2【方法总结3】
1.公差不为0的等差数列,求其前n项和的最值,一是把Sn转化成n的二次函数求最值;二是由an≥0或an≤0找到使等差数列的前n项和取得最小值或最大值的项数n,代入前n项和公式求最值.求等差数列前n项和的最值,2.常用的方法:
(1)利用等差数列的单调性,求出其正负转折项;
(2)利用性质求出其正负转折项,便可求得和的最值;
(3)利用等差数列的前n项和Sn=An2+Bn(A、B为常数)为二次函数,根据二次函数的性质求最值. 与其他知识点结合则以解答题为主.【规律总结】
一个推导:利用倒序相加法推导等差数列的前n项和公式:
Sn=a1+a2+a3+…+an,①Sn=an+an-1+…+a1,②①+②得:Sn
n(a1an)
.2
两个技巧:已知三个或四个数组成等差数列的一类问题,要善于设元.
(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.
四种方法:等差数列的判断方法
(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N*)都成立;(3)通项公式法:验证an=pn+q;(4)前n项和公式法:验证Sn=An2+Bn.注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.
热点一 等差数列基本量的计算
1.【2013年普通高等学校招生全国统一考试(安徽卷文科)】设Sn为等差数列an的前n项和,S84a3,a72,则a9=()
(A)6(B)4(C)2(D)2
2,【2013年普通高等学校招生全国统一考试(广东卷)理】 在等差数列an中,已知a3a810,则3a5a7 _____.3.(2012年高考辽宁文)在等差数列{an}中,已知a4+a8=16,则a2+a10=()A.12
B.16
C.20
D.24
4.(2012年高考北京文)已知{an}为等差数列,Sn为其前n项和.若a1,Sa3,则 22
a2________;Sn=________.5.(2012年高考重庆理)在等差数列{an}中,a21,a45,则{an}的前5项和S5=()A.7B.15C.20D.25
6.(2012年高考福建理)等差数列an中,a1a510,a47,则数列an的公差为
A.1
B.2C.3
D.4
()
27.(2012年高考广东理)已知递增的等差数列an满足a11,a3a24,则an______________.8.【2013年普通高等学校统一考试试题大纲全国理科】
2等差数列{an}的前n项和为Sn.已知S3a2,且S1,S2,S4成等比数列,求{an}的通项公式.9.【2013年普通高等学校招生全国统一考试(福建卷)文科】已知等差数列an的公差d=1,前n项和为Sn(I)若1,a1,a3成等比数列,求a1;
10.(2012年高考(山东文))已知等差数列{an}的前5项和为105,且a202a5.(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对任意mN*,将数列{an}中不大于72m的项的个数记为bm.求数列{bm}的前m项和Sm.
(II)若S5a1a9,求a1的取值范围。
热点二 等差数列性质的综合应用
11.【2013年普通高等学校招生全国统一考试(上海卷)文】在等差数列an中,若a1a2a3a430,则
a2a3.
12.(2012年高考辽宁理)在等差数列{an}中,已知a4+a8=16,则该数列前11项和S11=()
A.58
B.88
C.143
D.176
13.(2012年高考江西理)设数列an,bn都是等差数列,若a1b17,a3b321,则a5b5__________ 14.(2012年高考四川文)设函数f(x)(x3)x1,{an}是公差不为0的等差数列,f(a1)f(a2)f(a7)14,则a1a2a7()
A.0 B.7 C.14 D.21
15.(2012年高考大纲理)已知等差数列an的前n项和为Sn,a55,S515,则数列()A.
1
的前100项和为
anan1
B.
101
C.
100
D.
16.(2012年高考山东理)在等差数列an中,a3a4a584,a973.(Ⅰ)求数列an的通项公式;
(Ⅱ)对任意mN*,将数列an中落入区间(9,9)内的项的个数记为bm,求数列bm 的前m项和Sm.m
2m
17.【2013年高考新课标Ⅱ数学(文)卷】已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求an的通项公式;(Ⅱ)求a1+a4+a7+…+a3n-2.热点三 等差数列的定义与应用
18.【2013年普通高等学校招生全国统一考试(辽宁卷)理科】下面是关于公差d0的等差数列an的四个命题:
p2:数列nan是递增数列; p1:数列an是递增数列;
a
p4:数列an3nd是递增数列; p3:数列n是递增数列;
n
其中的真命题为()
(A)p1,p2(B)p3,p4(C)p2,p3(D)p1,p4 19.(2012年高考四川理)设函数f(x)2xcosx,{an}是公差为
f(a1)f(a2)f(a5)5,则[f(a3)]a1a3()
的等差数列, 8
A.0
B.
16
C.
D.
132
16
20.(2012年高考浙江理)设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是()..A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0
C.若数列{S n}是递增数列,则对任意的nN*,均有S n>0D.若对任意的nN*,均有S n>0,则数列{S n}是递增数列
21.【2013年普通高等学校统一考试试题新课标Ⅱ数学(理)卷】等差数列{an}的前n项和为Sn,已知S10=0,S15 =25,则nSn 的最小值为________.
