第一篇:等差数列、等比数列的证明及数列求和
等差数列、等比数列的证明
1.已知数列an满足a11,an3an12n3n2,(Ⅰ)求证:数列ann是等比数列;
(Ⅱ)求数列an的通项公式。
2.已知数列an满足a15,an12an3nnN*,(Ⅰ)求证:数列an3n是等比数列;
(Ⅱ)求数列an的通项公式。
3.已知数列an满足a11,an2an12(Ⅰ)求证:数列an是等差数列; n2nn2,(Ⅱ)求数列an的通项公式。
4.已知数列an满足a12,an1
an12an,1
(Ⅰ)求证:数列是等差数列;
an
(Ⅱ)求数列an的通项公式。
5.已知数列an,Sn是它的前n项和,且Sn14an2nN,a1
1*
(Ⅰ)设bnan12annN*,求证:数列bn是等比数列;(Ⅱ)设cn
an
2n,求证:数列cn是等差数列;
(Ⅲ)求数列an的通项公式。
数列求和的方法介绍
一、公式法
利用下列常用求和公式求和是数列求和的最基本最重要的方法。
1、等差数列求和公式:Sn
n(a1an)
na1
n(n1)
2d2、等比数列求和公式:Sn
na1n
aanqa1(1q)
11q1q
(q1)(q1)
二、错位相减法
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列anbn的前n项和,其中an、bn分别是等差数列和等比数列
三、裂项相消法
裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的通项分解,其中裂项是手段,相消是目的。常见的裂项法有:
(1)an
1n(n1)
1n(n2)
1n
1n
1(2)an
1n(n1)
1n1
1n
n2
(3)an
111
2nn2
1anan1
(4)若an等差,公差为d0,则
11
【裂项原理】 an1an
(5)
2n12n1
例
1、已知数列an是等差数列,设其前n项和为Sn,若a59,S525(Ⅰ)求数列an的通项公式an;
(Ⅱ)设bn3,求数列bn的前n项和Tn
an
例
2、已知数列an的通项公式为an2n13,求前n项和Sn
n
例
3、已知数列an是等差数列,设其前n项和为Sn,若S535,S10120(Ⅰ)求数列an的通项公式an和Sn;(Ⅱ)设bn
1Sn,求数列bn的前n项和。
第二篇:数列求和公式证明
1)1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)/6从左边推到右边
数学归纳法可以证
也可以如下做 比较有技巧性
n^2=n(n+1)-n
1^2+2^2+3^2+......+n^
2=1*2-1+2*3-2+....+n(n+1)-n
=1*2+2*3+...+n(n+1)-(1+2+...+n)
由于n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/
3所以1*2+2*3+...+n(n+1)
=[1*2*3-0+2*3*4-1*2*3+....+n(n+1)(n+2)-(n-1)n(n+1)]/3
[前后消项]
=[n(n+1)(n+2)]/3
所以1^2+2^2+3^2+......+n^2
=[n(n+1)(n+2)]/3-[n(n+1)]/2
=n(n+1)[(n+2)/3-1/2]
=n(n+1)[(2n+1)/6]
=n(n+1)(2n+1)/6
2)1×2+2×3+3×4+...+n×(n+1)=?
设n为奇数,1*2+2*3+3*4+...+n(n+1)=
=(1*2+2*3)+(3*4+4*5)+...+n(n+1)
=2(2^2+4^2+6^2+...(n-1)^2)+n(n+1)
=8(1^2+2^2+3^2+...+[(n-1)/2]^2)+n(n+1)
=8*[(n-1)/2][(n+1)/2]n/6+n(n+1)
=n(n+1)(n+2)/3
设n为偶数,请你自己证明一下!
