第一篇:关于上海发展智能制造的思考与建议
关于上海发展智能制造的思考与建议
制造业是上海经济发展和社会稳定的重要支柱。然而近年来,受到全球金融危机的冲击,在资源、成本、环境等因素的制约下,“上海制造”已经面临着严重的发展困境,迫切需要寻找新的出路。智能制造是当前全球新工业革命的重要趋势;是传统制造业转型升级、创新突破的重要方向。为了发挥科技作用,引领上海制造业在新的时代迈上更高层级,上海市科委于2012年9月22日举办了“2012年上海智能制造高峰论坛”,组织产业界、学术界高水平专家以及市府各部门、企业和科研机构负责人就上海应如何发展智能制造的主题开展了深入的讨论。与会专家一致认为,智能制造代表了人类生产力的巨大革命和产业模式的深刻变革。跟上国际潮流,抢滩智能制造是我们不能错过的历史机遇,当前上海制造业向“智造”的转型势在必行,刻不容缓。
一、智能制造是当前新产业革命的核心趋势
近年来,关于科技革命、产业革命的提法在国际国内受到了越来越多的讨论。英国《经济学人》杂志2012年4月封面文章提出“第三次工业革命”,认为以人工智能、机器人、3D打印和数字制造技术等为代表的智能化、信息化趋势对制造业的影响当前可能已到了临界点,将引起一场制造业革命。进而,随着生产的本地化、个性化趋势,将可能导致制造业向发达国家回流,引起全球产业体系的革命性重组。这一预见受到了全球产业界、学术界和政策制定者的重视。当前正在发生的新产业革命是上世纪90年代开始的信息革命的延续和发展。随着信息技术越来越深入地融入到全球产业各个领域,带来了生产方式的变革、生产效率的提升和业态模式的创新。可以预见:未来10年信息技术仍将是产业革命的主要引领者和驱动力。近年来,随着新兴信息技术在制造业领域的应用不断深入拓展,促使制造技术发展的热点与前沿由简单提升生产的效率和规模转变为提高制造系统对信息处理的能力、效率及规模,制造系统正在由原先的能量驱动型向信息驱动型转变。智能制造技术是在现代传感技术、网络技术、自动化技术、拟人化智能技术等先进技术的基础上,通过智能化的感知、人机交互、决策和执行技术,实现设计过程、制造过程和制造装备智能化,是信息技术、智能技术与制造技术的深度融合与集成。智能制造不仅仅意味着制造业自身的革命性发展,也为服务、管理等领域的创新提供了有力的支撑,开拓了广阔的空间。
智能制造的核心意义和价值体现在信息技术支撑下形成的,融合了创意、设计、生产、物流、销售、服务的一体化网络。由个别企业内部的产业链出发,以信息技术为支撑,可以延伸出覆盖全球的产业链、供应链、服务链、创新链网络;形成信息化框架下自反馈、自决策、自组织的全球化产业体系,从而在极大程度上优化资源配置,提升生产效率,激发创新活力。如苹果、IBM等跨国企业,目前已经初步将这种智能制造的理念变为了现实。美国波音公司的波音787飞机从设计、研发、制造到融资、采购、物流每一步几乎都通过全球网络实现,其中近90%的生产工作外包到全球40余家合作企业。据统计,智能制造网络使波音787飞机缩短了33%的进入市场的时间,并且节省了50%的研发费用。
智能制造是面向产品全生命周期,实现泛在感知条件下的信息化制造。智能制造技术是在现代传感技术、网络技术、自动化技术、拟人化智能技术等先进技术的基础上,通过智能化的感知、人机交互、决策和执行技术,实现设计过程、制造过程和制造装备智能化,是信息技术和智能技术与装备制造过程技术的深度融合与集成。20世纪80年代以来,随着自动化技术、信息技术、互联网技术和人工智能技术的飞速发展,全球制造业向智能化的方向实现了巨大跨越。随着智能制造技术的创新及应用贯穿制造业全过程,以工业机器人、3D打印机为代表的智能制造装备应用日趋广泛;产品创新响应市场需求的效率大大加快;生产管理的精益化程度显著提升;分散化、个性化的生产模式开始兴起;全球供应链整合程度日益提高;企业智能决策能力有效增强;设计、生产、服务一体化的新业态、新模式加速崛起。以上趋势都代表着制造业发展的未来主流方向。吴启迪教授就此指出:通过智能系统,构建智慧企业,实现人、信息与技术的高度协调,将是未来制造业竞争力提升的关键所在。
二、当前国内外智能制造发展态势
当前,智能制造已成为全球主要发达国家的竞争热点,各国都将智能制造业作为重振制造业战略的重要抓手。2011年6月,美国正式启动包括工业机器人在内的“先进制造伙伴计划”,2012年2月又出台“先进制造业国家战略计划”,提出要加大政府投资、建设“智能”制造技术平台,以加快智能制造的技术创新。2012年美国投资10亿美元建立全美制造业创新网络,其中智能制造的框架和方法、数字化工厂、3D打印等均被列为优先发展的重点领域。欧盟在《未来制造业:2020年展望》报告中明确提出了提高制造业智能化水平的发展目标,并于2009年9月出台了智能制造路线图,提出以实现可持续及精益制造为目标的发展战略。德国通过国家政府、弗劳恩霍夫研究所和各州合作,投资于数控机床、制造和工程自动化应用技术研究;日本提出加快发展协同式机器人、无人化工厂,提升制造业的国际竞争力。
我国国家层面也对发展智能制造予以了高度的重视,已编制完成《智能制造装备产业“十二五”发展规划》,并于2011年设立“智能制造装备创新发展专项”,今年3月,我国又出台了《智能制造科技发展“十二五”专项规划》。2012年8月30日召开的中国工程院院企合作交流会议上,工程院院长周济作专题报告,强调必须抓住“数字化智能化”这一新的工业革命的核心技术,让中国制造业走上创新驱动发展的轨道。2012年2月,国家工信部批复广东顺德为全国首个智能制造试点区域。2012年8月,浙江省正式开展以企业为主体的智能装备制造产业重大科技创新专项综合试点。国家和兄弟省市的积极布局行动,更增强了上海发展智能制造的紧迫感。
三、上海智能制造发展的现状基础
上海作为国际化大都市和我国传统的制造业产业高地,为发展智能制造提供了得天独厚的条件和坚实的基础:
上海具备支撑智能制造发展的技术基础。上海集聚了一批高水平的高校、科研院所,近年来已取得了一大批相关的基础研究成果;掌握了一批智能制造所需的关键技术,如机器人技术、感知技术、复杂制造系统、智能信息处理技术等;攻克了一批智能制造核心高端装备,如光刻机、自动化控制系统、高端加工中心等;实现了一批先进制造成套设备的产业化,如核电、火电装备、物流设备、轨交装备、海洋工程装备等;建设了一批有关的高水平研发平台、基地;培养、引进了一大批长期从事相关技术研究开发工作的高技术人才。
上海具备智能制造发展的企业基础。通过市科委“九五”到“十一五”制造业信息化示范工程的推进,在数字化制造技术在战略产品研制中的应用、国家级应用示范企业的数量、相关技术服务能力建设等方面,上海一直走在全国前列,这为进一步加快智能制造技术发展和深化应用奠定了良好的企业基础。上海在航空航天、成套装备、船舶、汽车、钢铁、石化等优势制造领域,培育形成了6家数字化综合集成示范企业,带动了560余家企业信息化深化应用;示范企业新产品贡献率平均提高22%,设计效率平均提高27%。面向生产性服务业的培育,率先开展制造业数字化促进服务转型的示范,推进制造与服务的融合。依托“科技小巨人”计划,在一批具有行业示范作用和较好成长性的创新型中小企业中开展数字化建设,产生了良好的示范带动效应和技术辐射效应。
上海具备有利于智能制造发展的产业环境。上海制造业经过多年发展已形成了较为完善的产业体系,产业结构多样化,商业环境成熟,配套设施齐全。在汽车、飞机、船舶、电子、电机、计算机、装备制造、仪器仪表、先进材料等领域,上海都有较为成熟的产业支撑,为智能制造提升传统制造业提供了良好的发展基础和广阔的发展空间。上海作为国际化大都市,吸引了众多世界知名企业及研发中心落户,如FANUC、ABB、川崎、安川四大国际机器人巨头企业在华总部均设立于上海,这为上海制造业消化吸收国际先进技术和经验、通过国际合作提升自身水平创造了有利条件。
四、上海发展智能制造当前面临的问题
目前,智能制造技术对上海制造业转型升级的支撑能力,还有较大差距;上海智能制造的进一步提升发展还面临着一些严重的瓶颈问题,主要体现在:
一是智能制造发展战略有待明确。目前国家已发布了《智能制造装备产业“十二五”发展规划》、《“十二五”制造业信息化科技工程规划》和《智能制造科技发展“十二五”专项规划》,上海市也被列入国家“十二五”制造业信息化科技工程首批五个重点省市。但上海目前智能制造的总体发展战略仍有待明确,技术路线图还不清晰,全市层面对智能制造发展的协调和管理尚待完善。
二是产业技术体系有待完善提升。目前,上海企业的智能制造发展仍处于较为分散和较低水平的局面,企业技术对外依存度高,自身创新能力、消化吸收能力相对不足,关键技术环节薄弱,许多重要装备、核心技术和关键零部件主要依赖进口。智能制造产业技术体系不够完整,先进材料、3D打印等前沿领域发展滞后;自主技术的智能制造高端装备尚未实现市场化;应用于各类复杂产品设计和企业管理的智能化高端软件产品缺失;在计算机辅助设计、资源计划软件、电子商务等关键技术领域与发达国家差距依然较大。
三是重硬件轻软件的现象突出。杨海成院士指出:智能制造新型工业装备包含硬装备和软装备两个方面,其中软装备包括工业软件、信息、流程、标准规范、知识经验等无形要素,是智能制造的“大脑”。当前上海多数制造企业对于设备、生产线等“硬装备”投入较大,而对于 “软装备”缺乏充分重视,在应用中存在较严重的“重生产、重结果”现象,过分依赖人的经验,对制造过程中的知识发现、积累和传承重视不足,影响到企业的长效发展和行业竞争力。
四是产业技术服务能力尚待强化。政府主导的制造业信息化技术服务与支撑体系,在技术应用初期,对加快数字化、信息化技术在上海企业的应用和普及发挥了积极的推进作用。然而随着企业数字化制造理念的普及和技术应用水平的提高,这种单一的推进模式显现出了一定的局限性,部分共性技术服务平台支撑能力不足,利用率偏低等问题也逐渐显示出来。林忠钦院士指出:上海制造产业现有的产学研合作模式往往只关注当前问题,采取一事一议的项目合作方式,而长效性合作机制欠缺。当前,上海还缺少有能力面向产业长远发展,提供智能制造共性技术服务的专业组织和机构。
