第一篇:开关电源EMI整改频段干扰原因及抑制办法(最终版)
开关电源EMI整改频段干扰原因及抑制办法
开关电源EMI整改中,关于不同频段干扰原因及抑制办法:
1MHZ以内以差模干扰为主
1.增大X电容量;
2.添加差模电感;
3.小功率电源可采用PI型滤波器处理(建议靠近变压器的电解电容可选用较大些)。
1MHZ-5MHZ差模共模混合
采用输入端并联一系列X电容来滤除差摸干扰并分析出是哪种干扰超标并以解决,1.对于差模干扰超标可调整X电容量,添加差模电感器,调差模电感量;
2.对于共模干扰超标可添加共模电感,选用合理的电感量来抑制;
3.也可改变整流二极管特性来处理一对快速二极管如FR107一对普通整流二极管1N4007。
5M以上以共摸干扰为主,采用抑制共摸的方法。
对于外壳接地的,在地线上用一个磁环串绕2-3圈会对10MHZ以上干扰有较大的衰减作用;
可选择紧贴变压器的铁芯粘铜箔,铜箔闭环.处理后端输出整流管的吸收电路和初级大电路并联电容的大小。
20-30MHZ
1.对于一类产品可以采用调整对地Y2电容量或改变Y2电容位置;
2.调整一二次侧间的Y1电容位置及参数值;
3.在变压器外面包铜箔;变压器最里层加屏蔽层;调整变压器的各绕组的排布。
4.改变PCBLAYOUT;
5.输出线前面接一个双线并绕的小共模电感;
6.在输出整流管两端并联RC滤波器且调整合理的参数;
7.在变压器与MOSFET之间加BEADCORE;
8.在变压器的输入电压脚加一个小电容。
9.可以用增大MOS驱动电阻.30-50MHZ 普遍是MOS管高速开通关断引起
1.可以用增大MOS驱动电阻;
2.RCD缓冲电路采用1N4007慢管;
3.VCC供电电压用1N4007慢管来解决;
4.或者输出线前端串接一个双线并绕的小共模电感; 5.在MOSFET的D-S脚并联一个小吸收电路; 6.在变压器与MOSFET之间加BEADCORE; 7.在变压器的输入电压脚加一个小电容;
8.PCB心LAYOUT时大电解电容,变压器,MOS构成的电路环尽可能的小; 9.变压器,输出二极管,输出平波电解电容构成的电路环尽可能的小。
50-100MHZ普遍是输出整流管反向恢复电流引起
1.可以在整流管上串磁珠;
2.调整输出整流管的吸收电路参数;
3.可改变一二次侧跨接Y电容支路的阻抗,如PIN脚处加BEADCORE或串接适当的电阻;
4.也可改变MOSFET,输出整流二极管的本体向空间的辐射(如铁夹卡MOSFET;铁夹卡DIODE,改变散热器的接地点)。
5.增加屏蔽铜箔抑制向空间辐射.补充说明:
开关电源高频变压器初次间一般是屏蔽层的,以上未加缀述.开关电源是高频产品,PCB的元器件布局对EMI.,请密切注意此点.开关电源若有机械外壳,外壳的结构对辐射有很大的影响.请密切注意此点.主开关管,主二极管不同的生产厂家参数有一定的差异,对EMC有一定的影响.200MHZ以上开关电源已基本辐射量很小,一般可过EMI标准
第二篇:开关电源电磁干扰抑制技术
开关电源电磁干扰抑制技术
0 引言
随着现代电子技术和功率器件的发展,开关电源以其体积小,重量轻,高性能,高可靠性等特点被广泛应用于计算机及外围设备通信、自动控制、家用电器等领域,为人们的生产生活和社会的建设提供了很大帮助。但是,随着现代电子技术的快速发展,电子电气设备的广泛应用,处于同一工作环境的各种电子、电气设备的距离越来越近,电子电路工作的外部环境进一步恶化。由于开关电源工作在高频开关状态,内部会产生很高的电流、电压变化率,导致开关电源产生较强的电磁干扰。电磁干扰信号不仅对电网造成污染,还直接影响到其他用电设备甚至电源本身的正常工作,而且作为辐射干扰闯入空间,造成电磁污染,制约着人们的生产和生活。国内在20世纪80一90年代,为了加强对当前国内电磁污染的治理,制定了一些与CISPR标准、IEC801等国际标准相对应的标准。自从2003年8月1日中国强制实施3C认证(china compulsory certification)工作以来,掀起了“电磁兼容热”,近距离的电磁干扰研究与控制愈来愈引起电子研究人员们的关注,当前已成为当前研究领域的一个新热点。本文将针对开关电源电磁干扰的产生机理系统地论述相关的抑制技术。
