等差数列、等比数列的证明及数列求和5篇

时间:2019-05-13 09:02:17下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《等差数列、等比数列的证明及数列求和》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《等差数列、等比数列的证明及数列求和》。

第一篇:等差数列、等比数列的证明及数列求和

等差数列、等比数列的证明

1.已知数列an满足a11,an3an12n3n2,(Ⅰ)求证:数列ann是等比数列;

(Ⅱ)求数列an的通项公式。

2.已知数列an满足a15,an12an3nnN*,(Ⅰ)求证:数列an3n是等比数列;

(Ⅱ)求数列an的通项公式。

3.已知数列an满足a11,an2an12(Ⅰ)求证:数列an是等差数列; n2nn2,(Ⅱ)求数列an的通项公式。

4.已知数列an满足a12,an1

an12an,1

(Ⅰ)求证:数列是等差数列;

an

(Ⅱ)求数列an的通项公式。

5.已知数列an,Sn是它的前n项和,且Sn14an2nN,a1

1*

(Ⅰ)设bnan12annN*,求证:数列bn是等比数列;(Ⅱ)设cn

an

2n,求证:数列cn是等差数列;

(Ⅲ)求数列an的通项公式。

数列求和的方法介绍

一、公式法

利用下列常用求和公式求和是数列求和的最基本最重要的方法。

1、等差数列求和公式:Sn

n(a1an)

na1

n(n1)

2d2、等比数列求和公式:Sn

na1n

aanqa1(1q)

11q1q

(q1)(q1)

二、错位相减法

这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列anbn的前n项和,其中an、bn分别是等差数列和等比数列

三、裂项相消法

裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的通项分解,其中裂项是手段,相消是目的。常见的裂项法有:

(1)an

1n(n1)

1n(n2)

1n

1n

1(2)an

1n(n1)

1n1

1n

n2

(3)an

111

2nn2

1anan1

(4)若an等差,公差为d0,则

11

【裂项原理】 an1an

(5)

2n12n1

1、已知数列an是等差数列,设其前n项和为Sn,若a59,S525(Ⅰ)求数列an的通项公式an;

(Ⅱ)设bn3,求数列bn的前n项和Tn

an

2、已知数列an的通项公式为an2n13,求前n项和Sn

n

3、已知数列an是等差数列,设其前n项和为Sn,若S535,S10120(Ⅰ)求数列an的通项公式an和Sn;(Ⅱ)设bn

1Sn,求数列bn的前n项和。

第二篇:数列求和公式证明

1)1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)/6从左边推到右边

数学归纳法可以证

也可以如下做 比较有技巧性

n^2=n(n+1)-n

1^2+2^2+3^2+......+n^

2=1*2-1+2*3-2+....+n(n+1)-n

=1*2+2*3+...+n(n+1)-(1+2+...+n)

由于n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/

3所以1*2+2*3+...+n(n+1)

=[1*2*3-0+2*3*4-1*2*3+....+n(n+1)(n+2)-(n-1)n(n+1)]/3

[前后消项]

=[n(n+1)(n+2)]/3

所以1^2+2^2+3^2+......+n^2

=[n(n+1)(n+2)]/3-[n(n+1)]/2

=n(n+1)[(n+2)/3-1/2]

=n(n+1)[(2n+1)/6]

=n(n+1)(2n+1)/6

2)1×2+2×3+3×4+...+n×(n+1)=?

设n为奇数,1*2+2*3+3*4+...+n(n+1)=

=(1*2+2*3)+(3*4+4*5)+...+n(n+1)

=2(2^2+4^2+6^2+...(n-1)^2)+n(n+1)

=8(1^2+2^2+3^2+...+[(n-1)/2]^2)+n(n+1)

=8*[(n-1)/2][(n+1)/2]n/6+n(n+1)

=n(n+1)(n+2)/3

设n为偶数,请你自己证明一下!