五、促进上海智能制造发展的建议
当前上海在智能制造方面已经具备了良好的产业环境,骨干企业具备了较为良好的技术基础和条件,智能制造技术服务与支撑体系有了良好的前期布局和基础。为贯彻落实“创新驱动,转型发展”战略,加快推进上海智能制造发展进程,促进上海制造业迈进国际先进水平行列,提出以下发展建议:
一是把握当前有利时机,制定上海智能制造发展战略。吴启迪教授建议:上海当前应主动对接国家战略规划,抓紧研究、编制上海智能制造发展规划、行动计划和路线图。应将智能制造技术的发展作为上海科技创新重大专项来部署推进,从全市层面对上海智能制造发展路径进行顶层设计,加大对技术创新和产业应用的支持力度。
二是搭建智能制造产业联盟,帮助企业提升竞争力。与会专家普遍认为,应统筹发挥本市现有重点实验室、工程技术中心等核心技术创新资源作用,围绕上海智能制造重点领域,以骨干企业为依托,组建智能制造产业联盟。产业联盟主要发挥以下三方面的作用:一是推动技术创新,承担共性技术、关键技术研发任务;二是服务企业应用,提供技术支持、咨询服务,人才培育交流等;三是促进行业发展,为产业谋划方向,为行业制订标准。
三是整机牵引,重点突破,带动产业。据预测,2015年我国智能制造装备产业销售额将达到10000亿元。其中整机制造环节处在技术和价值的高端,对产业链、创新链具有强大的牵引作用。建议以工业机器人和高端智能装备为重点,集中力量重点突破核心制造技术,实现自主成套设备的产业化,把智能制造装备产业打造成为上海的支柱产业,并带动相关零部件、感知器件、信息系统、设计和控制软件等配套产业的全面发展。
四是促进制造服务业和智能制造专业应用软件产业的发展。大力发展具有自主知识产权的智能制造技术、软件产品、标准规范等,加大对本地智能制造软件企业的扶持力度,促进有能力的企业向提供智能制造整体解决方案的信息集成服务商转型,帮助制造业企业实现智能制造与信息、知识以及业务流程等要素的全面融合。鼓励制造业企业以智能制造技术为依托,进行跨领域的业务拓展和业态创新,积极扶持和培育集产品、技术、管理和服务于一身的新兴商业模式。
五是进一步推进实施智能制造领军与高端人才战略。鼓励重要企业实施智能制造领军和高端人才培养战略,率先创建一批具有国际视野和技术创新能力的智能制造技术团队;在政府各类人才计划中,加大向具有智能化、数字化技术和制造业背景的复合型人才倾斜;加强智能制造技术的高端培训组织;引导和支持建立企业与高校院所联合培养人才的模式,逐步建立复合型人才培养、提升的长效机制。
第二篇:智能制造现状与前景
智能制造的发展与前景展望
(南京航空航天大学机电学院,南京市,210016)摘要:简述了智能制造形成的原因及智能制造的概念;分析了智能制造国内外的发展现状;指出了智能制造的发展趋势及其面临的问题。
关键词:智能制造 人工智能 机械制造 工业4.0
The development and research of intelligent manufacturing
JiaYu Wang(College of Mechanical Engineering, Nanjing University of Aeronautics&
Astronautics, Nanjing, 210016, China;)Abstract:This paper depicts the cause of formation and conception of IM.And presents status in the development on IM.Finally indication is given of the trend of development and question confronting IM.Key words:IM;AI;mechanical manufacture;Industrie 4.0
0 前言
智能制造装备是先进制造技术、信息技术以及人工智能技术在制造装备上的集成和深度融合,是实现高效、高品质、节能环保和安全可靠生产的下一代制造装备。在综述了智能制造装备国内外发展现状的基础上,重点论述了目前智能制造存在的问题,并得出结论,认为德国的”工业4.0”和美国的工业互联网装备将是智能制造装备未来的发展方向。
1研究背景
制造业是国民经济的基础工业部门,是决定国家发展水平的最基本因素之一。从机械制造业发展的历程来看,经历了由手工制作、泰勒化制造、高度自动化、柔性自动化和集成化制造、并行规划设计制造等阶段。就制造自动化而言,大体上每十年上一个台阶: 50-60年代是单机数控,70年代以后则是CNC机床及由它们组成的自动化岛,80年代出现了世界性的柔性自动化热潮。与此同时,出现了计算机集成制造,但与实用化相距甚远。随着计算机的问世与发展,机械制造大体沿两条路线发展:一是传统制造技术的发展,二是借助计算机和自动化科学的制造技术与系统的发展。80年代以来,传统制造技术得到了不同程度的发展,但存在着很多问题。近来年,人们对制造过程的自动化程度赋予了极大的研究热情,这是因为从1870年到1980年间,制造过程的效率提高了20倍,而生产管理效率只提高了1.8-2倍,产品设计的效率只提高了1.2倍,这表明体力劳动通过采用自动化技术得到了极大的解放,而脑力劳动的自动化程度(其实质是决策自动化程度)则很低,制造过程中人的因素尚未得到充分的认识,人尚未真正地从复杂的生产过程中解放出来,各种问题求解的最终决策在很大程度上仍依赖于人的智慧。因而,人类群体所面临的众多问题(包括社会问题、生理问题等)在制造过程中都有所反映。面对批量小、品种多、质量高、更新快的产品市场竞争要求以及各种社会因素的综合影响,制造过程的自动化程度的提高面临众多问题,譬如:(1)专家人才的短缺和转移致使一些专门技能不能及时或长久地得到提供;(2)现代制造过程中信息量大而繁杂,传统的信息处理方式已不能满足要求,大量的信息资源需要开发与共享;(3)制造环境柔性要求更大,决策过程更加复杂,决策时间要求更短;(4)制造过程的自动化程度受制于制造系统的自组织能力,即智能水平;(5)现代生产要求专家们在更大范围内进行更及时的合作,小到一个企业内部的各个生产环节,大至一个国家甚至世界范围内的工业界中的众多企业之间。各种迹象表明,“我们正处在制造历史上的一个危险时期”。幸运的是,计算机与计算机科学以及其它高技术的发展,通过集成制造技术、人工智能等而发展起来的一种新型制造工程—智能制造技术(intelligent manufacturing technology,IMT)与智能制造系统(intelligent manufacturing system,IMS)使我们有可能走出这个危机。这是因为,制造过程所面临的众多问题的核心是“制造智能”和制造技术的“智能化”。IMT是指在制造工业的各个环节以一种高度柔性与高度集成的方式,通过计算机模拟人类专家的智能活动,进行分析、判断、推理、构思和决策,旨在取代或延伸制造环境中人的部分脑力劳动;并对人类专家的制造智能进行收集、存贮、完善、共享、继承与发展。未来工业生产的基本特征应该是知识密集型,制造自动化的根本是决策自动化。
2发展现状
2.1国外研究现状:
目前,IMT&IMS的研究正迅速受到众多国家的政府、工业界和科学家们的广泛重视:
2.1.1美国
美国是国际智能制造思想的发源地之一,美国政府高度重视智能制造的发展,并且已经把它作为21世纪占领世界制造技术领先地位的基石。从上世纪90年代开始,美国国家科学基金(NSF)就着重资助有关智能制造的诸项研究,项目覆盖了智能制造的绝大部分,包括制造过程中的智能决策、基于多施主(multi-agent)的智能协作求解、智能并行设计、物流[]传输的智能自动化等1。2005年,美国国家标准与技术研究所(NIST)提出了“聪明加工系统(smart machining system,SMS)”研究计划。聪明加工系统的实质是智能化,该系统的主要目标和研究内容包括:(1)系统动态优化。即将相关工艺过程和设备知识加以集成后进行建模,进行系统的动态性能优化;(2)设备特征化。即开发特征化的测量方法、模型和标准,并在运行状态下对机床性能进行测量和通信;(3)下一代数控系统。即与STEP-NC兼容的接口和数据格式,使基于模型的机器控制能够无缝运行;(4)状态监控和可靠性。即开发测量、传感和分析方法;(5)在加工过程中直接测量刀具磨损和工件精度的方法。
2011年,美国总统奥巴马宣布实施包括工业机器人在内的”Advanced Manufacturing Partnership Plan”(先进制造联盟计划),立即得到同日发布的“实现 21世纪智能制造”新报告的积极响应。在这份由美国智能制造领导联盟(smart manufacturing leadership coalition,SMLC)公布的报告中,不但描绘了该领域未来的发展蓝图,而且确定了十大优先行动目标,意图通过采用21世纪的数字信息技术和自动化技术,加快对20世纪的工厂进行
[]现代化改造过程,以改变以往的制造方式,借此获得经济、效率和竞争力方面的多重效益2。
2.1.2 日本
日本于1990年首先提出为期10年的智能制造系统(IMS)的国际合作计划,并与美国、加拿大、澳大利亚、瑞士和欧洲自由贸易协定国在1991年开展了联合研究,其目的是为了克服柔性制造系统(FMS)、计算机集成制造系统(CIMS)的局限性,把日本工厂和车间的专业技术与欧盟的精密工程技术、美国的系统技术充分地结合起来,开发出能使人和智能设备都不受生产操作和国界限制,且能彼此合作的高技术生产系统。2.1.3 欧盟
欧盟于2010年启动了第七框架计划(FP7)的制造云项目3,特别是制造业强国的德
[]国,继实施智能工厂(Smart factory)之后4,又启动了一个投入达2亿欧元的工业4.0(Industry []4.0)项目5。德国政府2010年制定的《高技术战略2020》计划行动中,意图以未来项目“工业4.0”奠定德国在关键工业技术上的国际领先地位,并在2013年4月举行的汉诺威工业博览会上正式将此计划推出。“工业4.0”概念最初是在德国工程院、弗劳恩霍夫协会、西门子