l 开关电源电磁干扰的抑制 形成电磁干扰的三要素是干扰源、传播途径和受扰设备。因而,抑制电磁干扰应从这三方面人手。抑制干扰源、消除干扰源和受扰设备之间的耦合和辐射、提高受扰设备的抗扰能力,从而改善开关电源的电磁兼容性能的目的。1.1 采用滤波器抑制电磁干扰 滤波是抑制电磁干扰的重要方法,它能有效地抑制电网中的电磁干扰进入设备,还可以抑制设备内的电磁干扰进入电网。在开关电源输入和输出电路中安装开关电源滤波器,不但可以解决传导干扰问题,同时也是解决辐射干扰的重要武器。滤波抑制技术分为无源滤波和有源滤波2种方式。
1.1.1 无源滤波技术 无源滤波电路简单,成本低廉,工作性能可靠,是抑制电磁干扰的有效方式。无源滤波器由电感、电容、电阻元件组成,其直接作用是解决传导发射。开关电源中应用的无源滤波器的原理结构图如图1所示。
由于原电源电路中滤波电容容量大,整流电路中会产生脉冲尖峰电流,这个电流由非常多的高次谐波电流组成,对电网产生干扰;另外电路中开关管的导通或截止、变压器的初级线圈都会产生脉动电流。由于电流变化率很高,对周围电路会产生出不同频率的感应电流,其中包括差模和共模干扰信号,这些干扰信号可以通过2根电源线传导到电网其他线路和干扰其他的电子设备。图中差模滤波部分可以减少开关电源内部的差模干扰信号,又能大大衰减设备本身工作时产生的电磁干扰信号传向电网。又根据电磁感应定律,得E=Ldi/dt,其中:E为L两端的电压降;L为电感量;di/dt为电流变化率。显然要求电流变化率越小,则要求电感量就越大。脉冲电流回路通过电磁感应其他电路与大地或机壳组成的回路产生的干扰信号为共模信号;开关电源电路中开关管的集电极与其他电路之间产生很强的电场,电路会产生位移电流,而这个位移电流也属于共模干扰信号。图1中共模滤波器就是用来抑制共模干扰,使之受到衰减。1.1.2 有源滤波技术
有源滤波技术是抑制共模干扰的一种有效方法。该方法从噪声源出发而采取的措施(如图2所示),其基本思想是设法从主回路中取出一个与电磁干扰信号大小相等、相位相反的补偿信号去平衡原来的干扰信号,以达到降低干扰水平的目的。如图2所示,利用晶体管的电流放大作用,通过把发射极的电流折合到基极,在基极回路来滤波。R1,C2组成的滤波器使基极纹波很小,这样射极的纹波也很小。由于C2的容量小于C3,减小了电容的体积。这种方式仅适合低压小功率电源的情况。另外,在设计和选用滤波器时应注意频率特性、耐压性能、额定电流、阻抗特性、屏蔽和可靠性。滤波器的安装位置要恰当,安装方法要正确,才能对干扰起到预期的滤波作用。1.2 屏蔽技术和接地技术 采用屏蔽技术可以有效地抑制开关电源的电磁辐射干扰。屏蔽一般分为2种:一种是静电屏蔽,主要用于防止静电场和恒定磁场的影响;另一种是电磁屏蔽,主要用于防止交变电场、磁场以及交变电磁场的影响。屏蔽技术分为对发出电磁波部位的屏蔽和受电磁波影响的元器件的屏蔽。在开关电源中,可发出电磁波的元器件是指变压器、电感器、功率器件等,通常在其周围采用铜板或铁板作为屏蔽,以使电磁波产生衰减。此外,为了抑制开关电源产生的辐射向外部发散,为了减少电磁干扰对其他电子设备的影响,应采取整体屏蔽。可完全按照对磁场屏蔽的方法来加工屏蔽罩,然后将整个屏蔽罩与系统的机壳和地连接为一体,就能对电磁场进行有效的屏蔽。然而在使用整体屏蔽时应充分考虑屏蔽材料的接缝、电线的输入/输出端子和电线的引出口等处的电磁泄露,且不易散热,结构成本大幅度增加等因素。