等差数列作业

时间:2019-05-14 18:36:54下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《等差数列作业》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《等差数列作业》。

第一篇:等差数列作业

等差数列作业

1.在等差数列an中,若

a4a6a8a10a12120,则2a10a12__.2.等差数列an中,若a1510,a4590,则a60_.3.在等差数列中,已知a 5 10a,1231求首项与公差.4.梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级.各级的宽度成等差数列,计算 中间各级的宽度.5.已知三个数成等差数列,他们的和为15,平方和为83,求这三个数.6.2.成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数.

第二篇:课时作业31 等差数列

课时作业31 等差数列

时间:45分钟 分值:100分

一、选择题(每小题5分,共30分)

1.已知{an}是等差数列,且a3+a9=4a5,a2=-8,则该数列的公差是()

A.4

C.-4B.14 D.-14 解析:因为a3+a9=4a5,所以根据等差数列的性质可得a6=2a5.所以a1+5d=2a1+8d,即a1+3d=0.又a2=-8,即a1+d=-8,所以公差d=4.答案:A

2.已知等差数列{an}的前n项和为Sn,若S17=a,则a2+a9+a16等于()

aA.17

3aC.174aB.173aD.-17a1+a17×17a解析:∵S17==a,∴17a9=a,a9=172

3a∴a2+a9+a16=3a9=17.答案:C

3.已知公差不为零的等差数列{an}的前n项和为Sn,若a10=S4,S则a等于()9

A.4

C.8B.5 D.10

4×3

解析:由a10=S4得a1+9d=4a1+2=4a1+6d,即a1=d≠0.8×7

∴S8=8a1+2d=8a1+28d=36d,S36d36d∴a===4.a1+8d9d9答案:A

4.已知等差数列{an}的前n项和为Sn,满足a2 013=S2 013=2 013,则a1等于()

A.-2 014C.-2 012

B.-2 013 D.-2 011013-a1 007006

解析:S2 013=2 013a1 007=2 013,∴a1 007=1,则d==2,a1=a2 013-2 012d=-2 011.答案:D

5.已知等差数列{an}满足a1>0,5a8=8a13,则前n项和Sn取最大值时,n的值为()

A.20C.22

B.21 D.2

3解析:由5a8=8a13得5(a1+7d)=8(a1+12d)⇒d=-611,由an

3641=a1+(n-1)d=a1+(n-1)611≥0,得n≤3=213{an}

前21项都是正数,以后各项都是负数,故Sn取最大值时,n的值为21.答案:B

6.已知函数f(x)是定义在R上的单调增函数且为奇函数,数列{an}是等差数列,a1 007>0,则f(a1)+f(a2)+f(a3)+…+f(a2 012)+f(a2 013)的值()

A.恒为正数C.恒为0

B.恒为负数 D.可正可负

解析:a1+a2 013=2a1 007>0⇒a1>-a2 013⇒f(a1)>f(-a2 013)=-f(a2

013)⇒f(a1)+f(a2 013)>0,同理

f(a2)+f(a2 012)>0,f(a3)+f(a2 011)>0,…,f(a1 006)+f(a1 008)>0,又a1 007>0⇒f(a1 007)>f(0)=0,以上各式相加得f(a1)+f(a2)+f(a3)+…+f(a2 012)+f(a2 013)>0.答案:A

二、填空题(每小题5分,共15分)

S7.等差数列{an}中a1=1,前n项和Sn满足S=4,则数列{an}的前n项和Sn=________.4a1+6dS解析:设公差为d,则由S=44.2a1+d2又∵a1=1,∴d=2.nn-1d2

∴Sn=na1=n+n(n-1)=n.2答案:n2

8.已知等差数列{an}的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为35,则这个数列的项数为________.

解析:∵项数是偶数,∴由题意知a1+a3+…+an-1=15,a2+a4+…+an=35,两式相减得(a2-a1)+(a4-a3)+…+(an-an-1)=35n4040

-15=20,即2=20,∴n=d=220.答案:20

9.已知等差数列{an}的前n项和为Sn,若(a2-1)3+2 012(a2-1)=1,(a2 011-1)3+2 012·(a2 011-1)=-1,则下列四个命题中真命题的序号为________.