[]公司等德国学术界和产业界的建议和推动下形成,目前其已上升为国家级战略6。
[]2.2 国内研究现状
国内在智能制造技术与系统方面的绝大多数研究工作,目前还处在探讨人工智能在制造领域中应用的阶段。几年来,开发出了众多类型、水平各异的面向制造过程中特定环节、特定间题的“智能化孤岛”,诸如专家系统、基于知识的系统和智能辅助系统等,而对制造环境的全面“智能化”研究工作还处于刚刚起步阶段。我国自 2009 年 5 月《装备制造业调整和振兴规划》出台以来,国家对智能制造装备产业的政策支持力度不断加大,2012年国家有关部委更集中出台了一系列规划和专项政策,使得我国智能制造装备产业的发展轮廓得到进一步地明晰。工业与信息化部发布了《高端装备制造业“十二五”发展规划》,同时发布了《智能制造装备产业“十二五”发展规划》子规划,明确提出到2020年将我国智能制造装备产业培育成为具有国际竞争力的先导产业。科学技术部也发布了《智能制造科技发展”十二五”专项规划》;国家发展改革委员会、财政部、工业与信息化部三部委组织实施了智能制造装备发展专项;工业与信息化部制定和发布了《智能制造装备产业“十二五”发展路线图》,该路线图明确把智能制造装备作为高端装备制造业的发展重点领域,以实现制造过程智能化为目标,以突破九大关键智能基础共性技术为支撑,其思路是:以推进八项智能测控装置与部件的研发和产业化为核心,以提升八类重大智能制造装备集成创新能力为重点,促进在国民经济六大重点领域的示范应用推广。问题与展望
3.1 存在问题
总的说来,目前IMS的研究仍处在人工智能在制造领域中应用的阶段,研究课题涉及到市场分析、产品设计、制造过程控制、材料处理、信息管理、设备维护等众多方面,取得了丰硕的成果,开发了种类繁多的面向特定领域的专家系统、基于知识的系统和智能辅助系统,甚至智能加工工作站(IMW),形成了一系列”智能化孤岛”(islands of intelligence)。这中间包括CIMS研究中所取得的有关进展。然而,随着研究与应用工作的深入,人们逐渐地认识到自动化程度的进一步提高依赖制造系统的自组织能力,研究工作还面临着一系列理论、技术和社会问题,、问题的核心是“智能化”。一般说来,现代工业生产作为一个有机的整体要受技术(包括生产系统)、人(包括间接影响生产过程的社会群体)和经济(包括市场竞争和社会竞争)三方面因素的制约。从技术的角度来看,对于一个企业来说,市场预测、生产决策、产品设计、原料订购与处理、制造加工、生产管理、原料产品的储运、产品销售、研究与发展等环节彼此相互影响,构成产品生产的全过程。该过程的自动化程度取决于各环节的集成自动化(integrated automation)水平,而生产系统的自组织能力取决于各环节的集成智能(integrated intelligence)水平。目前,尚缺乏这种“集成”制造智能的技术,这也是目前“并行工程”的研究重点。
3.2发展趋势 当前,智能制造的发展趋势以德国的”工业4.0”和美国的工业互联网装备最为清晰。
3.2.1 德国“工业4.0”
德国“工业 4.0”通过充分利用信息物理系统(CPS),实现由集中式控制向分散式增强型控制的基本模式转变,目标是建立高度灵活的个性化和数字化的产品与服务的生产模式,推动现有制造业向智能化方向转型。CPS是一个综合计算、网络和物理环境的多维复杂系统,通过3C(Computation、Communication、Control)技术的有机融合与深度协作,实现制造装备系统的实时感知、动态控制和信息服务。CPS实现计算、通信与物理系统的一体化设计,可使系统更加可靠、高效、实时协同。德国电气电子和信息技术协会于2013年发布了德国首个“工业4.0”标准化路线图,以加强德国作为技术经济强国的核心竞争力,确保德国制造[]的未来7-8。“工业4.0”项目主要分为两大主题:(1)智能工厂。重点研究智能化生产系统及过。程,以及网络化分布式生产设施的实现(工业4.0智能工厂如图1所示);
(2)智能生产。主要涉及整个企业的生产物流管理、人机互动以及3D技术在工业生产过程中的应用等。
图1 工业4.0智能工厂
3.2.2 美国工业互联网装备
2013年,美国通用电气公司(GE)发表了《工业互联网-打破智慧与机器的边界》报告[9]。该报告提出了工业互联网(Industrial Internet)的概念。工业化创造了无数的机器、设施和系统网络,而工业互联网则是指让这些机器和先进的传感器、控制和软件应用相连接,以提高制造业的生产效率、减少资源消耗。工业互联网装备将整合两大革命性转变的优势:(1)工业革命。伴随着工业革命,出现了无数台机器、设备、机组和工作站;(2)强大的网络革命;
(3)在网络化的影响下,计算、信息与通讯系统应运而生并不断发展。小结
智能制造装备集制造、信息和人工智能技术于一身,是未来高端装备制造业的重点发展方向。各国政府高度重视智能制造装备的研发和应用,美、日、欧已有一系列的研究成果和部分产品面世,德国的“工业4.0”项目也积极地推动了制造业向智能化的转型。我国政府也充分认识到智能制造装备的重要战略地位,已出台政策推动智能制造装备的产业化水平提升。可以预见,未来智能制造装备在引领制造业低碳、节能、高效发展上的作用将进一步得到显现;同时,行业也将在工业机器人、智能机床和基础制造装备、智能仪器仪表、三维打印装备、新型传感器、自动化成套生产线等重点领域形成快速发展与突破。参考文献
[1] GUO Qing-lin,ZHANG Ming.An agent-oriented approach to resolve scheduling optimization in intelligent manufacturing[J].Robotics and Computer-Integrated Manufacturing,2010(26):39-45.[2] 罗克韦尔自动化.奥巴马总统的先进制造联盟计划得到今日最新发布报告的支持[EB/OL].[2011-07-24].[3] Manu Cloud[EB/OL].[2014-03-01].http://www.Manu-cloud-project.eu/.[4] JAMES T.Smart factories[J].Engineering and Technology,2012,7(6):64-67.[5] 宋慧欣.“工业4.0”制造业未来之路[J].自动化博览,2013(10):26-27.[6] 何 瑾.智能制造装备业万亿市场蓝图初现[J].科技智囊,2013(8):38-40.[7] 杜品圣.智能工厂-德国推进工业4.0战略的第一步(上)[J].自动化博览,2014(1):22-25.[8] 杜品圣.智能工厂-德国推进工业4.0战略的第一步(下)[J].自动化博览,2014(1):50-55.[9]EVANS P C,ANNUNZIATA M.工业互联网-打破智慧与机器的边界[R].2013.
第三篇:智能制造汇报
智能工厂——以三一重工18号工厂为例
摘要:在理论上解释了智能工厂的概念,再以三一重工18号工厂作为研究对象,对其运作方式、运作特点进行了较为详细地分析与讨论,从而得出工厂的智能化基因。并且进一步得出了智能工厂的框架,为系统化建设智能工厂打下了基础。关键词:物联网;智能制造;数字化工厂 中图分类号:TH161
INTELLIGENT FACTORY A CASE OF SANY HEAVY INDUSTRY NO.18TH FACTORY
Abstract:This paper explains the concept of intelligent factory in theory, then takes 31 heavy industry No.18th Factory as the research object, analyzes and discusses its operation mode and operation characteristics in detail, thus obtains the intellectualized gene of the factory.And further draws the intelligent factory frame, lays the foundation for the systematized construction intelligent Factory.Key words:Networking of things;Intelligent manufacturing;Digital chemical plant 0 前言
随着物联网、大数据和移动应用等新一轮信息技术的发展,全球化工业革命开始提上日程,工业转型开始进入实质阶段。在中国,智能制造、中国制造2025等战略的相继出台,表明国家开始积极行动起来,把握新一轮工发展机遇实现工业化转型。智能工厂作为工业智能化发展的重要实践模式,已经引发行业的广泛关注。到底什么是智能工厂?智能工厂的核心架构是怎样的?能为企业的转型提供哪些支撑?这都是企业比较关心的话题。
本文以三一重工18号工厂为例,分析智能工厂的主要特点还有其智能化的框架。数字化工厂、智能工厂和智能制造
1.1 数字化工厂
对于数字化工厂,德国工程师协会的定义是:数字化工厂(DF)是由数字化模型、方法和工具构成的综合网络,包含仿真和3D/虚拟现实可视化,通过连续的没有中断的数据管理集成在一起。数字化工厂集成了产品、过程和工厂模型数据库,通过先进的可视化、仿真和文档管理,以提高产品的质量和生产过程所涉及的质量和动态性能:
图1 在国内,对于数字化工厂接受度最高的定义是:数字化工厂是在计算机虚拟环境中,对整个生产过程进行仿真、评估和优化,并进一步扩展到整个产品生命周期的新型生产组织方式。是现代数字制造