所以,1*2+2*3+3*4+...+n(n+1)=n(n+1)(n+2)/3
设an=n×(n+1)=n^2+n
Sn=1×2+2×3+3×4+...+n×(n+1)
=(1^2+2^2+3^2+……+n^2)+(1+2+3+……+n)=n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)(n+2)/3
数列求和的几种方法
1.公式法:
等差数列求和公式:
Sn=n(a1+an)/2=na1+n(n-1)d/2
等比数列求和公式:
Sn=na1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)
2.错位相减法
适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式{ an }、{ bn }分别是等差数列和等比数列.Sn=a1b1+a2b2+a3b3+...+anbn
例如:an=a1+(n-1)dbn=a1·q^(n-1)Cn=anbn
Tn=a1b1+a2b2+a3b3+a4b4....+anbn
qTn= a1b2+a2b3+a3b4+...+a(n-1)bn+anb(n+1)
Tn-qTn= a1b1+b2(a2-a1)+b3(a3-a2)+...bn[an-a(n-1)]-anb(n+1)
Tn(1-q)=a1b1-anb(n+1)+d(b2+b3+b4+...bn)
=a1b1-an·b1·q^n+d·b2[1-q^(n-1)]/(1-q)Tn=上述式子/(1-q)
3.倒序相加法
这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)
Sn =a1+ a2+ a3+......+anSn =an+ a(n-1)+a(n-3)......+a1上下相加 得到2Sn 即 Sn=(a1+an)n/
24.分组法
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例如:an=2^n+n-1
5.裂项法
适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。常用公式:
(1)1/n(n+1)=1/n-1/(n+1)
(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
(4)1/(√a+√b)=[1/(a-b)](√a-√b)
(5)n·n!=(n+1)!-n!
[例] 求数列an=1/n(n+1)的前n项和.解:an=1/n(n+1)=1/n-1/(n+1)(裂项)
则Sn =1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)= 1-1/(n+1)= n/(n+1)
小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。注意: 余下的项具有如下的特点1余下的项前后的位置前后是对称的。2余下的项前后的正负性是相反的。
6.数学归纳法
一般地,证明一个与正整数n有关的命题,有如下步骤:
(1)证明当n取第一个值时命题成立;
(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。
例:求证:1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + n(n+1)(n+2)(n+3)=
[n(n+1)(n+2)(n+3)(n+4)]/5证明: 当n=1时,有:1×2×3×4 + 2×3×4×5 = 2×3×4×5×(1/5 +1)= 2×3×4×5×6/5假设命题在n=k时成立,于是:1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3)=
[k(k+1)(k+2)(k+3)(k+4)]/5则当n=k+1时有:1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… +(k+1)(k+2)(k+3)(k+4)= 1×2×3×4 + 2×3×4*5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)(k+4)=
[k(k+1)(k+2)(k+3)(k+4)]/5 +(k+1)(k+2)(k+3)(k+4)=
(k+1)(k+2)(k+3)(k+4)*(k/5 +1)= [(k+1)(k+2)(k+3)(k+4)(k+5)]/5即n=k+1时原等式仍然成立,归纳得证
7.通项化归
先将通项公式进行化简,再进行求和。如:求数列1,1+2,1+2+3,1+2+3+4,……的前n项和。此时先将an求出,再利用分组等方法求和。
8.并项求和:
例:1-2+3-4+5-6+……+(2n-1)-2n(并项)
求出奇数项和偶数项的和,再相减。
第三篇:等差数列与等比数列的证明
龙源期刊网 http://.cn
等差数列与等比数列的证明
作者:刘春建
来源:《高考进行时·高三数学》2013年第03期
一、考纲要求