为使电磁屏蔽能同时发挥静电屏蔽的作用,加强屏蔽效果,同时保障人身和设备的安全,应将系统与大地相连,即为接地技术。接地是指在系统的某个选定点与某个接地面之间建立导电的通路设计。这一过程是至关重要的,将接地和屏蔽正确结合起来可以更好地解决电磁干扰问题,又可提高电子产品的抗干扰能力。1.3 PCB设计技术 为更好地抑制开关电源的电磁干扰,其印制电路板(PCB)的抗干扰技术尤为重要。为减少PCB的电磁辐射和PCB上电路间的串扰,要非常注意PCB布局、布线和接地。如减少辐射干扰是减小通路面积,减小干扰源和敏感电路的环路面积,采用静电屏蔽。而抑制电场与磁场的耦合,应尽量增大线间距离。在开关电源中接地是抑制干扰的重要方法。接地有安全接地、工作接地和屏蔽接地等3种基本类型。地线设计应注意以下几点:交流电源地与直流电源地分开;功率地与弱电地分开;模拟电路与数字电路的电源地分开;尽量加粗地线。1.4 扩频调制技术 对于一个周期信号尤其是方波来说,其能量主要分布在基频信号和谐波分量中,谐波能量随频率的增加呈级数降低。由于n次谐波的带宽是基频带宽的n倍,通过扩频技术将谐波能量分布在一个更宽的频率范围上。由于基频和各次谐波能量减少,其发射强度也应该相应降低。要在开关电源中采用扩频时钟信号,需要对该电源开关脉冲控制电路输出的脉冲信号进行调制,形成扩频时钟(如图3所示)。与传统的方法相比,采用扩频技术优化开关电源EMI既高效又可靠,无需增加体积庞大的滤波器件和繁琐的屏蔽处理,也不会对电源的效率带来任何负面影响。
1.5 一次整流电路中加功率因数校正(PFC)网络 对于直流稳压电源,电网电压通过变压器降压后直接通过整流电路进行整流,所以整流过程中产生的谐波分量作为干扰直接影响交流电网的波形,使波形畸变,功率因数偏低。为了解决输入电流波形畸变和降低电流谐波含量,将功率因数校正(PFC)技术应用于开关电源中是非常必要的。PFC技术使得电流波形跟随电压波形,将电流波形校正成近似的正弦波,从而降低了电流谐波含量,改善了桥式整流电容滤波电路的输入特性,提高了开关电源的功率因数。其中无源功率因数校正电路是利用电感和电容等元件组成滤波器,将输入电流波形进行移相和整形过程来实现提高功率因数的。而有源功率因数校正电路是依据控制电路强迫输入交流电流波形跟踪输入交流电压波形的原理来实现交流输入电流正弦化,并与交流输入电压同步。两种方法均使功率因数提高,后者效果更加明显,但电路复杂。结语 本文的设计方法正确,仿真结果正常,克服了传统方案中所存在的一些问题,使电磁干扰的抑制技术得到进一步优化。从开关电源电磁干扰产生的机理来看,有多种方式可抑制电磁干扰,除本文中分析的几种主要方法外,还可以采用光电隔离器、LSA系列浪涌吸收器、软开关技术等。抑制开关电源的电磁干扰,目的是使其能在各领域得到有效应用的同时,尽量减少电磁污染,实现了对电磁污染问题的有效治理。而在实际设计时,应全面考虑开关电源的各种电磁干扰,选用多种抑制电磁干扰的方法加以综合利用,使电磁干扰降到最低,从而提高电子产品的质量与可靠性。
第三篇:开关电源电磁干扰标准与EMI电磁干扰抑制措施
开关电源电磁干扰标准与EMI电磁干扰抑制措施
电磁兼容性(EMC)是指电子设备或系统在规定的电磁环境电平下不因电磁干扰而降低性能指标,同时它们本身产生的电磁辐射不大于规定的极限电平,不影响其它电子设备或系统的正常运行,并达到设备与设备、系统与系统之间互不干扰、共同可靠地工作的目的。
世界各国都相应制定了自己的EMC标准。比如国际电工委员会的1EC61000及(C1SPR系列标准、欧洲共同体的FN系列标准、美国联邦通信委的FCC系列标准和我国现行的GT3/T13926系列EMC标准等。随着国际电磁兼容法规的日益严格,产品的电磁兼容性能越来越受到重视。