技术与计算机仿真技术相结合的产物,主要作为沟通产品设计和产品制造之间的桥梁。从定义中可以得出一个结论,数字化工厂的本质是实现信息的集成。1.2
智能工厂
智能工厂是在数字化工厂的基础上,利用物联网技术和监控技术加强信息管理服务,提高生产过程可控性、减少生产线人工干预,以及合理计划排程。同时,集初步智能手段和智能系统等新兴技术于一体,构建高效、节能、绿色、环保、舒适的人性化工厂。
图2
智能工厂已经具有了自主能力,可采集、分析、判断、规划;通过整体可视技术进行推理预测,利用仿真及多媒体技术,将实境扩增展示设计与制造过程。系统中各组成部分可自行组成最佳系统结构,具备协调、重组及扩充特性。已系统具备了自我学习、自行维护能力。因此,智能工厂实现了人与机器的相互协调合作,其本质是人机交互。1.3
智能制造
智能工厂是在数字化工厂基础上的升级版,但是与智能制造还有很大差距。智能制造系统在制造过程中能进行智能活动,诸如分析、推理、判断、构思和决策等。通过人与智能机器的合作,去扩大、延伸和部分地取代技术专家在制造过程中的脑力劳动。它把制造自动化扩展到柔性化、智能化和高度集成化。
智能制造系统不只是“人工智能系统,而是人机一体化智能系统,是混合智能。系统可独立承担分析、判断、决策等任务,突出人在制造系统中的核心地位,同时在智能机器配合下,更好发挥人的潜能。机器智能和人的智能真正地集成在一起,互相配合,相得益彰。本质是人机一体化。
国内很多企业都在炒作智能制造,但是绝大多数企业还处在部分使用应用软件的阶段,少数企业也只是实现了信息集成,也就是可以达到数字化工厂的水平;极少数企业,能够实现人机的有效交互,也就是达到智能工厂的水平[1]。
图3 2 从大厂房到智能工厂
在全球科技革命的大背景下,工程机械行业作为多品种、中批量、按订单生产的离散型技能密集型产业,要想向高端制造发展,必须依靠信息化建立先进的制造和管理系统[2]。
三一重工作为重工领域的标杆,其18号厂房成为应用基础的示范。这间总面积约十万平方米的车间,成为了行业内亚洲最大最先进的智能化制造车间。在这里,厂房更像是一个大型计算系统加上传统的操作工具、大型生产设备的智慧体。2.1 18号厂房的“智慧”运转
18号厂房是三一重工总装车间,有混凝土机械、路面机械、港口机械等多条装配线,是工程机械领域内颇负盛名的智能工厂。
在18号厂房,厂区旁边有两块电视屏幕,它们是一线工人的“老师”——不熟悉装配作业的工人,通过电子屏幕里的数字仿真和三维作业指导,可以学习和了解整个装配工艺[3]。三一重工的三维作业现场指导模式,成为了著名3D技术开发公司达索的全球最佳案例。
厂房更像是一个大型计算系统加上传统的操作工具、大型生产设备的智慧体,每一次生产过程、每一次质量检测、每一个工人劳动量都记录在案。装配区、高精机加区、结构件区、立库区等几大主要功能区域都是智能化、数字化模式的产物[4]。
当有班组需要物料时,装配线上的物料员就会报单给立体仓库,配送系统会根据班组提供的信息,迅速找到放置该物料的容器,然后开启堆高机,将容器自动输送到立体库出库端液压台上。此时,AGV操作员发出取货指令,AGV小车自动行驶至液压台取货[5]。取完货后,采用激光引导的AGV小车,将根据运行路径沿途的墙壁或支柱上安装的高反光性反射板的激光定位标志,计算出车辆当前的位置以及运动的方向,从而将物料运送至指定工位。像这样的AGV小车,在三一重工18号厂房有15台。
从大厂房到智能工厂,实施智慧化改造后,18号厂房在制品减少8%,物料齐套性提高14%,单台套能耗平均降低8%,人均产值提高24%,现场质量信息匹配率100%,原材料库存降低30%。2014年,18号厂房同比节约制造成本1亿元,年增加产量超过2000台以上,每年同比产值新增60亿元以上。此外,高精加工区也是18号厂房的特色之一。整个机加区集智能化、柔性化、少人化于一体,可以满足多品种、小批量生产要求。2.2
智能背后的生产模式进化
2013年8月,三一重工集团启动新一轮制造变革。在大会上,三一重工董事长梁稳根这样描绘三一重工制造体系的蓝图:“所有结构件和产品都在很精益的空间范围内制造,车间内只有机器人和少量作业员工在忙碌,装配线实现准时生产,物流成本大幅降低,制造现场基本没有存货。”
制造模式的生产方式分散且独立,需要大量的人力物力予以配合,才能完成产品的生产制造,这使得生产效率低下的同时,生产成本还居高不下。因此三一重工开始借助信息化,在生产车间导入自动化制造模式。“部件工作中心岛”就是这样一个尝试。
所谓“部件岛”,即单元化生产,将每一类部件从生产到下线所有工艺集中在一个区域内,犹如在一个独立的“岛屿”内完成全部生产,故称为部件岛,将装配行业中“岛”的概念引入到结构件生产中,这是三一重工重机制造人员的首创。三一重工:智能工厂实践
三一重工18号厂房是亚洲最大的智能化制造车间,有混凝土机械、路面机械、港口机械等多条装配线,是三一重工总装车间。2008年开始筹建,2012年全面投产,总面积约十万平方米。从2012年开始,以三一18号厂房为应用基础,由三一重工、湖大海捷、华工制造、华中科大等单位联合申报的“工程机械产品加工数字化车间系统的研制与应用示范项目”.经过3年精心建设,目前,三一已建成车间智能监控网络和刀具管理系统、公共制造资源定位与物料跟踪管理系统、计划、物流、质量管控系统、生产控制中心(PCC)中央控制系统等智能系统,完成了国家批复的项目建设内容[6]。
图4 同时,三一还与其他单位共同研发了智能上下料机械手、基于DNC系统的车间设备智能监控网络、智能化立体仓库与AGV运输软硬件系统、基于RFID设备及无线传感网络的物料和资源跟踪定位系统、高级计划排程系统(APS)、制造执行系统(MES)、物流执行系统(LES)、在线质量检测系统(SPC)、生产控制中心管理决策系统等关键核心智能装置,实现了对制造资源跟踪、生产过程监控,计划、物流、质量集成化管控下的均衡化混流生产,智能化功能和系统性能指标达到国家批复要求[7]。
3.1 智能加工中心与生产线
3.1.1 智能化加工设备
早在2007年,有“智能化机械手”之称的焊接机器人现身三一挖机生产线,并在2008年后得到进一步推广。2012年三一重工在上海临港产业园建成全球最大最先进的挖掘机生产基地,焊接机器人大规模投入使用,大幅提升了产品的稳定性,使得三一挖掘机的使用寿命大约翻了两番,售后问题下降了四分之三。由于规范了管理,又进一步提升了整个生产体系的效率。不但如此,机器人的使用减少了工人数量,管理模式的重心从原来的管人转移
到了管理设备上,相对而言,管理设备要容易很多。3.1.2
智能刀具管理
在实际加工中,有多种因素会对加工刀具产生影响,首先是加工工件本身的因素,如加工工件材质、结构型式、工件刚度等对刀具使用效果影响较大。其次是加工工装,定位基准、压紧方式、结构型式以及工装刚度等都会影响刀具使用效果。再次加工工艺方案,如加工顺序、切削三要素(切深、进给、切削速度)对刀具使用效果影响更大。最后是加工机床,设备的切削功率、设备的刚度、设备的结构型式、切削冷却介质对加工刀具发挥效率也有很大影响[8]。
三一在实践中,要充分考虑刀具寿命和加工工件成本的关系,根据不同结构的工件选择不同的刀具,包括刀具材料(分整体硬质合金、焊接硬质、高速钢等)、刀具结构(分机夹刀片、焊接刀片和整体材料刀具)以及刀具装夹方式(热装式、强力紧固式、侧固式)等。有的刀具选择涂层刀片来增加刀具的耐用度,延长刀具寿命。在高速加工时,对刀具动平衡也有要求,我们配备了刀具动平衡仪,并在加工成本允许的前提下选择耐用度较高的刀具。3.1.3
DNC
DNC是计算机与具有数控装置的机床群使用计算机网络技术组成的分布在车间中的数控系统。该系统对用户来说就像一个统一的整体,系统对多种通用的物理和逻辑资源整合,可以动态的分配数控加工任务给任一加工设备,是提高设备利用率,降低生产成本[9]。
图5
目前,三一重工已经完成车间机加设备的研发采购与安装调试,部分完成智能上料机械手、DNC实时监控装置及刀具管理系统的购置和开发。3.2 智能化立体仓库和物流运输系统
3.2.1 智能化立体仓库
立体仓库后台运作的自动化配送系统由华中科大与三一联合研制,通过这套系统,三一打造了批量下架、波次分拣,单台单工位配送模式,实现了从顶层计划至底层配送执行的全业务贯通,大大提高了配送效率及准确率,准时配送率超95%。
三一智能化立体仓库总投资6000多万元, 分南北两个库,由地下自动输送设备连成一个整体,总占地面积9000平方米,仓库容量大概是16000个货位。从南边仓库可以看到,这个库区有几千种物料,主要是泵车、拖泵、车载泵物料,能支持每月数千台产品的生产量。
从大厂房到智能工厂,实施智能化改造后,18号厂房在制品减少8%,物料齐套性提高14%,单台套能耗平均降低8%,人均产值提高24%,现场质量信息匹配率100%,原材料库存降低30%,2014年18号厂房预计同比节约制造成本1亿元,年增加产量超过2000台以上,每年同比产值新增60亿元以上。3.2.2 AGV智能小车
智能化立体仓库的核心是AGV智能小车,当有班组需要物料时,装配线上的物料员就会报单给立体仓库,配送系统会根据班组提供的信息,迅速找到放置该物料的容器,然后开启堆高机,将容器自动输送到立体库出库端液压台上。此时,AGV操作员发出取货指令,AGV小车自动行驶至液压台取货。取完货后,由于AGV小车采用激光引导,小车上安装有可旋转的激光扫描器,在运行路径沿途的墙壁或支柱上安装有高反光性反射板的激光定位标志,AGV依靠激光扫描器发射激光束,然后接受由四周定位标志反射回的激光束,车载计算机计算出车辆当前的位置以及运动的方向,通过和内置的数字地图进行对比来校正方位,从而将物料运送至指定工位。像这样的AGV小车,在三一18号厂房有15台。在18号厂房南北智能化立体仓库,不仅有这样的AGV自动小车,其后台配送也是自动化系统完成的。
图6
3.2.3 公共资源定位系统
公共资源定位系统是三一重工智能工厂的一个重要支撑。公共资源定位系统能实现包括对设备定位和状态检测、人员定位以及故障实时处理与报警等功能。通过公共资源定位监控中心,三一重工的生产管理人员能及时的了解生产车间的人员位置、设备位置和状态、加工生产情况,并及时的指导生产和进行故障处理等操作。3.3