所以,1*2+2*3+3*4+...+n(n+1)=n(n+1)(n+2)/3

设an=n×(n+1)=n^2+n

Sn=1×2+2×3+3×4+...+n×(n+1)

=(1^2+2^2+3^2+……+n^2)+(1+2+3+……+n)=n(n+1)(2n+1)/6+n(n+1)/2

=n(n+1)(n+2)/3

数列求和的几种方法

1.公式法:

等差数列求和公式:

Sn=n(a1+an)/2=na1+n(n-1)d/2

等比数列求和公式:

Sn=na1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)

2.错位相减法

适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式{ an }、{ bn }分别是等差数列和等比数列.Sn=a1b1+a2b2+a3b3+...+anbn

例如:an=a1+(n-1)dbn=a1·q^(n-1)Cn=anbn

Tn=a1b1+a2b2+a3b3+a4b4....+anbn

qTn= a1b2+a2b3+a3b4+...+a(n-1)bn+anb(n+1)

Tn-qTn= a1b1+b2(a2-a1)+b3(a3-a2)+...bn[an-a(n-1)]-anb(n+1)

Tn(1-q)=a1b1-anb(n+1)+d(b2+b3+b4+...bn)

=a1b1-an·b1·q^n+d·b2[1-q^(n-1)]/(1-q)Tn=上述式子/(1-q)

3.倒序相加法

这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)

Sn =a1+ a2+ a3+......+anSn =an+ a(n-1)+a(n-3)......+a1上下相加 得到2Sn 即 Sn=(a1+an)n/

24.分组法

有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例如:an=2^n+n-1

5.裂项法

适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。常用公式:

(1)1/n(n+1)=1/n-1/(n+1)

(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]

(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]

(4)1/(√a+√b)=[1/(a-b)](√a-√b)

(5)n·n!=(n+1)!-n!

[例] 求数列an=1/n(n+1)的前n项和.解:an=1/n(n+1)=1/n-1/(n+1)(裂项)

则Sn =1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)= 1-1/(n+1)= n/(n+1)

小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。注意: 余下的项具有如下的特点1余下的项前后的位置前后是对称的。2余下的项前后的正负性是相反的。

6.数学归纳法

一般地,证明一个与正整数n有关的命题,有如下步骤:

(1)证明当n取第一个值时命题成立;

(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。

例:求证:1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + n(n+1)(n+2)(n+3)=

[n(n+1)(n+2)(n+3)(n+4)]/5证明: 当n=1时,有:1×2×3×4 + 2×3×4×5 = 2×3×4×5×(1/5 +1)= 2×3×4×5×6/5假设命题在n=k时成立,于是:1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3)=

[k(k+1)(k+2)(k+3)(k+4)]/5则当n=k+1时有:1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… +(k+1)(k+2)(k+3)(k+4)= 1×2×3×4 + 2×3×4*5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)(k+4)=

[k(k+1)(k+2)(k+3)(k+4)]/5 +(k+1)(k+2)(k+3)(k+4)=

(k+1)(k+2)(k+3)(k+4)*(k/5 +1)= [(k+1)(k+2)(k+3)(k+4)(k+5)]/5即n=k+1时原等式仍然成立,归纳得证

7.通项化归

先将通项公式进行化简,再进行求和。如:求数列1,1+2,1+2+3,1+2+3+4,……的前n项和。此时先将an求出,再利用分组等方法求和。

8.并项求和:

例:1-2+3-4+5-6+……+(2n-1)-2n(并项)

求出奇数项和偶数项的和,再相减。

第三篇:等差数列与等比数列的证明

龙源期刊网 http://.cn

等差数列与等比数列的证明

作者:刘春建

来源:《高考进行时·高三数学》2013年第03期

一、考纲要求

1.理解等差数列的递推关系,并能够根据递推关系证明等差数列。

2.理解等比数列的递推关系,并能够根据递推关系证明等比数列。

3.能够利用等差中项和等比中项证明等差数列和等比数列。

二、难点疑点

1.在证明等差数列和等比数列的过程中,部分学生只是求出了等差数列和等比数列的通项公式,而没有利用递推关系或者等差、等比中项进行证明。

2.在用等比中项证明等比数列的时候,没有交代各项均不为零。

3.要注意整体思想在证明等差数列和等比数列中的灵活运用。

第四篇:证明数列是等比数列

证明数列是等比数列

an=(2a-6b)n+6b

当此数列为等比数列时,显然是常数列,即2a-6b=0

这个是显然的东西,但是我不懂怎么证明

常数列吗.所以任何一个K和M都应该有ak=amak=(2a-6b)k+6bam=(2a-6b)m+6bak-am=(2a-6b)(k-m)因为ak-am恒为0km任意所以一定有2a-6b=0即a=3b