①S2 011=2 011;②S2 012=2 012;③a2 0110,f(1)=2 013>1知f(1)>f(a2-1),故a2-1<1即a2<2又f(a2-1)=-f(a2 011-1)=1,故a2 011

×2 012=2 012,S2 011=S2 012-a2 012=2 012-(2-a2+d)=2 2010+a1>a1+a2=S2,又假设S2 011=2 011,则a1=1,a2 011=1矛盾.综上,正确的为②③.答案:②③

三、解答题(共55分,解答应写出必要的文字说明、演算步骤或证明过程)

10.(15分)在等差数列{an}中,已知a2+a7+a12=12,a2·a7·a12

=28,求数列{an}的通项公式.

解:由a2+a7+a12=12,得a7=4.又∵a2·a7·a12=28,∴(a7-5d)(a7+5d)·a7=28,∴16-25d2=7,933∴d2=25,∴d=5d5.3

当d=5时,an=a7+(n-7)d 331

=4+(n-7)×55-5; 3

当d=-5时,an=a7+(n-7)d 3341

=4-(n-7)×55n+5.∴数列{an}的通项公式为 31341an=5-5an=-5+5.11.(20分)(2013·浙江卷)在公差为d的等差数列{an}中,已知a1

=10,且a1,2a2+2,5a3成等比数列.

(1)求d,an;

(2)若d<0,求|a1|+|a2|+|a3|+…+|an|.解:(1)由题意得5a3·a1=(2a2+2)2,即d2-3d-4=0.故d=-1或d=4.所以an=-n+11,n∈N*或an=4n+6,n∈N*.(2)设数列{an}的前n项和为Sn.因为d<0,由(1)得d=-1,an=-n+11.当n≤11时,|a1|+|a2|+|a3|+…+|an| 1221=Sn=-22.当n≥12时,|a1|+|a2|+|a3|+…+|an| 1221

=-Sn+2S11=2-2n+110.综上所述,|a1|+|a2|+|a3|+…+|an| 1221-2+2n,n≤11,=12212n-2n+110,n≥12.——创新应用——

12.(20分)已知Sn是数列{an}的前n项和,Sn满足关系式2Sn=

1n-11Sn-1-2+2(n≥2,n为正整数),a1=2

(1)令bn=2nan,求证数列{bn}是等差数列,并求数列{an}的通项公式;

(2)在(1)的条件下,求Sn的取值范围.

1n-11n

解:(1)由2Sn=Sn-1-2+2,得2Sn+1=Sn-2+2,两式相

1n

减得2an+1=an+2,上式两边同乘以2n得2n+1an+1=2nan+1,即bn



+1

=bn+1,所以bn+1-bn=1,故数列{bn}是等差数列,且公差为1.又因为b1=2a1=1,所以bn=1+(n-1)×1=n.因此2nan=n,从而an

1n.=n2

1n-11n-1

(2)由于2Sn=Sn-1-2+2,所以2Sn-Sn-1=2-2,即Sn

1n-1

+an=2-2.

1n-11n1n-11n=2Sn=2-2-an,而an=n,所以Sn=2-2-n221n.-(n+2

n+11n+11

,所以Sn+1=2-(n+且S-S=>0.所以S≥Sn+1nn1

222+1n1n

中,(n+>0,故Sn<2,即Sn的取值又因为在Sn=2-(n+221

范围是2,2.

第三篇:等差数列前n项和作业

家长签名:

学之导教育中心作业

———————————————————————————————学生: 伍家濠 授课时间:________年级: 高三

教师:

1.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是()A.5 B.4 C.3 D.2 2.在等差数列an中,若a4a612,Sn是数列an的前n项和,则S9的值为()(A)48(B)54(C)60(D)66 3.设Sn是等差数列an的前n项和,若(A)

S31S,则6()S63S12311(B)

(C)8(D)

39104.已知数列{an}、其首项分别为a1、且a1b15,设b1,a1,b1N*.{bn}都是公差为1的等差数列,则数列{cn}的前10项和等于()cnabn(nN*)A.55

B.70

C.85

D.100 5.设an是公差为正数的等差数列,若a1a2a315,a1a2a380,则a11a12a13()