智能化生产执行过程控制
3.3.1高级计划排程
在考虑企业资源所提供的可行物料需求规划与生产排程计划,让规划者快速结合生产限制条件与相关信息(如订单、途程、存货、BOM与产能限制等),以做出平衡企业利益与顾客权益的最佳规划与决策,满足顾客需求及面对竞争激烈的市场。强化了ERP系统中以传统MRP规划逻辑为主的生产规划与排程的功能,APS 系统的同步规划能力,不但使得规划结果更具备合理性与可执行性,亦使企业能够真正达到供需平衡的目的[10]。3.3.2
执行过程调度
三一车间内一排排的MES终端机,生产线上明亮的LED屏幕,整齐划一的醒目安全灯是系统给我们带来直观的印象。SanyMES系统是指由三一集团IT总部自主研发的制造执行系统,它充分利用信息化技术,从生产计划下达、物料配送、生产节拍、完工确认、标准作业指导、质量管理、关重件条码采集等多个维度进行管控,并通过网络实时将现场信息及时准确地传达到生产管理者与决策者[11]。该
系统除了通过各种方式如短信、邮件向管理者传递生产信息外,其设置在生产现场的MES终端机,给一线工人生产制造带来了极大的便利。
通过MES终端机,生产线工人不仅可以及时报完工、方便快捷地查询物料设计图纸和库存情况,更重要的是SanyMES终端机可以正确地指导工人每个工位如何进行安装、安装时候需要哪些零部件,同时给予安全提示。有了MES系统后,再也不用去借图纸,直接在MES终端就能查到最新的图纸信息,3.3.数字化质量检测
目前,三一在质检信息化方面,通过GSP、MES、CSM及QIS的整合应用,实现涵盖供应商送货、零件制造、整机装配、售后服务等全生命周期的质检电子化,并实现了SPC分析、质量追溯等功能。
以前质检,是采用纸质记录本记录检验结果和全触摸屏操作,简单方便,而且通过查看标准作业指导以规范工人的操作,避免了纸质作业指导书的损坏和更新不及时造成的附加作业,极大提高了工作效率和作业质量[12]。3.3.3 数字化物流管控
三一自动化立体仓储配送系统实现了该公司泵车、拖泵、车载泵装配线及部装线所需物料的暂存、拣选、配盘功能,并与AGV配套实现工位物料自动配送至各个工位。
根据泵车、拖泵、车载泵装配线及部装线在车间的位置,北自所设计了两个库区,1#库负责泵车物料的储存、拣配功能,2#库负责拖泵、车载泵物料的储存、拣配功能,两个库区共用一个设置1#库区的入库组盘区域,2#库入库的物料在入库组盘区完成组盘后通过地下输送通道自动输送进入2#库库区存储。
仓储模式采用自动化立体仓库存储(主要储存中小件为主)+垂直升降库存储(主要储存小件为主)+平面仓库储存(主要储存大件等其他特殊物资)。自动化立体仓库和垂直升降库的数据采用一套软件进行统一管理,集中配送。通过垂直升降库的应用,解决了将近总量30%的物料种类的储存和出入库作业模式,很大程度地缓和了自动化立体仓库的出入库作业压力,有效地提高了整个系统的作业能力。
拣配模式采用提4台套提前一班(8小时)拣配模式,按照工位进行配送。在两个库区分别设置了两层的配盘区域,根据装配工位数量及各工位装配物料情况,对配盘区域的拣配托盘位置进行分配,拣配过程中采用LED显示屏+RF手持终端模式进行人工作业。北自所根据各工位装配物料情况,配合用户设计了多种不同的配送容器,采用多层存放,提高容器使用效率,减少线边容器数量,最终提高了AGV系统的搬运效率。
质量问题,现在则是用生产管理系统(MES),每一个检验项目都标准化、电子化,以前在本子上的内容都作为数据录入PDA和平板电脑等终端。一旦发现质量异常,系统就会第一时间自动启动不合格处理流程,将情况发送给相关责任人。“在不合格品控制流程中的隔离、评审等6个环节,保证每道工序的每个产品在下一道工序前合格。”而数据的录入则会为产品质量追溯提供可靠依据。三一的自制件可以具体查到是某台产品零部件,制作时间、制作地点和工位、制作人、制作条件等信息,供应商提供的零部件则是可以查到批次和反馈。3.4
智能化生产控制中心
3.4.1中央控制室
1.生产计划及执行情况、设备状态、生产统
计图;
2.智能计划系统操作界面;
3.生产现场监控、看板展示及异常报警; 4.各区域监控信息;
5.设计部日常操作(支持10路信号同时切
入);
6.各区域监控信息;
7.物流部日常操作(支持10路信号同时切
入);
8.质量部日常操作(支持10路信号同时切
入)。3.4.2
现场监视装置
全方位的工厂车间监控系统能实现对生产过
程的全面监控和记录,保证生产现场的安全,以及现场事故的追溯和回放。3.4.3 现场Andon Andon系统能够为操作员停止生产线提供一套新的、更加有效的途径。在传统的汽车生产线上,如果发生故障,整条生产线立即停止。采用了Andon系统之后,一旦发生问题,操作员可以在工作站拉一下绳索或者按一下按钮,触发相应的声音和点亮相应的指示灯,提示监督人员立即找出发生故障的地方以及故障的原因。一般来说,不用停止整条生产线就可以解决问题,因而可以减少停工时间同时又提高了生产效率。
Andon系统的另一个主要部件是信息显示屏。每个显示面板都能够提供关于单个生产线的信息,包括生产状态、原料状态、质量状况以及设备状况。显示器同时还可以显示实时数据,如目标输出、实际输出、停工时间以及生产效率。根据显示器上提供的信息,操作员可以更加有效的开展工作。智能工厂理念
所谓“六维智能理论”,就是在设备联网+远程数据采集的基础上,实现智能化的生产过程管理与控制,从6个方面打造适合中国国情的智能工厂。4.1 行业背景
“工业4.0”被认为是以智能制造为主导的第四次工业革命或是工业体系革命性的生产方法,而智能工厂将是构成未来工业体系的一个关键特征。在智能工厂里,人、机器和资源如同在一个社交网络里自然地相互沟通协作,生产出来的智能产品能够理解自己被制造的细节以及将如何使用,能够回答“哪组参数被用来处理我”、“我应该被传送到哪里”等问题。同时,智能辅助系统将从执行例行任务中解放出来,使他们能够专注于创新、增值的活动;灵活的工作组织能够帮助工人把生活和工作实现更好地结合,个体顾客的需求将得到满足。德国工业4.0、美国GE工业互联网均是“工业4.0”的典范,但中国有自己特殊的国情,中国制造企业打造智能工厂,不能完全照搬国外模式,而是既要紧跟国际先进理念,还要符合中国企业的实际情况[13]。
4.2
概念内涵
美国与德国的工业发展战略核心均为CPS(Cyber-Physical System)系统,是典型的二元战略。美国是C(Cyber,包括:数字、信息、网络等虚拟世界)+P(Physical,包括机器、设备、设施等实体世界),德国是P+C,两国均是基于高素质劳动者、国家人力匮乏、企业高协同化、高法制化的基础之上而提出的战略;而中国装备水平较美国和德国有一定差距,数据采集分析决策能力也有局限,但中国具有人力资源优势,所以应该充分挖掘人的作用。因此,中国制造企业推进工业发展不能完全照搬发达国家的二元战略,更宜采用CPPS(Cyber-Person-Physical System)人机网三元战略,充分体现人的能动作用。
图7
所谓“三元战略”,包括劳动者及其技能、素养、精神、组织、管理等,CPPS战略体现了以人为本,继续发挥与挖掘了中国在人力资源方面的优势,扬长补短,实现人与赛博、物理虚实两世界的融合和迭代发展,构建以赛博智能为目的的人机网三元战略方案更符合中国国情[14]。
所谓“六维智能理论”,就是在设备联网+远程数据采集的基础上,实现智能化的生产过程管理与控制,从6个方面打造适合中国国情的智能工厂,这6个方面包括:
1.智能计划排产,是从计划源头上集成ERP,进行APS高级排产。
2.智能生产协同,从生产准备过程上,实现
物料、刀具、工装、工艺的并行协同准备。3.智能的设备互联互通,是CPS信息物理系
统的典型体现,实现数字化生产设备的分布式网络化通讯、程序集中管理、设备状
态的实时监控等。4.智能资源管理,包括对物料、设备、刀具、量具、夹具等生产资源进行精益化管理、库存智能预警等。
5.智能质量过程管控,是对影响产品质量的生产工艺参数进行实时采集、控制,确保产品质量。
6.智能决策支持,是基于大数据分析的决策支持,形成管理的闭环,以实现数字化、网络化、智能化的高效生产模式。
总之,通过以上6个方面智能的打造,可极大提升企业的计划科学化、生产过程协同化、生产设备与信息化的深度融合,并通过基于大数据分析的决策支持对企业进行透明化、量化的管理,可明显提升企业的生产效率与产品质量,是一种很好的数字化、网络化的智能生产模式。
图8 4.3
应用前景
“六维智能”分别从计划源头、过程协同、设备底层、资源优化、质量控制、决策支持等6个方面着手实现智能工厂,这6个方面涵盖了工业生产的6个重要环节,可实现全面的精细化、精准化、自动化、信息化智能化管理与控制,通过底层设备的互联互通、基于大数据分析的决策支持、可视化展现等技术手段,实现生产准备过程中的透明化协同管理、数控设备智能化的互联互通、智能化的生产资源管理、智能化的决策支持,从而全方位达到智能化的生产过程管理与控制[15]。
从“六维智能”解决方案在青岛海尔模具有限公司的实际应用效果来看,较好地达到了智能化生产过程管理与控制的目的。该系统是专门为海尔模
具定制的,是海尔模具生态圈的主要组成部分,系统以生产设备为核心,从设备底层层面实现了机床、对刀仪等设备的互联互通与大数据分析,从生产管理层面实现了协同准备并行作业,从展现层面实现了生产信息的可视化。实施本系统后,操作工的作业效率从原来1个人管理3台设备提升到7~8台设备,设备利用率提升25%以上,使生产管理更加透明、科学、高效,应用效果比较明显,在海尔模具的数字化制造与管理中发挥了重要的作用。工业4.0落地战略
“工业4.0”不同的人从不同维度来解读,涉及到国家战略、产业战略、企业发展等不同的层面。就从企业的层面去研究,看看企业层面实现工业4.0该怎么做,怎么走,有没有路线图?