1.理解等差数列的递推关系,并能够根据递推关系证明等差数列。
2.理解等比数列的递推关系,并能够根据递推关系证明等比数列。
3.能够利用等差中项和等比中项证明等差数列和等比数列。
二、难点疑点
1.在证明等差数列和等比数列的过程中,部分学生只是求出了等差数列和等比数列的通项公式,而没有利用递推关系或者等差、等比中项进行证明。
2.在用等比中项证明等比数列的时候,没有交代各项均不为零。
3.要注意整体思想在证明等差数列和等比数列中的灵活运用。
第四篇:证明数列是等比数列
证明数列是等比数列
an=(2a-6b)n+6b
当此数列为等比数列时,显然是常数列,即2a-6b=0
这个是显然的东西,但是我不懂怎么证明
常数列吗.所以任何一个K和M都应该有ak=amak=(2a-6b)k+6bam=(2a-6b)m+6bak-am=(2a-6b)(k-m)因为ak-am恒为0km任意所以一定有2a-6b=0即a=3b
补充回答:题目条件看错,再证明当此数列为等比数列时
2a-6b=0
因为等比a3:a2=a2:a
1即(6a-12b)*2a=(4a-6b)^
2a^2-6ab+9b^2=0
即(a-3b)^2=0
所以肯定有a=3b成立
2数列an前n项和为Sn已知a1=1a(n+1)=(n+2)/n乘以Sn(n=1,2,3......)证明
(1)(Sn/n)是等比数列
(2)S(n+1)=4an1、A(n+1)=(n+2)sn/n=S(n+1)-Sn
即nS(n+1)-nSn=(n+2)Sn
nS(n+1)=(n+2)Sn+nSn
nS(n+1)=(2n+2)Sn
S(n+1)/(n+1)=2Sn/n
即S/=
2S1/1=A1=
1所以Sn/n是以2为公比1为首项的等比数列
2、由1有Sn/n是以2为公比1为首项的等比数列
所以Sn/n的通项公式是Sn/n=1*2^(n-1)
即Sn=n2^(n-1)
那么S(n+1)=(n+1)2^n,S(n-1)=(n-1)2^(n-2)
An=Sn-S(n-1)
=n2^(n-1)-(n-1)2^(n-2)
=n*2*2^(n-2)-(n-1)2^(n-2)
=*2^(n-2)
=(n+1)2^(n-2)
=(n+1)*2^n/2^
2=(n+1)2^n/
4=S(n+1)/4
所以有S(n+1)=4An
a(n)-a(n-1)=2(n-1)
上n-1个式子相加得到:
an-a1=2+4+6+8+.....2(n-1)
右边是等差数列,且和=(n-1)/2=n(n-1)
所以:
an-2=n^2-n
an=n^2-n+24、已知数列{3*2的N此方},求证是等比数列
根据题意,数列是3*2^n(^n表示肩膀上的方次),n=1,2,3,...为了验证它是等比数列只需要比较任何一项和它相邻项的比值是一个不依赖项次的固定比值就可以了.所以第n项和第n+1项分别是3*2^n和3*2^(n+1),相比之后有:
/(3*2^n)=
2因为比值是2,不依赖n的选择,所以得到结论.5数列an前n项和为Sn已知a1=1a(n+1)=(n+2)/n乘以Sn(n=1,2,3......)证明
(1)(Sn/n)是等比数列
(2)S(n+1)=4an1、A(n+1)=(n+2)sn/n=S(n+1)-Sn
即nS(n+1)-nSn=(n+2)Sn
nS(n+1)=(n+2)Sn+nSn
nS(n+1)=(2n+2)Sn
S(n+1)/(n+1)=2Sn/n
即S/=
2S1/1=A1=
1所以Sn/n是以2为公比1为首项的等比数列
2、由1有Sn/n是以2为公比1为首项的等比数列
所以Sn/n的通项公式是Sn/n=1*2^(n-1)
即Sn=n2^(n-1)
那么S(n+1)=(n+1)2^n,S(n-1)=(n-1)2^(n-2)
An=Sn-S(n-1)
第五篇:等差数列与等比数列的证明方法
等差数列与等比数列的证明方法
高考题中,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢?
证明或判断等差(等比)数列的方法常有四种:定义法、等差或等比中项法、数学归纳法、反证法。
一、定义法
10.证明数列是等差数列的充要条件的方法:
an1and(常数)an是等差数列
a2n2a2nd(常数)a2n是等差数列
a3n3a3nd(常数)a3n是等差数列
20.证明数列是等差数列的充分条件的方法:
anan1d(n2)an是等差数列
an1ananan1(n2)an是等差数列
30.证明数列是等比数列的充要条件的方法:
an1q(q0且为常数,a10)an为等比数列 an
40.证明数列是等比数列的充要条件的方法:
anq(n>2,q为常数且≠0)an为等比数列 an
1注意事项:用定义法时常采用的两个式子anan1d和an1and有差别,前者必须加上“n≥2”,否则n1时a0无意义,等比中一样有:n≥2时,有(常数0);②nN时,有an1. q(常数0)ananqan1
例1.设数列a1,a2,,an,中的每一项都不为0。
证明:an为等差数列的充分必要条件是:对任何nN,都有
111n。a1a2a2a3anan1a1an1
证明:先证必要性
设{an}为等差数列,公差为d,则
当d=0时,显然命题成立 当d≠0时,∵
1111
anan1danan1
∴