开关电源作为一种电源设备,其应用越来越广泛。随着电力电子器件的不断更新换代,开关电源的开关频率及开关速度不断提高,但开关的快速通断,引起电压和电流的快速变化。这些瞬变的电压和电流,通过电源线路、寄生参数和杂散的电磁场耦合,会产生大量的电磁干扰。
二、开关电源的干扰源分析
开关电源产生的电磁干扰(EMI),按耦合通道来分,可分为传导干扰和辐射干扰;按噪声干扰源种类来分可分为尖峰干扰和谐波干扰。开关电源在工作过程中所产生的浪涌电流和尖峰电压就形成了干扰源,工频整流滤波使用的大电容充电放电、开关管高频工作时的电压切换以及输出整流二极管的反向恢复电流都是这类干扰源。
三、电磁干扰的抑制措施
电磁干扰由三个基本要素组合而产生:电磁干扰源;对该干扰能量敏感的设备;将电磁干扰源传输到敏感设备的媒介即传输通道或藕合途径。
对开关电源产生的电磁干扰所采取的抑制措施,主要从两个方而考虑:一是减小干扰源的干扰强度;一是切断干扰传播途径。
常用的抗干扰措施包括电路的隔离、屏蔽、接地、加装EMI滤波器以及PCB板的合理布局与布线。
1.电路的隔离
在开关电源中,电路的隔离主要有:模拟电路的隔离、数字电路的隔离、数字电路与模拟电路之间的隔离。主要目的是通过隔离元器件把噪声干扰的路径切断,从而达到抑制噪声干扰的效果。对于开关电源的模拟信号控制系统的隔离,交流信号一般采用变压器隔离,直流信号一般采用线性隔离器(如线性光电耦器)隔离。
数字电路的隔离主要有:脉冲变压器隔离、光电耦合器隔离等。其中数字量输入隔离方式主要采用脉冲变压器隔离、光电耦合器隔离;而数字量输出隔离方式主要采用光电耦合器隔离、高频变压器隔离。
2.屏蔽
屏蔽一般分为两类,一类是静电屏蔽,主要用于防止静电场和恒定磁场的影响;另一类是电磁屏蔽,主要用于防止交变电场、交变磁场以及交变电磁场的影响。屏蔽是抑制开关电源辐射干扰的有效方法。可以用导电良好的材料对电场屏蔽,而用导磁率高的材料对磁场屏蔽。
3.接地
为防止各种电路在工作中产生互相干扰,使之能相互兼容地工作,根据电路的性质,将工作接地分为不同的种类。比如直流地、交流地、数字地、模拟地、信号地、功率地、电源地等。在电路的设计中,应将交流电源地与直流电源地分开,模拟电路与数字电路的电源地分开,功率地与弱电地分开。
4.加装EMI滤波器
电源滤波器安装在电源线与电子设备之间,用于抑制电源线引出的传导干扰,又可以降低从电网引入的传导干扰,对提高设备的可靠性有重要的作用。开关电源产生的电磁干扰以传导干扰为主,而传导干扰又分差模骚扰和共模干扰两种。构成开关电源EMI滤波器的基本网络如图1所示。该滤波器由共模扼流圈L、差模电容Cx和共模电容Cy组成。共模扼流圈L由两个绕在同一个高磁导率磁芯上的绕组构成,其结构使差模电流产生的磁通相互抵消。这种结构以较小体积获得较大的电感值,并且不用担心由于工作电流导致饱和。每个绕组与电容Cy分别组成L-E和N-E两对独立端口的低通滤波器,形成共模滤波网络,用来抑制电源线上存在的共模干扰。至于共模扼流圈L、差模电容Cx和共模电容Cy的取值大小,应尽量做到滤波器的谐振频率低于开关电源的工作频率,这样可以实现对整个频段的滤波。
第四篇:解析几种有效开关电源电磁干扰抑制
解析几种有效开关电源电磁干扰抑制
前关于开关电源EMI(Electromagnetic Interference)的研究,有些从EMI产生的机理出发,有些 从EMI 产生的影响出发,都提出了许多实用有价值的方案。这里分析与比较了几种有效的方案,并为开关 电源EMI 的抑制措施提出新的参考建议。
◆ 开关电源电磁干扰的产生机理
开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可 分为传导干扰和辐射干扰两种。现在按噪声干扰源来分别说明:
1、二极管的反向恢复时间引起的干扰
高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时, 由于PN结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。