近期,随着“工业4.0”的在网络上越炒越热,我国也推出了“中国制造2025”战略,在国家战略需求的驱动下,中国对于制造大国向制造强国的迈进之路也陡然提速,这将对中国制造转型升级打通主动脉。就企业层面来说中国版工业4.0如何落地将成为重点,如何通过信息技术和制造技术的深度融合,打通一切、联通一切是企业信息化建设的目标[16]。
工业4.0是什么?每个人站在不同的角度会有不同的理解,是互联、集成(纵向、横向、端到端)、数据、创新、服务、转型或是CPS、是智能工厂、是智能制造亦或是国家战略、企业目标。工业4.0核心内容就是建一个网络、三项集成、大数据分析、八项计划和研究两个主题。
5.1
建一个网络:信息物理网络系统(CPS)
CPS是英文CyberPhysical System的缩写,就是讲物理设备连接到互联网上,让物理设备具有计算、通信、精确控制、远程协调和自治等五大功能,从而实现虚拟网络世界与现实物理世界的融合,将网络空间的高级计算能力有效的运用于现实世界中,从而在生产制造过程中,与设计、开发、生产有关的所有数据将通过传感器采集并进行分析,形成可自律操作的智能生产系统。
图9 5.2
三个集成
工业4.0中的三项集成包括:横向集成、纵向集成与端对端的集成。工业4.0将无处不在的传感器、嵌入式终端系统、智能控制系统、通信设施通过CPS形成一个智能网络,使人与人、人与机器、机器与机器以及服务与服务之间能够互联,从而实现横向、纵向和端对端的高度集成,集成是实现工业4.0的重点也是难点。5.2.1 纵向集成
纵向集成主要解决企业内部的集成,即解决信息孤岛的问题,解决信息网络与物理设备之间的联通问题。5.2.2 横向集成
横向集成主要实现企业与企业之间、企业与售出产品之间(如车联网)的协同,将企业内部的业务信息向企业以外的供应商、经销商、用户进行延伸,实现人与人、人与系统、人与设备之间的集成,从而形成一个智能的虚拟企业网络。制造业普遍存在的工程变更协同流程就是这样一个典型的横向集成应用场景。5.2.3 端到端的集成
端到端集成就是把所有该连接的端头(点)都集成互联起来,通过价值链上不同企业资源的整合,实现从产品设计、生产制造、物流配送、使用维护的产品全生命周期的管理和服务,它以产品价值链创造集成供应商(一级、二级、三级„„)、制造商(研发、设计、加工、配送)、分销商(一级、二级、三级„„)以及客户信息流、物流和资金流,在为客户提供更有价值的产品和服务同时,重构产业链各环节的价值体系。
端到端的集成即可以是内部的纵向集成内容,也可以是外部的企业与企业之间的横向集成内容,关注点在流程的整合上,比如提供用户订单的全程跟踪协同流程,将用户、企业、第三方物流、售后服务等产品全生命周期服务的端到端集成。
横向、纵向、端到端三个集成的实现,不论技术层面还是业务层面在SOA信息集成都能找到相应的解决方案。5.3
大数据分析利用
“工业4.0”时代,制造企业的数据将会呈现爆炸式增长态势。随着信息物理系统(CPS)的推广、智能装备和终端的普及以及各种各样传感器的使用,将会带来无所不在的感知和无所不在的连接,所有的生产装备、感知设备、联网终端,包括生产者本身都在源源不断地产生数据,这些数据将会渗透到企业运营、价值链乃至产品的整个生命周期,是工业4.0和制造革命的基石。
总体来说,工业4.0关注的企业数据分为四类: 5.3.1
产品数据
包括设计、建模、工艺、加工、测试、维护、产品结构、零部件配置关系、变更记录等数据。产品的各种数据被记录、传输、处理和加工,使得产品全生命周期管理成为可能,也为满足个性化的产品需求提供了条件。5.3.2
运营数据
运营包括组织结构、业务管理、生产设备、市
场营销、质量控制、生产、采购、库存、目标计划、电子商务等数据。工业生产过程的无所不在的传感、连接,带来了无所不在的数据,这些数据会创新企业的研发、生产、运营、营销和管理方式。5.3.3
价值链数据
包括客户、供应商、合作伙伴等数据。企业在当前全球化的经济环境中参与竞争,需要全面地了解技术开发、生产作业、采购销售、服务、内外部后勤等环节的竞争力要素。大数据技术的发展和应用,使得价值链上各环节数据和信息能够被深入分析和挖掘,为企业管理者和参与者提供看待价值链的全新视角,使得企业有机会把价值链上更多的环节转化为企业的战略优势。例如,汽车公司大数据提前预测到哪些人会购买特定型号的汽车,从而实现目标客户的响应率提高了15%至20%,客户忠诚度提高7%。5.3.4 外部数据
包括经济运行、行业、市场、竞争对手等数据。为了应对外部环境变化所带来的风险,企业必须充分掌握外部环境的发展现状以增强自身的应变能力。大数据分析技术在宏观经济分析、行业市场调研中得到了越来越广泛的应用,已经成为企业提升管理决策和市场应变能力的重要手段。
工业4.0落地中国企业,工业大数据是一项重要抓手。利用工业大数据分析,可以找出隐性的问题并预测未知情况的发生,有助于及时地做好预防,避免故障和偏差。结论
以三一重工18号工厂作为研究对象.对其运作方式、运作特点进行了较为详细地分析与讨论,从而得出工厂的智能化基因。并且进一步得出了智能工厂的框架,为系统化建设智能工厂打下了基础。主要的研究结论如下:
1.在理论上对数字化工厂、智能工厂和智能制造进行了分析指出,要又好又快地发展智能工厂就必须先建设好数字化工厂。
2.对比三一重工18号工厂实现智能化之后生产效率得到提升,直观地反映了智能化对制造业带来的好处。
3.通过对18号工厂的生产线、物流系统、执行系统、控制中心进行分析,找到了工厂可实现智能化的内在基因。也就是在设备联网+远程数据采集的基础上,实现智能化的生产过程管理与控制,从6个方面打造适合中国国情的智能工厂(1)。
4.概括了智能工厂的框架,提出了运用大数据分析,做好CPS和三个集成是实现智能工厂的前提条件,而智能工厂的标志就是生产流程智能化,生产设备动态适应个性化的产品需求。
参考文献
[1] 李梦迪.基于以太网的智能工厂柔性制造生产
线控制系统设计与实现[D].河北工程大学,2016.[2] 乔荻.智能工厂设备点检系统中辅助移动视频
监控的设计[D].安徽大学,2016.[3] 商滔.面向智能工厂离散型智能制造单元的研
究[D].杭州电子科技大学,2016.[4] 温泉.智能工厂与后台数据服务平台的设计[D].广东工业大学,2015.[5] 李锦绣.基于.NET框架的工厂智能监控分析系
统的设计与实现[D].北京交通大学,2016.[6] 王冠.基于嵌入式的植物工厂智能监控系统的研究[D].天津理工大学,2015.[7] 史诗莹.数字化工厂技术在锅炉智能制造中的应用[D].华东理工大学,2015.[8] 沈振萍.基于企业信息工厂的商务智能数据管
理[D].安徽大学,2013.[9] 孙晶.基于物联网技术的工厂智能照明系统的设计[D].成都理工大学,2012.[10] 赵有生.蔬菜工厂化育苗的智能管理与综合评
价研究[D].吉林大学,2011.[11] 宋运通.基于实时数据库的工厂智能平台研究
开发[D].天津大学,2009.[1]马孟模.流程工业智能工厂建设技术应用探究[J].工业控制计算机,2017,(03):53-54+57.[12] 江文成,李星,张晶.智能工厂增强现实技术应用
与展望[J].船舶标准化与质量,2016,(06):37-41.[13] 顾桓,田红.软包装材料生产线的智能工厂实现
模式及技术[J].计算机测量与控制,2016,(11):222-225.[14] 李利民,侯轩,毕晋燕.高端装备制造业智能工厂
建设思路和构想[J].科技创新与生产力,2016,(04):16-19.[15] [10]商滔.面向智能工厂离散型智能制造单元的研究[D].杭州电子科技大学,2016.[16] 华镕.未来的智能工厂[J].仪器仪表标准化与计
量,2015,(05):15-18.
