第一篇:等差数列证明[推荐]
设数列{an}的前n项和为Sn,若对于所有的正整数n,都有Sn=n(a1+an)/2,求证:{an}是等差数列
解:证法一:令d=a2-a1,下面用数学归纳法证明an=a1+(n-1)d(n∈N*)①当n=1时,上述等式为恒等式a1=a1,当n=2时,a1+(2-1)d=a1+(a2-a1)=a2,等式成立.②假设当n=k(k∈N,k≥2)时命题成立,即ak=a1+(k-1)d 由题设,有Sk
k(a1ak)(k1)(a1ak1),Sk1,22
(k1)(a1ak1)k(a1ak)
+ak+1
又Sk+1=Sk+ak+1,所以
将ak=a1+(k-1)d代入上式,得(k+1)(a1+ak+1)=2ka1+k(k-1)d+2ak+1 整理得(k-1)ak+1=(k-1)a1+k(k-1)d ∵k≥2,∴ak+1=a1+[(k+1)-1]d.即n=k+1时等式成立.由①和②,等式对所有的自然数n成立,从而{an}是等差数列.证法二:当n≥2时,由题设,Sn1
(n1)(a1an1)n(a1an),Sn
所以anSnSn1
n(a1a2)(n1)(a1an1)
22
(n1)(a1an1)n(a1an)
同理有an1
从而an1an
(n1)(a1an1)(n1)(a1an1)
n(a1an)
整理得:an+1-an=an-an-1,对任意n≥2成立.从而{an}是等差数列.评述:本题考查等差数列的基础知识,数学归纳法及推理论证能力,教材中是由等差数列的通项公式推出数列的求和公式,本题逆向思维,由数列的求和公式去推数列的通项公式,有一定的难度.考生失误的主要原因是知道用数学归纳法证,却不知用数学归纳法证什么,这里需要把数列成等差数列这一文字语言,转化为数列通项公式是an=a1+(n-1)d这一数学符号语言.证法二需要一定的技巧.
第二篇:如何证明等差数列
如何证明等差数列
设等差数列an=a1+(n-1)d
最大数加最小数除以二即
/2=a1+(n-1)d/2
{an}的平均数为
Sn/n=/n=a1+(n-1)d/2
得证
1三个数abc成等差数列,则c-b=b-a
c^2(a+b)-b^2(c+a)=(c-b)(ac+bc+ab)
b^2(c+a)-a^2(b+c)=(b-a)(ac+bc+ab)
因c-b=b-a,则(c-b)(ac+bc+ab)=(b-a)(ac+bc+ab)
即c^2(a+b)-b^2(c+a)=b^2(c+a)-a^2(b+c)
所以a^2(b+c),b^2(c+a),c^2(a+b)成等差数列
等差:an-(an-1)=常数(n≥2)
等比:an/(an-1=常数(n≥2)
等差:an-(an-1)=d或2an=(an-1)+(an+1),(n≥2)
等比:an/(an-1)=q或an平方=(an-1)*(an+1)(n≥2).2
我们推测数列{an}的通项公式为an=5n-4
下面用数学规纳法来证明:
1)容易验证a1=5*1-4=4,a2=5*2-4=6,a3=5*3-4=11,推测均成立
2)假设当n≤k时,推测是成立的,即有aj=5(j-1)-4,(j≤k)
则Sk=a1+a2+…ak=5*(1+2+…+k)-4k=5k(k+1)/2-4k=k(5k-3)/2
于是S(k+1)=a(k+1)+Sk
而由题意知:(5k-8)S(k+1)-(5k+2)Sk=-20k-8
即:(5k-8)*-(5k+2)Sk=-20k-8
所以(5k-8)a(k+1)-10Sk=-20k-8
即:(5k-8)a(k+1)=5k(5k-3)-20k-8=25k^2-35k-8=(5k-8)(5k+1)
所以a(k+1)=5k+1=5(k+1)-4
即知n=k+1时,推测仍成立。
在新的数列中
An=S
=a(4n-4)+a(4n-3)+a(4n-2)+a(4n-1)+a(4n)
A(n-1)=S
=a(4n-8)+a(4n-7)+a(4n-6)+a(4n-5)+a(4n-4)
An-A(n-1)=a(4n-4)+a(4n-3)+a(4n-2)+a(4n-1)+a(4n)-a(4n-8)+a(4n-7)+a(4n-6)+a(4n-5)+a(4n-4)
=4d+4d+4d+4d+4d
=20d(d为原数列公差)
20d为常数,所以新数列为等差数列上,an=5n-4即为数列的通项公式,故它为一等差数列。
A(n+1)-2An=2(An-2An-1)A(n+1)-2An=3*2^(n-1)两边同时除2^(n+1)得-An/2^n=3/4即{An/2^n}的公差为3/4An除以2的n次方为首项为1/2公差为3/4的等差数列
那么你就设直角三角形地三条边为a,a+b,a+2b
于是它是直角三角形得到
a²+(a+b)²=(a+2b)²
所以a²+a²+2ab+b²=a²+4ab+4b²
化简得a²=2ab+3b²
两边同时除以b²
解得a/b=3即a=3b
所以三边可以写为3b,3b+b。3b+2b
所以三边之比为3:4:5
设等差数列an=a1+(n-1)d
最大数加最小数除以二即
/2=a1+(n-1)d/2
{an}的平均数为
Sn/n=/n=a1+(n-1)d/2
得证
第三篇:等差数列的证明
等差数列的证明
1三个数abc成等差数列,则c-b=b-a
c^2(a+b)-b^2(c+a)=(c-b)(ac+bc+ab)
b^2(c+a)-a^2(b+c)=(b-a)(ac+bc+ab)