2、开关管工作时产生的谐波干扰
功率开关管在导通时流过较大的脉冲电流。例如正激型、推挽型和桥式变换器的输入电流波形在 阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。当采用零电流、零电压开关时,这种谐 波干扰将会很小。另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生 尖峰干扰。
3、交流输入回路产生的干扰
无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称 之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。这 种通过电磁辐射产生的干扰称为辐射干扰。
4、其他原因
元器件的寄生参数,开关电源的原理图设计不够完美,印刷线路板(PCB)走线通常采用手工布 置,具有很大的随意性,PCB的近场干扰大,并且印刷板上器件的安装、放置,以及方位的不合理都会造成EMI干扰。
◆ 开关电源EMI的特点
作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,产生的干扰强度较大;干扰源主要集中在功率开关期间以及与之相连的散热器和高平变压器,相对于数字电路干扰源的位置较为清楚;开关频率不高(从几十千赫和数兆赫兹),主要的干扰形式是传导干扰和近场干扰;而印刷线路板(PCB)走线通常采用手工布线,具有更大的随意性,这增加了PCB分布参数的提取和近场干扰估计的难度。
◆ EMI测试技术
目前诊断差模共模干扰的三种方法:射频电流探头、差模抑制网络、噪声分离网络。用射频电流探头是测量差模 共模干扰最简单的方法,但测量结果与标准限值比较要经过较复杂的换算。差模抑制网络结构比较简单,测量结果可直接与标准限值比较,但只能测量共模干扰。噪声分离网络是最理想的方法,但其关键部件变压器的制造要求很高。
◆ 目前抑制干扰的几种措施
形成电磁干扰的三要素是干扰源、传播途径和受扰设备。因而,抑制电磁干扰也应该从这三方面着手。首先应该抑制干扰源,直接消除干扰原因;其次是消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径;第三是提高受扰设备的抗扰能力,减低其对噪声的敏感度。目前抑制干扰的几种措施基本上 都是用切断电磁干扰源和受扰设备之间的耦合通道,它们确是行之有效的办法。常用的方法是屏蔽、接地和滤波。采用屏蔽技术可以有效地抑制开关电源的电磁辐射干扰。例如,功率开关管和输出二极管通常有较大的功率损耗,为了散热往往需要安装散热器或直接安装在电源底板上。器件安装时需要导热性能好的绝缘片进行绝缘,这就使器件与底板和散热器之间产生了分布电容,开关电源的底板是交流电源的地线,因而通过 器件与底板之间的分布电容将电磁干扰耦合到交流输入端产生共模干扰,解决这个问题的办法是采用两层绝缘片之间夹一层屏蔽片,并把屏蔽片接到直流地上,割断了射频干扰向输入电网传播的途径。为了抑制开关电源产生的辐射,电磁干扰对其他电子设备的影响,可完全按照对磁场屏蔽的方法来加工屏蔽罩,然后将整个屏蔽罩与系统的机壳和地连接为一体,就能对电磁场进行有效的屏蔽。电源某些部分与大地相连可