第四篇:智能制造技术
现代制造技术
1142813203 吴文乐
摘要:现代制造技术是在传统制造技术的基础上, 不断吸收和发展机械、电子、能源、材料、信息及现代管理技术的成果, 将其综合应用于产品设计、制造、检验、管理服务等产品生命周 期的全过程, 以实现优质、高效、低耗、灵活、清洁的生产技术模式,取得理想的技术经济效果的制造技术的总称传统的自动化生产技术可以显著提高生产效率,然而其局限性也显而易见,即无法很好地适应中小批量生产的要求。随着现代制造技术的发展,特别是自动控制技术、数控加工技术、工业机器人技术等的迅猛发展,柔性制造技术(FMI)应运而生。
关键词:现代制造技术;自动控制技术;柔性制造技术
1.现代制造技术发展综述
现代制造技术在系统论、方法论、信息论和协同 论等的基础上形成制造系统工程学,是一种广义制造的概念,亦称之为“大制造”的概念,它体现了制造概念的扩展。广义制造概念的形成过程主要有以下几方面原因[1]。
1).制造设计一体化。体现制造和设计的密切结合,形成了设计制造一体化,设计不仅是指产品设计,而且包括工艺设计、生产调度设计、质量控制设计等。
2).材料成形机理的扩展。现在加工成形机理明确地将加工分为去除加工、结合加工和变形加工。
3).制造技术的综合性。现代制造技术是一门以 机械为主体,交叉融合光、电、信息、材料等学科的综合体,并与管理科学、社会科学、文化、艺术、人机工 程、生物工程和生命科学等相结合,拓展了新领域。现代制造技术应包括硬件和软件两大方面,硬/软件工具、平台和支撑环境有了很大的发展。
4).产品的全生命周期。制造的范畴从过去的设计、加工和装配发展为产品的全生命周期,包括市场调研、设计、制造、销售、维修和报废处理等。
5).生产制造模式的发展。计算机集成制造技术 是制造技术与信息技术结合的产物,集成制造系统强 调信息集成,其后出现了柔性制造、敏捷制造、虚拟制 造、网络制造、大规模定制、绿色制造、智能制造和协 同制造等多种制造模式,有效地提高了制造技术的水平,扩展了制造技术的领域[2]。
现代制造技术的发展主要沿着“广义制造”或称 “大制造”的方向发展,其具体的发展可以归纳为四个方面和多个大项目[3],如图1所示:
图1:现代制造技术方向
针对现代制造技术,本文从柔性制造技术的角度对现代制造技术进行学习,对柔性制造在实际中的应用进行深入的研究;
2.柔性制造
2.1 柔性制造简述
所谓“柔性”,是指制造系统(企业)对系统内部及外部环境的一种适应能力,也是指制造系统能够适应产品变化的能力。柔性可分为瞬时、短期和长期柔性[4]。瞬时柔性是指设备出现故障后,自动排除故障或将零件转移到另一台设备上继续进行加工的能力;短期柔性是指系统在短时期内,适应加工对象变化的能力,包括在任意时期混合进行加工2种以上零件的能力;长期柔性则是指系统在长期使用中,能够加工各种不同零件的能力。迄今为止,柔性还只能定性地加以分析,尚无科学实用的量化指标。因此,凡具备上述3种柔性特征之一的、具有物料或信息流的自动化制造系统都可以称为柔性制造系统。柔性制造技术是计算机技术在生产过程及其装备上的应用,是将微电子技术、智能技术与传统制造技术融合在一起,具有自动化、柔性化、高效率的特点,是目前自动化制造系统的基本单元技术[5]。
柔性制造技术是对各种不同形状加工对象实现程序化柔性制造加工的各种技术的总和[6]。柔性制造技术是技术密集型的技术群,我们认为凡是侧重于柔性,适应于多品种、中小批量(包括单件产品)的加工技术都属于柔性制造技术。目前按规模大小划分为[7]:
(1)柔性制造系统(FMS):关于柔住制造系统的定义很多,权威性的定义有:美国国家标准局把FMS定义为:“由一个传输系统联系起来的一些设备,传输装置把工件放征其他联结装置上送到各加工设备,使工件加工准确、迅速和自动化。
(2)柔性制造单元(FMC):M S是FMS向廉价化及小型化方向发展的一种产物,它是由l~2台加工中心、工业机器人。数控机床及物料运送存贮设备构成,其特点是实现单机柔性化及自动化,具有适应加工多品种产品的灵活性。迄今已进入普及应用阶段。
(3)柔性制造线(FML):它是处于单一或少品种人批量非柔性自动线与中小批量多品种FMS之间的生产线。其加工设备可以是通用的加工中心,CNC机床;亦可采用争用机床或NC专用机床,对物料搬运系统柔性的要求低于FMS,但生产率更高。它是以离散型生产中的柔性制造系统和连续生过程中的分散型控制系统(D C S)为代表,其特点是实现生产线柔性化及自动化,其技术已日趋成熟,迄今已进入实用化阶段。
(4)柔性制造工厂(FMF):FMF是将多条FMS连接起来,配以自动化屯体仓库,用计算机系统进行联系,采用从订货、设计、加工、装配、检验、运送至发货的完整F M S。它包括了CAD/CAM,并使计算机集成制造系统(CIMS)投入实际,实现生产系统 柔性化及自动化,进而实现全厂范围的生产管理、产品加工及物料贮运进程的全盘化。FMF是自动化生产的最高水平,反映出世界上最先进的自动化应用技术。它是将制造、产品开发及经营管理的自动化连成一个整体,以信息流控制物质流的智能制造系统(IMS)为代表,其特点是实现工厂柔性化及自动化[8]。
2.2柔性制造所采用的关键技术
1.计算机辅助设计未来CAD技术发展将会引入专家系统,使之具有智能化,可处理各种复杂的问题。当前设计技术最新的一个突破是光敏立体成形技术,该项新技术是直接利用CAD数据,通过计算机控制的激光扫描系统,将二维数字模型分成若干层二维片状图形,并按二维片状图彤对池内的光敏树脂液面进行光学扫描,被扫描到的液面则变成固化塑料,如此循环操作,逐层扫描成形,并自动地将分层成形的各斤状固化塑料粘合在一起,仅需确定数据,数小时内便呵制出精确的原型。它有助于加快开发新产品和研制新结构的速度。
2.模糊控制技术模糊数学的实际应用是模糊控制器。最近开发出的高性能模糊摔制器具有自学习功能,可在控制过程中不断获取新的信息井自动地对控制量作调整,使系统性能大为改善,其中尤其以基于人工神经网络的自学方法更引起人们极大的关注。
3.人工智能、专家系统及智能传感器技术迄今,柔性制造技术中所采用的人工智能大多指基础规则的专家系统。专家系统利用专家知识和推理规则进行推理,求解各类问题(如解释、预测,诊断、查找故障、设汁、计划、监视、修复、命 令及控制等)。由于专家系统能简便地将各种事实及经验证过的理论与通过经验获得的知识相结合,因而专家系统为柔性制造的诸方面工作增强综合性。展望未来,以知识密集为特征,以知识处理为手段的人工智能(包括专家系统)技术必将在柔性制造(尤其智能型)中起着非常重要的关键性的作用。目前对未来智能化柔性制造技术具有重要意义的一个正在急速发展的领域是智能传感器技术。该项技术是伴随计算机应用技术和人工智能产生的,它使传感器具有内在的“决策”功能。
4.人工神经网络技术人工神经网络(ANN)是模拟智能生物的神经网络对信息进行并处理的一种方法。故人工神经网络也就是一种人工智能工具。在自动控制领域,神经网络不久将并列到专家系统和模糊控制系统,成为现代自动化系统中的一个组成部分[9]。
3.国内现代制造技术状况
近年来,世界各国都投入了巨大的财力和物力,强化作为光机电一体化制造业基础的先进制造业的技术和产业发展的战略研究。美国、德 国、日 本 等 国 已 经 开 发 出 了 数 控(NC)、计算机数控(CNC)、直接数控(CAM)、计算机集成制造系统(CIMS)、制造资源规则(MRP)、柔性制造单元(TMC)、柔性制造系统(FMS)、机器人、计算机辅助设计/制造(CAD/CAM)、精益生产(LP)、智能制造系统(MS)、并行工程(CE)和敏捷制造(AM)等多项现代制造技术与制造模式。这些技术的推广与应用,不仅使本国企业的国际竞争力得到巩固,也使得世界先进制造业发展迅猛[10]。我国制造业市场的巨大潜力,为现代制造技术发展提供了广阔的市场空间。但是,与制造业发达国家和地区相比,国内的现代制造技术的研发与市场拓展还不均衡。其中,国内机械基础件制造行业中的数控化率极低,不足1.6%,先进加工工艺、技术和装备的普及程度不足10 % ;CAD/CAM 系统应用的普及率在国内骨干企业仅有35%,产业规模较小。另外,在相关行业中如印刷业、电力行业和医疗器械行业等,技术装备的低数控化率也远不能满足市场对中高档先进产品的需求。纵观国际制造业的竞争与发展,面对国际、国内两个制造业市场的日渐融合,如何立足国内制造业的市场需求,整合分散的科研与企业资源,尽快形成自己在先进制造产业竞争中的技术优势,已经是摆在我国制造业面前的迫在眉睫的课题了[11]。
总之,重视制造业和现代制造技术已成为全球化的大趋势。现代制造技术不是一项具体技术,而是利用系统工程技术将各种相关技术集成的一个有机整体;现代制造技术是一种动态技术,而不是一成不变的,它需要不断吸收各种高新技术成果,并将其渗透到产品的所有领域,结合成一个有机整体,实现优质、高效、低耗、清洁和灵活的生产[12];现代制造技术的目的是提高制造业的综合效益,其不摒弃传统技术,而是有赖于不断用科技新手段去研究它和传承它,并应用科技新成果去改造它和充实它;现代制造技术在强调环境保护的同时,还强调各专业学科之间的相互渗透、融合和淡化,并消除其间的界限。我国先进制造技术的发展应结合自身的特点,形成特色,大力发展一些关键前沿技术,比如新一代材料成型技术、微米及纳米技术、快速原型制造以及智能制造等[13]。在不久的将来,现代制造技术将得到更大的发展和壮大,发展和应用先进制造技术是每个国家为提高企业的国际竞争力和技术创新能力的必然选择。
参考文献:
[1]张强.浅谈柔性制造技术的现状及发展[J].技术与市场,2008.(5):39-40.[2]沈向东.柔性制造技术[M].北京:机械工业出版社,2013.2.[3]吴立.关于柔性制造的研究[J].机床与液压,2010,38(14):9-11.[4]陈琪.制造业企业推行柔性制造的意义及对策[J].企业经济,2005(4):7-8.[5]崔培枝,朱胜,姚巨坤.柔性再制造系统研究[J].机械制造,2003(11):7-9
[6]王隆太,朱灯林,戴国洪.机械CAD/CAM技术[M].北京:机械工业出版社,2005.
[7]盛晓敏,邓朝辉.先进制造技术[M].北京:机械工业出版社,2003.[8]李楷模.LI Kai-mo 现代制造技术的发展动向[J]-科技成果管理与研究2008(6).[9]蒋新松.21世纪企业的主要模式一敏捷制造企业[J].计算机集成制造系统一CIMS,1996,2(4):3—8.
[10]罗振壁,周兆英,汪劲松,等.制造的革新[J].机械工程学报,1995,31(4):31—37.
[11]王永贵.战略柔性与企业高成长.天津:南开大学出版社,2003.67—69.[12]张荣,陈大佑.提升国有大中型企业竞争力的新途径——柔性化管理.当代经济研究.2006.(1):33~35.[13]王先逵.制造工艺核心论[J].世界制造技术与装备市场,2005(3):28—32.