A. 120 B. 105 C. 90 D.75 6.an是首项a1=1,公差为d=3的等差数列,如果an=2005,则序号n等于()(A)667(B)668(C)669(D)670 7.若等差数列an的前三项和S39且a11,则a2等于()A.3 B.4 C.5 D.6 8.等差数列an的前n项和为Sn若a21,a33,则S4=()[来源:学科网] A.12 B.10 C.8 D.6 9.设等差数列{an}的前n项和为Sn,若S39,S636,则a7a8a9()A.63 B.45 C.36 D.27 10.等差数列an的公差是正数,且a3a712,a4a64,求它的前20项的和.11.已知数列an为等差数列,前30项的和为50,前50项的和为30,求前80项的和。

12.在等差数列an中,已知a2a5a12a1536,求S1613、若a1>0,S15=S20,它的前几项和最大?

第四篇:等差数列专题

等差数列的运算和性质专题复习

【方法总结1】

(1)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想解决问题.

(2)数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.

【方法总结2】

1.一般地,运用等差数列的性质,可以化繁为简、优化解题过程.但要注意性质运用的条件,如m+n=p+q,则am+an=ap+aq(m,n,p,q∈N*),需要当序号之和相等、项数相同时才成立.

2.将性质mnpqamanapaq与前n项和公式Sn

题过程.

3.等差数列的常用性质

(1)通项公式的推广:an=am+(n-m)d(n,m∈N*).

(2)若{an}为等差数列,且m+n=p+q,则am+an=ap+aq(m,n,p,q∈N*).

(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为md的等差数列.

(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.

(5)S2n-1=(2n-1)an.(6)若n为偶数,则S偶-S奇ndn为奇数,则S奇-S偶=a中(中间项). 2n(a1an)结合在一起,采用整体思想,简化解

2【方法总结3】

1.公差不为0的等差数列,求其前n项和的最值,一是把Sn转化成n的二次函数求最值;二是由an≥0或an≤0找到使等差数列的前n项和取得最小值或最大值的项数n,代入前n项和公式求最值.求等差数列前n项和的最值,2.常用的方法:

(1)利用等差数列的单调性,求出其正负转折项;

(2)利用性质求出其正负转折项,便可求得和的最值;

(3)利用等差数列的前n项和Sn=An2+Bn(A、B为常数)为二次函数,根据二次函数的性质求最值. 与其他知识点结合则以解答题为主.【规律总结】

一个推导:利用倒序相加法推导等差数列的前n项和公式:

Sn=a1+a2+a3+…+an,①Sn=an+an-1+…+a1,②①+②得:Sn

n(a1an)

.2

两个技巧:已知三个或四个数组成等差数列的一类问题,要善于设元.

(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.

四种方法:等差数列的判断方法

(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N*)都成立;(3)通项公式法:验证an=pn+q;(4)前n项和公式法:验证Sn=An2+Bn.注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.

热点一 等差数列基本量的计算

1.【2013年普通高等学校招生全国统一考试(安徽卷文科)】设Sn为等差数列an的前n项和,S84a3,a72,则a9=()

(A)6(B)4(C)2(D)2

2,【2013年普通高等学校招生全国统一考试(广东卷)理】 在等差数列an中,已知a3a810,则3a5a7 _____.3.(2012年高考辽宁文)在等差数列{an}中,已知a4+a8=16,则a2+a10=()A.12

B.16

C.20

D.24

4.(2012年高考北京文)已知{an}为等差数列,Sn为其前n项和.若a1,Sa3,则 22

a2________;Sn=________.5.(2012年高考重庆理)在等差数列{an}中,a21,a45,则{an}的前5项和S5=()A.7B.15C.20D.25

6.(2012年高考福建理)等差数列an中,a1a510,a47,则数列an的公差为

A.1

B.2C.3

D.4

()

27.(2012年高考广东理)已知递增的等差数列an满足a11,a3a24,则an______________.8.【2013年普通高等学校统一考试试题大纲全国理科】

2等差数列{an}的前n项和为Sn.已知S3a2,且S1,S2,S4成等比数列,求{an}的通项公式.9.【2013年普通高等学校招生全国统一考试(福建卷)文科】已知等差数列an的公差d=1,前n项和为Sn(I)若1,a1,a3成等比数列,求a1;

10.(2012年高考(山东文))已知等差数列{an}的前5项和为105,且a202a5.(Ⅰ)求数列{an}的通项公式;

(Ⅱ)对任意mN*,将数列{an}中不大于72m的项的个数记为bm.求数列{bm}的前m项和Sm.