以起到抑制干扰的作用。例如,静电屏蔽层接地可以抑制变化电场的干扰;电磁屏蔽用的导体原则上可以不接地,但不接地的屏蔽导体时常增强静电耦合而产生所谓“负静电屏蔽”效应,所以仍以接地为好,这样 使电磁屏蔽能同时发挥静电屏蔽的作用。电路的公共参考点与大地相连,可为信号回路提供稳定的参考电位。因此,系统中的安全保护地线、屏蔽接地线和公共参考地线各自形成接地母线后,最终都与大地相连.在电路系统设计中应遵循“一点接地”的原则,如果形成多点接地,会出现闭合的接地环路,当磁力线穿过该回路时将产生磁感应噪声,实际上很难实现“一点接地”。因此,为降低接地阻抗,消除分布电容的影响而采取平面式或多点接地,利用一个导电平面(底板或多层印制板电路的导电平面层等)作为参考地,需要接地的各部分就近接到该参考地上。为进一步减小接地回路的压降,可用旁路电容减少返回电流的幅 值。在低频和高频共存的电路系统中,应分别将低频电路、高频电路、功率电路的地线单独连接后,再连接到公共参考点上。滤波是抑制传导干扰的一种很好的办法。例如,在电源输入端接上滤波器,可以抑制开关电源产生并向电网反馈的干扰,也可以抑制来自电网的噪声对电源本身的侵害。在滤波电路中,还采用很多专用的滤波元件,如穿心电容器、三端电容器、铁氧体磁环,它们能够改善电路的滤波特性。恰当地设计或选择滤波器,并正确地安装和使用滤波器,是抗干扰技术的重要组成部分。EMI滤波技术是一种抑制尖脉冲干扰的有效措施,可以滤除多种原因产生的传导干扰。一种由电容、电感组成的EMI滤波器,接在开关电源的输入端。电路中,C1、C5是高频旁路电容,用于滤除两输入电源线间的差模干扰;L1与C2、C4;L2与C3、C4组成共模干扰滤波环节,用于滤除电源线与地之间非对称的共模干扰;L3、L4的初次级匝数相等、极性相反,交流电流在磁芯中产生的磁通相反,因而可有效地抑制共模干扰。测试表明,只要适当选择元器件的参数,便可较好地抑制开关电源产生的传导干扰。
◆ 目前开关电源EMI抑制措施的不足之处 现有的抑制措施大多从消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径出发,这确是抑制干扰的一种行之有效的办法,但很少有人涉及直接控制干扰源,消除干扰,或提高受扰设备的抗扰能力,殊不知后者还有许多发展的空间。
◆ 改进措施的建议
我认为目前从电磁干扰的传播途径出发来抑制干扰,已渐进成熟。我们的视点要回到开关电源器件本身来。从多年的工作实践来看,在电路方面要注意以下几点:
(1)印制板布局时,要将模拟电路区和数字电路区合理地分开,电源和地线单独引出,电源供给处汇集到一点;PCB布线时,高频数字信号线要用短线,主要信号线最好集中在PCB板中心,同时电 源线尽可能远离高频数字信号线或用地线隔开。其次,可以根据耦合系数来布线,尽量减少干扰耦合。
(2)印制板的电源线和地线印制条尽可能宽,以减小线阻抗,从而减小公共阻抗引起的干扰噪声。
(3)器件多选用贴片元件和尽可能缩短元件的引脚长度,以减小元件分布电感的影响。
(4)在Vdd及Vcc电源端尽可能靠近器件接入滤波电容,以缩短开关电流的流通途径,如用10μF铝电解和0 1μF电容并联接在电源脚上。对于高速数字IC的电源端可以用钽电解电容代替铝电解电容,因为钽电解的对地阻抗比铝电解小得多。产生开关电源电磁干扰的因素还很多,抑制电磁干扰还有大量的工作。全面抑制开关电源的各种噪声 才会使开关电源得到更广泛的应用。
第五篇:继电器电磁干扰的分析及抑制
继电器电磁干扰的分析及抑制
转载▼
(2012-06-06 10:38:50)
标签:
分类: 其它知识 继电器
it
摘要:本文主要介绍了对电气设备中继电器及其开关触点干扰抑制的机理,提出了抑制干扰的有效措施。
关键词:继电器 电磁干扰 分析 抑制
1前言
随着科学技术的飞速发展,电子、电力电子、电气设备应用越来越广泛,它们在运行过程中会产生较强的电磁干扰和谐波干扰。其中,电磁干扰具有很宽的频率范围(从几百Hz到MHz),又有一定的幅度,经过传导和辐射会污染电磁环境,对电子设备造成干扰,有时甚至危及操作人员的安全。特别是大功率中、短波广播发射中心,其周围电磁环境尤为复杂,要想保证设备安全稳定运行,电子设备及电源必须具有更高的电磁兼容性。
2电磁干扰的抑制