第五篇:智能制造装备产业发展研究报告 (3000字)
智能制造装备产业发展研究
一、智能制造装备定义及范围
二、我国智能制造装备产业发展现状
(一)产业发展取得的成就
1、产业规模发展迅速
2、重点产品有所突破
3、形成一批具有国际竞争力的龙头企业
4、产业资本体系多元化
(二)产业发展存在的主要问题
1、对外依存度高
2、创新能力不足
3、产业基础薄弱
三、智能制造装备产业主要分布区域
四、智能制造装备产业面临的新形势
(一)工业发达国家优势明显,国际竞争更加激烈
(二)产业发展空间巨大,前景广阔
五、智能制造装备产业发展趋势
(一)自动化
(二)集成化
(三)信息化
(四)绿色化
六、智能制造装备未来重点应用领域
(一)电力领域
(二)节能环保领域
(三)农业装备领域
(四)资源开采领域
(五)国防军工领域
(六)基础设施建设领域
七、智能制造装备产业发展的对策建议
(一)加强区域统筹,推进资源集中
(二)提升配套服务,推广产业集聚
(三)完善产业链条,形成产业集群
智能制造装备产业发展研究
智能制造装备是《国务院关于加快培育和发展战略性新兴产业的决定》、《中华人民共和国国民经济和社会发展第十二个五年规划纲要》及《“十二五”国家战略性新兴产业发展规划》中明确的高端装备制造业领域中的重点发展方向之一。作为高端装备制造业的重点发展方向和信息化与工业化深度融合的重要体现,大力培育和发展智能制造装备产业对于加快制造业转型升级,提升生产效率、技术水平和产品质量,降低能源资源消耗,实现制造过程的智能化和绿色化发展具有重要意义。
一、智能制造装备定义及范围
智能制造装备是具有感知、分析、推理、决策、执行功能的各类制造装备的统称,它是先进制造技术、信息技术和智能技术的集成和深度融合。智能制造装备产业的水平已经成为当今衡量一个国家工业化水平的重要标志。
智能制造装备产业主要包括:高档数控机床、智能测控装置、关键基础零部件、重大集成智能装备。
二、我国智能制造装备产业发展现状
(一)产业发展取得的成就
1、产业规模发展迅速
近年来,智能制造装备产业增长势头迅猛,初步形成一定的规模。2011年,智能制造装备产业产值约3600亿元,其中机床工具产业销售收入3922亿元,其中高档数控机床约占30%;仪器仪表产业销售收入3945亿元,其中智能控制系统、精密和智能仪器仪表与试验设备等约18%;机器人产业销售收入150亿元;通用基础件行业销售收入4600亿元,高端部分约占5%;施工机械3100亿元,高端部分占约20%;纺织机械600亿元,高端部分约占20%;印刷机械160亿元,高端部分占约20%;石化装备1896亿元,高端部分占约30%;国防工业专用制造装备超过120亿元。
2、重点产品有所突破
依托国家重点工程和重大科技专项的实施,一批国家急需、长期依赖进口、受制于国外的智能制造装备实现突破,如精密、高速加工中心,重型数控镗铣床,3.6万吨黑色金属垂直挤压机;用于百万千瓦超超临界火电机组、年产45万吨合成氨、轨道交通等重大工程项目的国产控制系统,高精度压力/差压变送器、原子荧光光谱仪、油井多相流检测设备;直径为6.34米的土压平衡盾构机、直径为11.22米的泥水平衡盾构机;1600吨级加氢裂化反应器、百万吨级乙烯工程三大离心压缩机组、百万吨级乙烯冷箱。
3、形成一批具有国际竞争力的龙头企业
现有沈阳机床、大连机床两个集团的年销售收入均超过百亿,进入世界机床产业前10强。涌现出重庆川仪、京仪集团、浙江中控、和利时、新松机器人、三一重工、中联重科、瓦轴集团、沈鼓集团等一批具有国际竞争力的龙头企业,以及聚光科技、天瑞仪器、威尔泰等各具特色的智能制造装备企业。
4、产业资本体系多元化智能制造装备产业是一个完全开放和竞争的行业,中外资进入最早的行业,近年来民营经济发展迅速。机床工具行业销售收入中,国有、民营、三资所占比例分别为18.3%、67%和14.7%;仪器仪表行业销售收入中,国营、民营、三资所占比例分别为:18.9%、45.2%和35.9%,初步形成国有企业、民营企业、三资企业多元化发展,民营企业比例较高的格局。
(二)产业发展存在的主要问题
1、对外依存度高
重大技术装备用仪器仪表基本被国外垄断,对外依存度达到40%,其中高端产品对外依存度更是达到70%。机器人和高端自动控制系统的95%、高档数控机床的90%、高档数控系统的 95% 的市场份额被国外产品占领。
2、创新能力不足
行业整体技术水平与世界先进水平有较大的差距。创新投入不足,仪器仪表行业r&d投入占销售收入的比重仅为2.5%;国内仪器仪表行业创新人才队伍占从业人员的比重仅有5%,与工业发达国家的20%相比有较大差距。重大装备核心技术不掌握,自主品牌缺乏。
3、产业基础薄弱
智能制造装备整机和成套设备配套的关键零部件、元器件大量进口。为高档数控机床配套的高档功能部件70%需要进口;高档传感器市场全部被国外产品垄断;大型工程机械所需30mpa以上液压件全部进口,大型装载机进口部件占整机价值量的50~60%。
三、智能制造装备产业主要分布区域
智能制造装备产业主要分布在工业基础发达的东北和长三角地区。以数控机床为核心的智能制造装备产业的研发和生产企业主要分布在北京、辽宁、江苏、山东、浙江、上海、云南和陕西等地区。工业机器人将是未来智能制造装备发展的一个新热点,北京、上海、广州、江苏将是国内工业机器人应用的主要市场。(邳州可以依托产业布局的优势,引进和发展数控机床和工业机器人方面的企业,来提升邳州的产业层次)
四、智能制造装备产业面临的新形势
(一)工业发达国家优势明显,国际竞争更加激烈
智能制造的概念于上世纪90年代首先由美国提出,其后各发达国家紧紧跟随,纷纷将智能制造系统列为国家级计划并着力发展。我国在八十年代后期才开始进入智能制造装备领域。速度明显落后。
(二)产业发展空间巨大,前景广阔
国民经济重点产业的发展、重大工程建设、传统产业的升级改造及降低碳排放的承诺,对智能制造装备提出了巨大的市场需求。
五、智能制造装备产业发展趋势
智能制造装备呈现出自动化、集成化、信息化、绿色化的发展趋势。
(一)自动化
自动化和智能化是智能制造装备的重要发展趋势,主要表现在装备能根据用户要求完成制造过程的自动化,并对制造对象和制造环境具有高度适应性,实现制造过程的优化。
(二)集成化
智能制造装备正向技术集、系统集成的方向发展,主要体现在生产工艺技术、硬件、软件与应用技术的集成及设备的成套,同时还体现在生物、纳米、新能源、新材料等跨学科高技术的集成,从而使装备得到不断提高和升级,甚至发生深刻变化。
(三)信息化
信息技术与先进制造技术的融合,带来巨大的、甚至是革命性的变化。将传感技术、计算机技术、软件技术“嵌入”装备中,实现装备的性能提升和“智能”。设计及制造过程的数字化、信息化与智能化的最终目标不仅是要快速开发出产品或装备,而且要努力实现大型复杂产品一次开发成功。
(四)绿色化
资源、能源的压力,使装备必须考虑从设计、制造、包装、运输、使用到报废处理的全生命周期中,对环境负面影响极小,资源利用率极高,并使企业经济效益和社会效益协调优化。绿色制造是提高智能制造装备资源循环利用效率和降低环境排放的关键途径。
六、智能制造装备未来重点应用领域
(一)电力领域
重点推进在百万千瓦级火电机组中实现燃烧优化、设备预测维护功能,在百万千瓦级核电站实现安全控制和特种测量功能,在重型燃气轮机中实现快速启停和复合控制功能,3mw以上风电机组的主控功能,变桨控制功能,太阳能热电站实现追日控制功能,在智能电网中实现用电管理、用户互动、电能质量改进、设备智能维护功能。
(二)节能环保领域
重点推进在固体废弃物智能化分选装备、智能化除尘装备、污水处理装备上推广应用,实现各种再生原料的高效智能化分选、除尘设 备和污水处理装备的自动调节与高效、稳定,在地热发电装备中实现地热高效发电建模与控制功能。
(三)农业装备领域
重点推进在大型拖拉机及联合整地、精密播种、精密施肥、精准植保等配套机具成套机组,谷物、棉花、油菜、甘蔗等联合收获机械,水稻高速插秧机等种植机械装备上的应用,实现故障及作业性能的实时诊断、检测和控制,实现作业过程的智能控制和管理。
(四)资源开采领域
重点推进在煤炭综采设备、矿山机械上应用,实现综采工作面设备信息与环境信息的集成监控、安全环境预警、精确人员定位等功能,在天然气长距离集输设备中实现全线数据采集和监控、运行参数优化、管道泄漏检测定位、站场无人操作或无人值守以及中心远程遥控功能,在油田设备中实现井口关键参数检测、数据处理及集中监测功能。
(五)国防军工领域
重点推进专用机器人、精密仪器仪表、新型传感器、智能工控机在航天、航空、舰船、兵器等国防军工领域的应用。
(六)基础设施建设领域
重点推进在挖掘机、盾构机、起重机、装载机、叉车、混凝土机械等施工装备上应用,实现远程定位、监测、诊断、管理等智能功能,在机场和码头建设领域推广应用,实现机场行李和货物的自动装卸、输送、分拣、存取全过程的智能控制和管理,集装箱装卸的无人操作与数字化管理。
七、智能制造装备产业发展的对策建议
(一)加强区域统筹,推进资源集中
开展区域统筹规则。加强区域、省域智能制造装备产业发展的宏观指导,由国家或省主管部门牵头,科学地编制智能制造装备产业规划,设立产业准入标准,协调产业布局与区域分工,避免低水平重复建设、恶性竞争。
(二)提升配套服务,推广产业集聚
注重服务平台建设。加强技术、研发、中试、转化等一系列公共平台的建设,建立完善的产学研合作体系、产业联盟,从专业服务和集群发展角度提高园区的竞争力。围绕龙头企业和技术输出重点机构,组织企业提供配套和转化服务。
(三)完善产业链条,形成产业集群
抓好地区产业定位,全面考虑产业和项目的协作关联度,鼓励依托产业链环节开展专业分工。
各地方发展智能制造装备产业还必须要和当地传统的装备制造产业的改造提升相结合,在不脱离现有装备工业基础的前提下,加快新兴科技如人工智能、物联网、云计算等与传统装备制造产业的融合,形成新兴装备制造产业集群。