第一篇:新人教版六年级上册数学重要章节知识点归纳总结.
重要章节知识点总结
一、分数乘法
一、分数乘法(一分数乘法的意义:
1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。
例如: 98×5表示求5个98 的和是多少?
2、分数乘分数是求一个数的几分之几是多少。
例如: 98×43表示求98的43是多少?(二、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。(三、规律:(乘法中比较大小时 一个数(0除外乘大于1的数,积大于这个数。一个数(0除外乘小于1的数(0除外,积小于这个数。一个数(0除外乘1,积等于这个数。
(四、分数混合运算的运算顺序和整数的运算顺序相同。
(五、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a 乘法结合律:(a × b ×c = a ×(b × c 乘法分配律:(a + b ×c = a c + b c a c + b c =(a + b ×c
二、分数乘法的解决问题
(已知单位“1”的量(用乘法,求单位“1”的几分之几是多少
1、画线段图:(1两个量的关系:画两条线段图;(2部分和整体的关系:画一条线段图。
2、找单位“1”: 在分率句中分率的前面;或 “占”、“是”、“比”的后面
3、求一个数的几倍: 一个数×几倍;求一个数的几分之几是多少: 一个数× 几几。
4、写数量关系式技巧:(1“的” 相当于 “×” “占”、“是”、“比”相当于“ = ”(2分率前是“的”: 单位“1”的量×分率=分率对应量
(3分率前是“多或少”的意思: 单位“1”的量×(1±分率=分率对应量
三、倒数
1、倒数的意义: 乘积是1的两个数互为..倒数。强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数。
2、求倒数的方法:
(1、求分数的倒数:交换分子分母的位置。
(2、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。(3、求带分数的倒数:把带分数化为假分数,再求倒数。(4、求小数的倒数: 把小数化为分数,再求倒数。3、1的倒数是1;0没有倒数。因为1×1=1;0乘任何数都得0,01(分母不能为0
4、对于任意数(0a a ≠,它的倒数为1a;非零整数a 的倒数为1a;分数b a 的倒数是a b;
5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
二、分数除法
一、分数除法
1、分数除法的意义: 乘法:因数×因数 = 积除法:积÷一个因数 = 另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则: 除以一个不为0的数,等于乘这个数的倒数。
3、规律(分数除法比较大小时:(1、当除数大于1,商小于被除数;(2、当除数小于1(不等于0,商大于被除数;(3、当除数等于1,商等于被除数。
4、“[]”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
二、分数除法解决问题
(未知单位“1”的量(用除法:已知单位“1”的几分之几是多少,求单位“1”的量。
1、数量关系式和分数乘法解决问题中的关系式相同:(1分率前是“的”:单位“1”的量×分率=分率对应量
(2分率前是“多或少”的意思:单位“1”的量×(1±分率=分率对应量
2、解法:(建议:最好用方程解答
(1方程:根据数量关系式设未知量为X,用方程解答。(2算术(用除法:分率对应量÷对应分率 = 单位“1”的量
3、求一个数是另一个数的几分之几:就 一个数÷另一个数
4、求一个数比另一个数多(少几分之几: 两个数的相差量÷单位“1”的量 或: ① 求多几分之几:大数÷小数 – 1 ② 求少几分之几: 1-小数÷大数
三、比和比的应用4(一、比的意义
1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 15÷10= 2
3(比值通常用分数表示,也可以用小数或整数表示 ∶ ∶ ∶ ∶ 前项 比号 后项 比值
3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。
例: 路程÷速度=时间。
4、区分比和比值
比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、比和除法、分数的联系: 比 前 项 比号“:” 后 项 比值 除 法 被除数 除号“÷” 除 数 商 分 数 分 子 分数线“—” 分 母 分数值
7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
(二、比的基本性质
1、根据比、除法、分数的关系: 商不变的性质:被除数和除数同时乘或除以相同的数(0除外,商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外,分数值不变。比的基本性质:比的前项和后项同时乘或除以相同的数(0除外,比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。4.化简比: ①用比的前项和后项同时除以它们的最大公因数。(1 ②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。③两个小数的比:向右移动小数点的位置,先化成整数比再化简。(2用求比值的方法。注意: 最后结果要写成比的形式。
如: 15∶10 = 15÷10 = 23 = 3∶2 5.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。
如: 已知两个量之比为:a b ,则设这两个量分别为ax bx 和。
6、路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4 工作总量一定,工作效率和工作时间成反比。
(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3
三、圆
一、认识圆 依据 比的 基 本 性 质:
1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O 表示。它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r 表示。把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d 表示。直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的21。用字母表示为:d =2r 或r = 2d
8、轴对称图形: 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线叫做对称轴。(经过圆心的任意一条直线或直径所在的直线
9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。