电磁干扰EMI(Electromagnetic Interference)是指由无用信号或电磁骚扰(噪声)对有用电磁信号的接收或传输所造成的损害。一个系统或系统内,某一线路受到电磁干扰的程度可以表示为如下关系式:
N=G×C/I
其中:G为噪声源强度;
I为受干扰电路的敏感程度;
C为噪声通过某种途径传导受干扰处的耦合因素。
从上式可以看出,电磁干扰抑制的技术就是围绕这三个要素所采取的各种措施,归纳起来就是:
(1)抑制电磁干扰源;
(2)切断电磁干扰耦合途径;
(3)降低电磁敏感装置的敏感性。
2.1抑制电磁干扰源
首先必须确定干扰源在何处,越靠近干扰源的地方采取措施抑制效果越好,一般来说,电流电压瞬变的地方(即di/dt或du/dt)即是干扰源,如:继电器开合、电容充放电、电机运转、集成电路开关工作等都可能成为干扰源。另外,市电并非理想的50Hz正弦波,其中充满各种频率噪声,也是不可忽视的干扰源。
抑制干扰源就是尽可能的减小di/dt或du/dt,这是抗干扰设计时最优先和最重要的原则。减小di/dt的干扰源,主要是在干扰回路串联电感或电阻以及增加续流二极管来实现;减小du/dt的干扰源,则是通过在干扰源两端并联电容来实现。
抑制方法通常采用低噪声电路、瞬态抑制电路、稳压电路等,所选用的器件应尽可能采用低噪声、高频特性好、稳定性高的电子元件,特别要注意,抑制电路中不适当的器件选择可能会产生新的干扰源。
2.2切断电磁干扰耦合的途径
电磁干扰耦合途径主要包括传导和辐射两种。
所谓传导干扰是指通过导线传播到敏感器件的干扰,抑制传导干扰主要是通过在导线上增加滤波器的方法切断干扰源,有时也可加隔离光耦来解决。滤波器分为低通(LPF)、高通(HPF)、带阻(BEF)、带通(BPF)等四种,可根据信号与噪声频率的差别选择不同类型的滤波器,对于要求较高的设备,则必须采用穿心滤波器。
辐射干扰是指通过空间辐射传播到敏感器件的干扰,对于辐射干扰,主要是采用屏蔽技术和分层技术。屏蔽技术是一门科学,选择合适的屏蔽材料,在适当的位置进行屏蔽,对于屏蔽效果至关重要,尤其是屏蔽室的设计。可供选择的屏蔽材料种类繁多,有各种金属板、铜丝网、导电橡胶、导电胶、导电玻璃等等,应根据需要进行选择。屏蔽室的设计应充分考虑门窗、通风口、进出线口的屏蔽与搭接,除静电屏蔽外,还应考虑磁屏蔽及接地。
2.3降低电磁敏感装置的灵敏度
电磁敏感装置的灵敏度本身具有矛盾的双重性,一方面,人们希望电磁敏感装置灵敏度高一些,以提高对信号的接收能力;另一方面,其灵敏度越高,受噪声影响的可能性也就越大。因此,应根据具体情况,采用降额设计、屏蔽设计、网络钝化、功能钝化等方法使问题得到解决。
电磁干扰抑制方法很多,可以选择一种或多种综合应用,但不论选择什么方法,都应从设计之初就着手系统电磁兼容性的考虑。
3继电器及其开关触点干扰的抑制
继电器是具有隔离功能的自动开关元件,广泛应用于遥控、遥测、通讯、自动控制、机电一体化及电力电子等设备中,是最重要的控制元件之一。继电器的开合本身所产生的电磁干扰是绝对不能忽视的,为保证各种设备的安全稳定运行,对继电器及其开关触点电磁干扰的抑制尤为重要。
3.1继电器线圈瞬变干扰的抑制
继电器线圈(以直流继电器为例)是感性负载,在电源断电瞬间会产生瞬变电压,有时高达几kV,如此高的电压足以损坏相关元器件;不仅如此,由于其含有丰富的谐波,可通过线路间的分布电容、绝缘电阻侵入控制系统,导致误动作。为防止元器件损坏、电路误动作等,就必须采取抑制措施,由于断路产生的瞬变电压能量大、频谱宽,仅仅采用滤波或隔离措施难以凑效,抑制瞬变干扰,通常采用如下几种常见的方式:
(1)并联电阻
图1为并联电阻抑制瞬变干扰电路,在图1中,K为电路的控制开关,L为继电器线圈的电感。该抑制电路的关键是正确选择所并联的电阻值,阻值过大起不了作用,过小增加功耗,且易烧坏开关触点。例如,48V直流继电器以并联1kΩ/5W电阻为宜,连接不必考虑电源的极性。