(II)若S5a1a9,求a1的取值范围。

热点二 等差数列性质的综合应用

11.【2013年普通高等学校招生全国统一考试(上海卷)文】在等差数列an中,若a1a2a3a430,则

a2a3.

12.(2012年高考辽宁理)在等差数列{an}中,已知a4+a8=16,则该数列前11项和S11=()

A.58

B.88

C.143

D.176

13.(2012年高考江西理)设数列an,bn都是等差数列,若a1b17,a3b321,则a5b5__________ 14.(2012年高考四川文)设函数f(x)(x3)x1,{an}是公差不为0的等差数列,f(a1)f(a2)f(a7)14,则a1a2a7()

A.0 B.7 C.14 D.21

15.(2012年高考大纲理)已知等差数列an的前n项和为Sn,a55,S515,则数列()A.

1

的前100项和为

anan1

B.

101

C.

100

D.

16.(2012年高考山东理)在等差数列an中,a3a4a584,a973.(Ⅰ)求数列an的通项公式;

(Ⅱ)对任意mN*,将数列an中落入区间(9,9)内的项的个数记为bm,求数列bm 的前m项和Sm.m

2m

17.【2013年高考新课标Ⅱ数学(文)卷】已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求an的通项公式;(Ⅱ)求a1+a4+a7+…+a3n-2.热点三 等差数列的定义与应用

18.【2013年普通高等学校招生全国统一考试(辽宁卷)理科】下面是关于公差d0的等差数列an的四个命题:

p2:数列nan是递增数列; p1:数列an是递增数列;

a

p4:数列an3nd是递增数列; p3:数列n是递增数列;

n

其中的真命题为()

(A)p1,p2(B)p3,p4(C)p2,p3(D)p1,p4 19.(2012年高考四川理)设函数f(x)2xcosx,{an}是公差为

f(a1)f(a2)f(a5)5,则[f(a3)]a1a3()

的等差数列, 8

A.0

B.

 16

C.

D.

132

 16

20.(2012年高考浙江理)设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是()..A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0

C.若数列{S n}是递增数列,则对任意的nN*,均有S n>0D.若对任意的nN*,均有S n>0,则数列{S n}是递增数列

21.【2013年普通高等学校统一考试试题新课标Ⅱ数学(理)卷】等差数列{an}的前n项和为Sn,已知S10=0,S15 =25,则nSn 的最小值为________.

第五篇:如何证明等差数列

如何证明等差数列

设等差数列an=a1+(n-1)d

最大数加最小数除以二即

/2=a1+(n-1)d/2

{an}的平均数为

Sn/n=/n=a1+(n-1)d/2

得证

1三个数abc成等差数列,则c-b=b-a

c^2(a+b)-b^2(c+a)=(c-b)(ac+bc+ab)

b^2(c+a)-a^2(b+c)=(b-a)(ac+bc+ab)

因c-b=b-a,则(c-b)(ac+bc+ab)=(b-a)(ac+bc+ab)

即c^2(a+b)-b^2(c+a)=b^2(c+a)-a^2(b+c)

所以a^2(b+c),b^2(c+a),c^2(a+b)成等差数列

等差:an-(an-1)=常数(n≥2)

等比:an/(an-1=常数(n≥2)

等差:an-(an-1)=d或2an=(an-1)+(an+1),(n≥2)

等比:an/(an-1)=q或an平方=(an-1)*(an+1)(n≥2).2

我们推测数列{an}的通项公式为an=5n-4

下面用数学规纳法来证明:

1)容易验证a1=5*1-4=4,a2=5*2-4=6,a3=5*3-4=11,推测均成立

2)假设当n≤k时,推测是成立的,即有aj=5(j-1)-4,(j≤k)