因c-b=b-a,则(c-b)(ac+bc+ab)=(b-a)(ac+bc+ab)
即c^2(a+b)-b^2(c+a)=b^2(c+a)-a^2(b+c)
所以a^2(b+c),b^2(c+a),c^2(a+b)成等差数列
等差:an-(an-1)=常数(n≥2)
等比:an/(an-1=常数(n≥2)
等差:an-(an-1)=d或2an=(an-1)+(an+1),(n≥2)
等比:an/(an-1)=q或an平方=(an-1)*(an+1)(n≥2).2
我们推测数列{an}的通项公式为an=5n-4
下面用数学规纳法来证明:
1)容易验证a1=5*1-4=4,a2=5*2-4=6,a3=5*3-4=11,推测均成立
2)假设当n≤k时,推测是成立的,即有aj=5(j-1)-4,(j≤k)
则Sk=a1+a2+…ak=5*(1+2+…+k)-4k=5k(k+1)/2-4k=k(5k-3)/2
于是S(k+1)=a(k+1)+Sk
而由题意知:(5k-8)S(k+1)-(5k+2)Sk=-20k-8
即:(5k-8)*-(5k+2)Sk=-20k-8
所以(5k-8)a(k+1)-10Sk=-20k-8
即:(5k-8)a(k+1)=5k(5k-3)-20k-8=25k^2-35k-8=(5k-8)(5k+1)
所以a(k+1)=5k+1=5(k+1)-4
即知n=k+1时,推测仍成立。
在新的数列中
An=S
=a(4n-4)+a(4n-3)+a(4n-2)+a(4n-1)+a(4n)
A(n-1)=S
=a(4n-8)+a(4n-7)+a(4n-6)+a(4n-5)+a(4n-4)
An-A(n-1)=a(4n-4)+a(4n-3)+a(4n-2)+a(4n-1)+a(4n)-a(4n-8)+a(4n-7)+a(4n-6)+a(4n-5)+a(4n-4)
=4d+4d+4d+4d+4d
=20d(d为原数列公差)
20d为常数,所以新数列为等差数列上,an=5n-4即为数列的通项公式,故它为一等差数列。
A(n+1)-2An=2(An-2An-1)A(n+1)-2An=3*2^(n-1)两边同时除2^(n+1)得-An/2^n=3/4即{An/2^n}的公差为3/4An除以2的n次方为首项为1/2公差为3/4的等差数列
证明:
an=Sn-Sn-1=n(a1+an)/2-(n-1)(a1+an-1)/2
2an=na1+nan-na1-nan-1+a1+an-1
(n-2)an=(n-1)*(an-1)-a1(1)
同理
(n-1)*(an+1)=nan-a1(2)
(1)-(2)
得到
(2n-2)an=(n-1)*(an-1)+(n-1)(an+1)
2an=an-1+an+1
所以an+1-an=an-an-1
所以数列{an}是等差数列
那么你就设直角三角形地三条边为a,a+b,a+2b
于是它是直角三角形得到
a²+(a+b)²=(a+2b)²
所以a²+a²+2ab+b²=a²+4ab+4b²
化简得a²=2ab+3b²
两边同时除以b²
解得a/b=3即a=3b
所以三边可以写为3b,3b+b。3b+2b
所以三边之比为3:4:5
设等差数列an=a1+(n-1)d
最大数加最小数除以二即
/2=a1+(n-1)d/2
{an}的平均数为
Sn/n=/n=a1+(n-1)d/2
得证
第四篇:证明等比等差数列
1.已知数列满足a1=1,an+1=2an+1(n∈N*)(1)求证数列{an+1}是等比数列;(2)求{an}的通项公式.
2.已知数列{an}中,a135,an21an1(n2,nN),数列{bn}满足
bn1(nN)an1;
(1)求证:数列(2)求数列
{bn}是等差数列;
{an}的通项公式
na1,a2a23.在数列an中,1 n1n(1)设bnan,n1证明2bn是等差数列;(2)求数列an的通项公式。
4.设数列
{lgan}是等差数列;{an}的前n项和为Sn,a110,an19Sn10。
求证:
5.已知数列{an}的前n项和为Sn,且满足an+2Sn·Sn-1=0(n≥2),a1=1/2.(1)求证:{1/Sn}是等差数列;(2)求an表达式;
第五篇:等差数列的证明
一、等差数列的证明 利用等差(等比)数列的定义
在数列{an}中,若anan1d
二.运用等差中项性质
anan22an1{an}是等差数列
三.通项与前n项和法
若数列通项an能表示成ananb(a,b为常数)的形式,则数列an是等差数列; 若数列an的前n项和Sn能表示成Snan2bn(a,b为常数)的形式,则数列an等差数列;
例1.若Sn是数列an的前n项和,Snn2,则an是().A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列
练习:已知数列前n项和snn22n,求通项公式an,并说明这个数列是否为等差数列。
练习:设数列an的前n项的和Snn22n4,nN,⑴写出这个数列的前三项a1,a2,a3;
⑵证明:数列an除去首项后所成的数列a2,a3,a4是等差数列。
例2:已知数列an满足a11,an2an12
(Ⅰ)求证:数列nn2,an是等差数列; n2
(Ⅱ)求数列an的通项公式。
练习:已知数列an满足a12,an1an,12an(Ⅰ)求证:数列1是等差数列; an(Ⅱ)求数列an的通项公式。