第四篇:如何证明等差数列
如何证明等差数列
设等差数列an=a1+(n-1)d
最大数加最小数除以二即
/2=a1+(n-1)d/2
{an}的平均数为
Sn/n=/n=a1+(n-1)d/2
得证
1三个数abc成等差数列,则c-b=b-a
c^2(a+b)-b^2(c+a)=(c-b)(ac+bc+ab)
b^2(c+a)-a^2(b+c)=(b-a)(ac+bc+ab)
因c-b=b-a,则(c-b)(ac+bc+ab)=(b-a)(ac+bc+ab)
即c^2(a+b)-b^2(c+a)=b^2(c+a)-a^2(b+c)
所以a^2(b+c),b^2(c+a),c^2(a+b)成等差数列
等差:an-(an-1)=常数(n≥2)
等比:an/(an-1=常数(n≥2)
等差:an-(an-1)=d或2an=(an-1)+(an+1),(n≥2)
等比:an/(an-1)=q或an平方=(an-1)*(an+1)(n≥2).2
我们推测数列{an}的通项公式为an=5n-4
下面用数学规纳法来证明:
1)容易验证a1=5*1-4=4,a2=5*2-4=6,a3=5*3-4=11,推测均成立
2)假设当n≤k时,推测是成立的,即有aj=5(j-1)-4,(j≤k)
则Sk=a1+a2+…ak=5*(1+2+…+k)-4k=5k(k+1)/2-4k=k(5k-3)/2
于是S(k+1)=a(k+1)+Sk
而由题意知:(5k-8)S(k+1)-(5k+2)Sk=-20k-8
即:(5k-8)*-(5k+2)Sk=-20k-8
所以(5k-8)a(k+1)-10Sk=-20k-8
即:(5k-8)a(k+1)=5k(5k-3)-20k-8=25k^2-35k-8=(5k-8)(5k+1)
所以a(k+1)=5k+1=5(k+1)-4
即知n=k+1时,推测仍成立。
在新的数列中
An=S
=a(4n-4)+a(4n-3)+a(4n-2)+a(4n-1)+a(4n)
A(n-1)=S
=a(4n-8)+a(4n-7)+a(4n-6)+a(4n-5)+a(4n-4)
An-A(n-1)=a(4n-4)+a(4n-3)+a(4n-2)+a(4n-1)+a(4n)-a(4n-8)+a(4n-7)+a(4n-6)+a(4n-5)+a(4n-4)
=4d+4d+4d+4d+4d
=20d(d为原数列公差)
20d为常数,所以新数列为等差数列上,an=5n-4即为数列的通项公式,故它为一等差数列。
A(n+1)-2An=2(An-2An-1)A(n+1)-2An=3*2^(n-1)两边同时除2^(n+1)得-An/2^n=3/4即{An/2^n}的公差为3/4An除以2的n次方为首项为1/2公差为3/4的等差数列
那么你就设直角三角形地三条边为a,a+b,a+2b
于是它是直角三角形得到
a²+(a+b)²=(a+2b)²
所以a²+a²+2ab+b²=a²+4ab+4b²
化简得a²=2ab+3b²
两边同时除以b²
解得a/b=3即a=3b
所以三边可以写为3b,3b+b。3b+2b
所以三边之比为3:4:5
设等差数列an=a1+(n-1)d
最大数加最小数除以二即
/2=a1+(n-1)d/2
{an}的平均数为
Sn/n=/n=a1+(n-1)d/2
得证
第五篇:等差数列及习题
等差数列
通项公式 a(n)=a(1)+(n-1)×d项数n=(末项-首项)/公差+1,是正整数,等差数列的首项和公差已知,那么,这个等差数列就确定了。从通项公式可以看出,a(n)是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上; 递推公式 如果一个数列的第n项an与该数列的其他一项或多项之间存在对应关系的,这个关系就称为该数列的递推公式,如:等差数列递推公式:an=a(n-1)+d
前N项和(梯形公式)S(n)=n*a(1)+n*(n-1)*d/2或S(n)=n*(a(1)+a(n))/2或S(n)=d/2*n2+(a1-d/2)*n 由前n项和公式知,S(n)是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0,二次项和 一次项的系数分别为d/2,a1-d/2;
性质 1在有穷等差数列中,与首末两项距离相等的两项和相等,即:a(1)+a(n)=a(2)+a(n-1)=a(3)+a(n-2)=...2若m,n,p,q∈N*,且m+n=p+q,则有a(m)+a(n)=a(p)+a(q)
3若m,n,p∈N*,且m+n=2p,则有a(m)+a(n)=2a(p)a(m)=a(n)+(n-m)*dm,n∈N*
等差数列的判定
1.a(n+1)--a(n)=d(d为常数、n ∈N*)[或a(n)--a(n-1)=d,n ∈N*,n≥2,d是常数]等价于{a(n)}成等差数列;
2.2a(n+1)=a(n)+a(n+2)[n∈N*] 等价于{a(n)}成等差数列;.a(n)=kn+b [k、b为常数,n∈N*] 等价于{a(n)}成等差数列;.S(n)=A(n)^2 +B(n)[A、B为常数,A不为0,n ∈N* ]等价于{a(n)}为等差数列。
递推公式求通项公式a(n+1)=a(n)+f(n)累加 如:a(n+1)=a(n)+2n-1或1/(n+n2)
练习:
等差数列的第五项等于10,前三项的和胃3,则首项和公差分别是
在等差数列40,36,32中,第一个负数项是第几项
等差数列共2n+1项,奇数项之和为132,偶数项之和为120,则n的值为
在等差数列{an}中,a2+a5=19,S5=40,则a10的值为
{an}是等差数列,若a2+a4+a9+a11=36,则a6+a7的值是
若三个数成等差数列,其和为15,其平方和为83,求此三个数
三个数成等差数列,平方和为450,两两之积的和为423,则其中间数为
等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和
已知等差数列的前n项和为a,前2n项和为b,求前3n项和
等差数列{an}中,a1=-60,a17=-12,求其前n项绝对值之和
成等差数列的四个数之和为26,第二数和第三数之积为40,求这四个数
已知a1=1,Sn=a(n)*n2(n≥1)求a(n),Sn
数列{an}对于任意自然数n均满足Sn=n/2(a1+an),求证: {an}是等差数列.