则Sk=a1+a2+…ak=5*(1+2+…+k)-4k=5k(k+1)/2-4k=k(5k-3)/2

于是S(k+1)=a(k+1)+Sk

而由题意知:(5k-8)S(k+1)-(5k+2)Sk=-20k-8

即:(5k-8)*-(5k+2)Sk=-20k-8

所以(5k-8)a(k+1)-10Sk=-20k-8

即:(5k-8)a(k+1)=5k(5k-3)-20k-8=25k^2-35k-8=(5k-8)(5k+1)

所以a(k+1)=5k+1=5(k+1)-4

即知n=k+1时,推测仍成立。

在新的数列中

An=S

=a(4n-4)+a(4n-3)+a(4n-2)+a(4n-1)+a(4n)

A(n-1)=S

=a(4n-8)+a(4n-7)+a(4n-6)+a(4n-5)+a(4n-4)

An-A(n-1)=a(4n-4)+a(4n-3)+a(4n-2)+a(4n-1)+a(4n)-a(4n-8)+a(4n-7)+a(4n-6)+a(4n-5)+a(4n-4)

=4d+4d+4d+4d+4d

=20d(d为原数列公差)

20d为常数,所以新数列为等差数列上,an=5n-4即为数列的通项公式,故它为一等差数列。

A(n+1)-2An=2(An-2An-1)A(n+1)-2An=3*2^(n-1)两边同时除2^(n+1)得-An/2^n=3/4即{An/2^n}的公差为3/4An除以2的n次方为首项为1/2公差为3/4的等差数列

那么你就设直角三角形地三条边为a,a+b,a+2b

于是它是直角三角形得到

a²+(a+b)²=(a+2b)²

所以a²+a²+2ab+b²=a²+4ab+4b²

化简得a²=2ab+3b²

两边同时除以b²

解得a/b=3即a=3b

所以三边可以写为3b,3b+b。3b+2b

所以三边之比为3:4:5

设等差数列an=a1+(n-1)d

最大数加最小数除以二即

/2=a1+(n-1)d/2

{an}的平均数为

Sn/n=/n=a1+(n-1)d/2

得证

下载等差数列作业word格式文档
下载等差数列作业.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    等差数列及习题

    等差数列 通项公式 a(n)=a+(n-1)×d项数n=(末项-首项)/公差+1,是正整数,等差数列的首项和公差已知,那么,这个等差数列就确定了。从通项公式可以看出,a(n)是n的一次函数(d≠0)或......

    等差数列教案(精选)

    等差数列教案 一、 教材分析 从教材的编写顺序上来看,等差数列是必修五第二章的第二节的内容,一方面它是数列中最基础的一种类型、与前面学习的函数等知识也有着密切的联系,另......

    学案:等差数列及和

    等差数列及其前n项和 一.高考考纲 1.考查运用基本量法求解等差数列的基本量问题.掌握等差数列的定义与性质、通项公式、前n项和公式等. 2.考查等差数列的性质、前n项和公式及综合......

    《等差数列》说课稿

    《等差数列》说课稿 《等差数列》说课稿1 一、说教材等差数列为人教版必修5第二章第二节的内容。数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作......

    等差数列说课稿

    等差数列说课稿 等差数列说课稿1 首先,我对本教材进行分析。一、说教材的地位和作用《等差数列》是选自北京师范大学出版社普通高中课程标准实验教科书数学必修5的第一章数列......

    等差数列知识点

    精英辅导学校杨景勋专用2011年12月16日星期五 (一)等差数列I1、等差数列{an}中,a1=1,公差d=3,an=2005则n=_____ 2、等差数列{an}中,若a4+a6+a8+a10+a12=120,则2a10-a12的值为______......

    等差数列练习

    等差数列练习 一、选择题 1.在等差数列{an}中,a1=21,a7=18,则公差d= A.12B.13C.-12D.-13 2.在等差数列{an}中,a2=5,a6=17,则a14= A.45B.41C.39D.37 3.已知数列{an}对任意的正整数n,点Pn(n,an)都在......

    等差数列说课稿

    《等差数列》说课稿各位领导、各位专家,你们好! 我说课的课题是《等差数列》。我将从以下五个方面来分析本课题: 一、教材分析 1.教材的地位和作用: 《等差数列》是北师大版新课......