补充回答:题目条件看错,再证明当此数列为等比数列时

2a-6b=0

因为等比a3:a2=a2:a

1即(6a-12b)*2a=(4a-6b)^

2a^2-6ab+9b^2=0

即(a-3b)^2=0

所以肯定有a=3b成立

2数列an前n项和为Sn已知a1=1a(n+1)=(n+2)/n乘以Sn(n=1,2,3......)证明

(1)(Sn/n)是等比数列

(2)S(n+1)=4an1、A(n+1)=(n+2)sn/n=S(n+1)-Sn

即nS(n+1)-nSn=(n+2)Sn

nS(n+1)=(n+2)Sn+nSn

nS(n+1)=(2n+2)Sn

S(n+1)/(n+1)=2Sn/n

即S/=

2S1/1=A1=

1所以Sn/n是以2为公比1为首项的等比数列

2、由1有Sn/n是以2为公比1为首项的等比数列

所以Sn/n的通项公式是Sn/n=1*2^(n-1)

即Sn=n2^(n-1)

那么S(n+1)=(n+1)2^n,S(n-1)=(n-1)2^(n-2)

An=Sn-S(n-1)

=n2^(n-1)-(n-1)2^(n-2)

=n*2*2^(n-2)-(n-1)2^(n-2)

=*2^(n-2)

=(n+1)2^(n-2)

=(n+1)*2^n/2^

2=(n+1)2^n/

4=S(n+1)/4

所以有S(n+1)=4An

a(n)-a(n-1)=2(n-1)

上n-1个式子相加得到:

an-a1=2+4+6+8+.....2(n-1)

右边是等差数列,且和=(n-1)/2=n(n-1)

所以:

an-2=n^2-n

an=n^2-n+24、已知数列{3*2的N此方},求证是等比数列

根据题意,数列是3*2^n(^n表示肩膀上的方次),n=1,2,3,...为了验证它是等比数列只需要比较任何一项和它相邻项的比值是一个不依赖项次的固定比值就可以了.所以第n项和第n+1项分别是3*2^n和3*2^(n+1),相比之后有:

/(3*2^n)=

2因为比值是2,不依赖n的选择,所以得到结论.5数列an前n项和为Sn已知a1=1a(n+1)=(n+2)/n乘以Sn(n=1,2,3......)证明

(1)(Sn/n)是等比数列

(2)S(n+1)=4an1、A(n+1)=(n+2)sn/n=S(n+1)-Sn

即nS(n+1)-nSn=(n+2)Sn

nS(n+1)=(n+2)Sn+nSn

nS(n+1)=(2n+2)Sn

S(n+1)/(n+1)=2Sn/n

即S/=

2S1/1=A1=

1所以Sn/n是以2为公比1为首项的等比数列

2、由1有Sn/n是以2为公比1为首项的等比数列

所以Sn/n的通项公式是Sn/n=1*2^(n-1)

即Sn=n2^(n-1)

那么S(n+1)=(n+1)2^n,S(n-1)=(n-1)2^(n-2)

An=Sn-S(n-1)

第五篇:等差数列与等比数列的证明方法

等差数列与等比数列的证明方法

高考题中,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢?