再证充分性:
∵
1n111
„„„①
anan1a1an1a1a2a2a3a3a
411n1111
„„„②
anan1an1an2a1an2a1a2a2a3a3a4
∴
②﹣①得:
1n1n
an1an2a1an2a1an1
两边
anan1a1得:a1(n1)an1nan2 „„„③
同理:a1nan(n1)an1„„„④ ③—④得:2nan1n(anan2)
即:an2an1an1anan为等差数列
例2.设数列{an}的前n项和为Sn,试证{an}为等差数列的充要条件是
Sn
n(a1an),(nN*)。
2证:)若{an}为等差数列,则
a1ana2an1a3an2……,故
2Sn(a1an)(a2an2).......(ana1)
Sn(a1an)
n
()当n≥2时,由题设,Sn1)(a1an1)n(a1an1
(2,Sn)
n2
所以a(a1a2)(n1)(a1an1)nSnSn1
n22
同理有a1)(a1an1)n(a1ann1
(n2)
从而a(n1)(a1an1)(n1)(a1an1an
2n(aan1)
1n)2
整理得:an+1-an=an-an-1,对任意n≥2成立.从而{an}是等差数列.例3.已知数列an是等比数列(q1),Sn是其前n项的和,Sk,S2kSk,S3kS2k,„,仍成等比数列。
证明一:
(1)当q=1时,结论显然成立;(2)当q≠1时,Sa11qk1q2ka11q3kk
1q,S2k
a11q,S3k
1q
Sq2ka11qka1qk1qk2kSk
a111q
1q
1q 3kSa11q11q2ka1q2k1qk3kS2k
1q
a1q
1q
2kk2
S2
1q21qSa11qka1q2k1qka22k1q12kSk
a(1q)2
k(S3kS2k)1q1q
qk
(1q)2
∴S2
2kSk
=Sk(S3kS2k)
∴Sk,S2kSk,S3kS2k成等比数列.则
证明二:S2k-Sk=(a1a2a3a2k)-(a1a2a3ak)=ak1ak2ak3a2k=qk(a1a2a3ak)=qkSk0 同理,S3k-S2k=a2k1a2k2a2k3a3k= q2kSk0 ∴Sk,S2kSk,S3kS2k成等比数列。
二、中项法
(1).(充要条件)
若2an1anan2an是等差数列
(注:三个数a,b,c为等差数列的充要条件是:2bac)(充分条件)2an
an1an1(n2){an}是等差数列,(2).(充要条件)
若 anan2an12(an0){an}是等比数列(充分条件)
2anan1an1(n≥1)
{an}是等比数列,注:
b(ac0)是a、b、c等比数列的充分不必要条件
b是a、b、c等比数列的必要不充分条件
.b(ac0)是a、b、c等比数列的充要条件.任意两数a、c不一定有等比中项,除非有ac>0,则等比中项一定有两个.三、通项公式与前n项和法
1.通项公式法
(1).若数列通项an能表示成ananb(a,b为常数)的形式,则数列an是等差数列。(充要条件)
(2).若通项an能表示成ancqn(c,q均为不为0的常数,nN)的形式,则数列an是等比数列.(充要条件)
2.前n项和法
(1).若数列an的前n项和Sn能表示成Snan2bn(a,b为常数)的形式,则数列an是等差数列;(充要条件)
(2).若Sn能表示成SnAqnA(A,q均为不等于0的常数且q≠1)的形式,则数列an是公比不为1的等比数列.(充要条件)
四、归纳—猜想---数学归纳证明法
先根据递推关系求出前几项,观察数据特点,猜想、归纳出通项公式,再用数学归纳法给出证明。
这种方法关键在于猜想要正确,用数学归纳法证明的步骤要熟练,从“nk时命题成立”到“nk1时命题成立”要会过渡.
五、反证法
解决数学问题的思维过程,一般总是从正面入手,即从已知条件出发,经过一系列的推理和运算,最后得到所要求的结论,但有时会遇到从正面不易入手的情况,这时可从反面去考虑.
六、等差数列与等比数列的一些常规结论
若数列{an}是公比为q的等比数列,则
(1)数列{an}{an}(为不等于零的常数)仍是公比为q的等比数列;(2)若{bn}是公比为q的等比数列,则数列{anbn}是公比为qq的等比数列;(3)数列
11
是公比为的等比数列;
qan
(4){an}是公比为q的等比数列;
(5)在数列{an}中,每隔k(kN)项取出一项,按原来顺序排列,所得新数列仍
为等比数列且公比为qk1;
(6)若m,n,p(m,n,pN)成等差数列时,am,an,ap成等比数列;(7)Sn,S2nSn,S3nS2n均不为零时,则Sn,S2nSn,S3nS2n成等比数列;(8)若{logban}是一个等差数列,则正项数列{an}是一个等比数列.
若数列{an}是公差为d等差数列,则
(1){kanb}成等差数列,公差为kd(其中k0,k,b是实常数);(2){S(n1)kSkn},(kN,k为常数),仍成等差数列,其公差为k2d;(3)若{an}{,bn}都是等差数列,公差分别为d1,d2,则{anbn}是等差数列,公差为d1d2;
(4)当数列{an}是各项均为正数的等比数列时,数列{lgan}是公差为lgq的等差数列;
(5)m,n,p(m,n,pN)成等差数列时,am,an,ap成等差数列.