图1并联电阻方式
(2)并联二极管
图2为并联二极管抑制瞬变干扰电路,电源与二极管极性的相对关系不可任意改变。采用这种方式,能量损耗小,瞬变电压低,但是该种方式延长了放电时间,导致继电器线包延时释放,降低了动态响应性能。二极管峰值耐压应为负载电压的3倍以上。
图2并联二极管方式
(3)并联RC支路
并联RC支路如图3所示。该种方式抑制效果好,但使用元器件较多,R、C数值的选择与线圈的电感及内阻有关,与电源极性无关,通常R在10~100Ω之间,C在0.1~0.5μF之间,选用无极性电容器,且其耐压应高于电源电压的峰值。
图3并联RC支路方式
(4)其他方式
另外,还有并联电阻+二极管支路方式(如图4所示)和并联双向二极管或稳压管方式(如图5所示)。并联电阻+二极管支路方式中,电源与二极管的极性不能颠倒,采用这种方式能减少释放时间,提高动态特性。并联双向稳压二极管方式不必考虑电源极性,延迟时间短,但必须保证稳压二极管的耐压至少是电源电压的2倍。
3.2 开关触点干扰的抑制
断开继电器负载时,为防止开关触点产生火花放电,除了在线圈两端加能量释放通路外,也可在开关触点两端增加并联保护网络,一般最常用的是RC保护网络。该保护网络可延长接点的耐久性,防止噪音及减小电弧引起接点烧毁。图6为继电器开关触点干扰抑制的典型电路。
在图6中,R、C串联后跨接在开关触点两端,当开关断开时电感性负载中存储的能量通过RC网络放电,避免了触点间产生放电。R、C的选择应根据接点的电流和电压来确定,电阻R相对于接点电压为1V时,通常选择0.5~1Ω;电容C相对于接点电流为1A时,通常选择0.5~1μF。但是由于负载的性质和离散特性等的不同,必须考虑电容C具有抑制接点断开时的放电效果,在一般情况下使用200~300V的电容器耐压。电阻R的选择应考虑两个方面的因素,一方面,在开关断开瞬间,希望R越小越好,以便电感上存储的能量变成电容器上的能量;另一方面,当开关闭合时,希望R尽可能的大,以免电容器上的能量通过开关触点放电时电流太大而烧毁触点。一般情况下,开关触点间存在两种形式的击穿电压,即气体火花放电和金属弧光放电。要防止气体火花放电,应控制触点间电压低于300V;要防止金属弧光放电,应控制触点间的起始电压上升率小于1V/μs,并把触点间的瞬态电流控制在0.4A以下。
图7为一种改进型的抑制电路,即在电阻R上并联一只二极管D。在开关断开时,电感中的能量通过由R、C、D组成的电路释放,由于二极管正向导通,内阻很小,能量很快释放;当开关闭合时,充满电的电容C通过电阻R和开关触点放电,由于二极管是反向偏置不导通,释放电流仅从电阻R上流过,如R选取足够大,就不会引起触点烧坏。
另外,还可采用在开关触点两端并联稳压二极管的抑制电路,如图8所示。
图8并联稳压二极管方式
在图8中,当开关触点断开时,触点两端出现高电压形成火花放电,由于稳压管的稳压特性,使触点两端的电压不会大于电源电压的1.5倍,从而抑制了瞬变电压和火花。这种电路由于仅用一个元件,电路简单而且效果不错。
一般情况下,电感性负载比纯阻性负载更容易产生气体火花放电和金属弧光放电,只要选择适当的抑制电路,可以达到和纯阻性负载相同的效果。
由于抑制电路的种类很多,在此不再作详细介绍。
4结束语
随着信息技术的不断发展,电台自动化建设不断深入,干扰问题已成为制约系统自动化控制的瓶颈,如何减小相互间的电磁干扰,使各种设备和系统能正常运转,是一个亟待解决的问题。在采用不同的方法对电磁干扰进行抑制时,应分析其综合效应,并对所采用的干扰抑制手段的作用进行恰当的预估,才能获得较理想的效果。
参考文献:
[1] 蔡仁钢.电磁兼容原理和预测技术, 北京航空航天大学出版社,1997
[2] 张乃国.电源干扰与抗干扰, 华港出版社, 2003
(作者单位系国家广电总局2022台)