证明或判断等差(等比)数列的方法常有四种:定义法、等差或等比中项法、数学归纳法、反证法。

一、定义法

10.证明数列是等差数列的充要条件的方法:

an1and(常数)an是等差数列

a2n2a2nd(常数)a2n是等差数列

a3n3a3nd(常数)a3n是等差数列

20.证明数列是等差数列的充分条件的方法:

anan1d(n2)an是等差数列

an1ananan1(n2)an是等差数列

30.证明数列是等比数列的充要条件的方法:

an1q(q0且为常数,a10)an为等比数列 an

40.证明数列是等比数列的充要条件的方法:

anq(n>2,q为常数且≠0)an为等比数列 an

1注意事项:用定义法时常采用的两个式子anan1d和an1and有差别,前者必须加上“n≥2”,否则n1时a0无意义,等比中一样有:n≥2时,有(常数0);②nN时,有an1. q(常数0)ananqan1

例1.设数列a1,a2,,an,中的每一项都不为0。

证明:an为等差数列的充分必要条件是:对任何nN,都有

111n。a1a2a2a3anan1a1an1

证明:先证必要性

设{an}为等差数列,公差为d,则

当d=0时,显然命题成立 当d≠0时,∵

1111

 anan1danan1

再证充分性:

1n111

„„„① 

anan1a1an1a1a2a2a3a3a

411n1111

„„„② 

anan1an1an2a1an2a1a2a2a3a3a4

②﹣①得:

1n1n 

an1an2a1an2a1an1

两边

anan1a1得:a1(n1)an1nan2 „„„③

同理:a1nan(n1)an1„„„④ ③—④得:2nan1n(anan2)

即:an2an1an1anan为等差数列

例2.设数列{an}的前n项和为Sn,试证{an}为等差数列的充要条件是

Sn

n(a1an),(nN*)。

2证:)若{an}为等差数列,则

a1ana2an1a3an2……,故

2Sn(a1an)(a2an2).......(ana1)

Sn(a1an)

n

()当n≥2时,由题设,Sn1)(a1an1)n(a1an1

(2,Sn)

n2

所以a(a1a2)(n1)(a1an1)nSnSn1

n22

同理有a1)(a1an1)n(a1ann1

(n2)

从而a(n1)(a1an1)(n1)(a1an1an

2n(aan1)

1n)2

整理得:an+1-an=an-an-1,对任意n≥2成立.从而{an}是等差数列.例3.已知数列an是等比数列(q1),Sn是其前n项的和,Sk,S2kSk,S3kS2k,„,仍成等比数列。

证明一:

(1)当q=1时,结论显然成立;(2)当q≠1时,Sa11qk1q2ka11q3kk

1q,S2k

a11q,S3k

1q

Sq2ka11qka1qk1qk2kSk

a111q

1q

1q 3kSa11q11q2ka1q2k1qk3kS2k

1q

a1q

1q

2kk2

S2

1q21qSa11qka1q2k1qka22k1q12kSk

a(1q)2

k(S3kS2k)1q1q

qk

(1q)2

∴S2

2kSk

=Sk(S3kS2k)

∴Sk,S2kSk,S3kS2k成等比数列.则

证明二:S2k-Sk=(a1a2a3a2k)-(a1a2a3ak)=ak1ak2ak3a2k=qk(a1a2a3ak)=qkSk0 同理,S3k-S2k=a2k1a2k2a2k3a3k= q2kSk0 ∴Sk,S2kSk,S3kS2k成等比数列。

二、中项法

(1).(充要条件)

若2an1anan2an是等差数列

(注:三个数a,b,c为等差数列的充要条件是:2bac)(充分条件)2an

an1an1(n2){an}是等差数列,(2).(充要条件)

若 anan2an12(an0){an}是等比数列(充分条件)

2anan1an1(n≥1)

{an}是等比数列,注:

b(ac0)是a、b、c等比数列的充分不必要条件

b是a、b、c等比数列的必要不充分条件

.b(ac0)是a、b、c等比数列的充要条件.任意两数a、c不一定有等比中项,除非有ac>0,则等比中项一定有两个.三、通项公式与前n项和法

1.通项公式法

(1).若数列通项an能表示成ananb(a,b为常数)的形式,则数列an是等差数列。(充要条件)

(2).若通项an能表示成ancqn(c,q均为不为0的常数,nN)的形式,则数列an是等比数列.(充要条件)

2.前n项和法

(1).若数列an的前n项和Sn能表示成Snan2bn(a,b为常数)的形式,则数列an是等差数列;(充要条件)

(2).若Sn能表示成SnAqnA(A,q均为不等于0的常数且q≠1)的形式,则数列an是公比不为1的等比数列.(充要条件)

四、归纳—猜想---数学归纳证明法

先根据递推关系求出前几项,观察数据特点,猜想、归纳出通项公式,再用数学归纳法给出证明。

这种方法关键在于猜想要正确,用数学归纳法证明的步骤要熟练,从“nk时命题成立”到“nk1时命题成立”要会过渡.

五、反证法

解决数学问题的思维过程,一般总是从正面入手,即从已知条件出发,经过一系列的推理和运算,最后得到所要求的结论,但有时会遇到从正面不易入手的情况,这时可从反面去考虑.

六、等差数列与等比数列的一些常规结论

若数列{an}是公比为q的等比数列,则

(1)数列{an}{an}(为不等于零的常数)仍是公比为q的等比数列;(2)若{bn}是公比为q的等比数列,则数列{anbn}是公比为qq的等比数列;(3)数列

11

是公比为的等比数列;

qan

(4){an}是公比为q的等比数列;

(5)在数列{an}中,每隔k(kN)项取出一项,按原来顺序排列,所得新数列仍

为等比数列且公比为qk1;

(6)若m,n,p(m,n,pN)成等差数列时,am,an,ap成等比数列;(7)Sn,S2nSn,S3nS2n均不为零时,则Sn,S2nSn,S3nS2n成等比数列;(8)若{logban}是一个等差数列,则正项数列{an}是一个等比数列.

若数列{an}是公差为d等差数列,则

(1){kanb}成等差数列,公差为kd(其中k0,k,b是实常数);(2){S(n1)kSkn},(kN,k为常数),仍成等差数列,其公差为k2d;(3)若{an}{,bn}都是等差数列,公差分别为d1,d2,则{anbn}是等差数列,公差为d1d2;

(4)当数列{an}是各项均为正数的等比数列时,数列{lgan}是公差为lgq的等差数列;

(5)m,n,p(m,n,pN)成等差数列时,am,an,ap成等差数列.

下载等差数列、等比数列的证明及数列求和5篇word格式文档
下载等差数列、等比数列的证明及数列求和5篇.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《等比数列求和》教案

    等比数列的前n项和(第一课时教案) 一、教材分析 1.从在教材中的地位与作用来看 《等比数列的前n项和》是数列这一章中的一个重要内容,从教材的编写顺序上来看,等比数列的前n项和......

    等比数列求和教案

    《等比数列的前n项和》教学设计 教材:人教版必修五§2.5.1 教学目标:(1)知识目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题......

    等差数列求和教案

    一、教学目标: 等差数列求和教案 知识与能力:通理解等差数列的前 项和定义,理解倒序相加的原理,记忆两种等差数列求和公式。 过程和方法:让学生学会自主学习和合作学习,体会特......

    等差数列求和教案

    课题:等比数列前 项和的公式 教学目标 (1)通过教学使学生掌握等比数列前 项和公式的推导过程,并能初步运用这一方法求一些数列的前 项和. (2)通过公式的推导过程,培养学生猜想、分......

    等差数列求和教案

    等差数列求和 教学目标 1.通过教学使学生理解等差数列的前 项和公式的推导过程,并能用公式解决简单的问题. 2.通过公式推导的教学使学生进一步体会从特殊到一般,再从一般到特......

    等差数列求和练习题

    入门题: 1、有一个数列,4、10、16、22 …… 52,这个数列有多少项? 2、一个等差数列,首项是3,公差是2,项数是10。它的末项是多少? 3、求等差数列1、4、7、10 …… ,这个等差数列的第30......

    数列求和问题

    数列求和问题·教案 教学目标 1.初步掌握一些特殊数列求其前n项和的常用方法. 2.通过把某些既非等差数列,又非等比数列的数列化归成等差数列或等比数列求和问题,培养学生观察、分......

    数列求和教案

    数列求和 数列求和常见的几种方法: (1) 公式法:①等差(比)数列的前n项和公式; 1n(n1) 21222n2nn( 123......6② 自然数的乘方和公式:123......n(2) 拆项重组:适用于数列1n)(2 1)an的通......