10、只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。只有2条对称轴的图形是: 长方形 只有3条对称轴的图形是: 等边三角形 只有4条对称轴的图形是: 正方形;有无数条对称轴的图形是: 圆、圆环。
二、圆的周长
1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C 表示。
2、圆周率实验: 在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。发现一般规律,就是圆周长与它直径的比值是一个固定数(π。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai表示。
(1、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。圆周率π是一个无限不循环小数。在计算时,一般取π ≈ 3.14。(2、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。(3、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
4、圆的周长公式:C= πd d = C ÷π 或C=2π÷ 2π
5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
6、区分周长的一半和半圆的周长:(1周长的一半:等于圆的周长÷2 计算方法:2π r ÷ 2 即π r
(2半圆的周长:等于圆的周长的一半加直径。计算方法:πr+2r 即 5.14 r
三、圆的面积
1、圆的面积:圆所占平面的大小叫做圆的面积。用字母S表示。
2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。
3、圆面积公式的推导:(1、用逐渐逼近的转化思想:体现化圆为方,化曲为直;化新为旧,化未知为已知,化复
杂为简单,化抽象为具体。
(2、把一个圆等分(偶数份成的扇形份数越多,拼成的图像越接近长方形。(3、拼出的图形与圆的周长和半径的关系。
圆的半径 = 长方形的宽 圆的周长的一半 = 长方形的长 因为:长方形面积 = 长×宽
所以:圆的面积 = 圆周长的一半×圆的半径 S圆 = πr × r
圆的面积公式: S圆 = πr2 r2 = S ÷π
4、环形的面积: 一个环形,外圆的半径是R,内圆的半径是r。(R=r+环的宽度.S环 = πR²-πr²或
环形的面积公式: S环= π(R²-r²。
5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小的倍数是这倍数的平方倍。例如: 在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。
6、两个圆:半径比 = 直径比 = 周长比;而面积比等于这比的平方。例如: 两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9
7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π
8、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。
反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。
9、确定起跑线:(1、每条跑道的长度 = 两个半圆形跑道合成的圆的周长 + 两个直道的长度。(2、每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。(因此起跑线不同
(3、每相邻两个跑道相隔的距离是:2×π×跑道的宽度
(4、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a 厘米时,它的周长就增加πa厘米。
11、常用各π值结果: π = 3.14
2π = 6.28 3π = 9.42 5π = 15.7 6π = 18.84
7π = 21.98 9π = 28.26 10π = 31.4
16π = 50.24 36π= 113.0464π = 200.9696π = 301.44 4π = 12.56 8π = 25.12 25π = 78.5
12、常用平方数结果
= 121 122 = 144 132 = 169 142 = 196 152 = 225 162 = 256 172 = 289 182 = 324 192 = 361
四、百分数
一、百分数的意义和写法
1、百分数的意义:表示一个数是另一个数的百分之几。百分数是指的两个数的比,因此也叫百分率或百分比。
2、千分数:表示一个数是另一个数的千分之几。
3、百分数和分数的主要联系与区别:(1联系:都可以表示两个量的倍比关系。(2区别: ①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;
分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。②、百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数。
4、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示。
二、百分数和分数、小数的互化(一百分数与小数的互化:
1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。2.百分数化成小数:把小数点向左移动两位,同时去掉百分号。(二百分数的和分数的互化
1、百分数化成分数: 先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。
2、分数化成百分数: ① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。②先把分数化成小数(除不尽时,通常保留三位小数,再把小数化成百分数。
(三常见的分数与小数、百分数之间的互化 2 1 = 0.5 = 50% 51 = 0.2 = 20% 85 = 0.625 = 62.5% 4 = 0.25 = 25% 5 2 = 0.4 = 40% 81 = 0.125 = 12.5% 4 3 = 0.75 = 75% 53 = 0.6 = 60% 8 3 = 1.375 = 37.5% 16 1 = 0.0625 = 6.25% 54 = 0.8 = 80% 87 = 0.875 = 87.5% 25 1 = 0.04 = 4﹪ 25 2 = 0.08 = 8﹪ 25 3 = 0.12 = 12﹪ 25 4 = 0.16 = 16﹪
三、用百分数解决问题(一一般应用题
1、常见的百分率的计算方法: ①合格率 = %100⨯产品总数合格产品数 ②发芽率 = %100⨯种子总数发芽种子数 ③出勤率 = %100⨯总人数出勤人数 ④达标率 = %100⨯学生总人数达标学生人数 ⑤成活率 = %100⨯总数量成活的数量 ⑥出粉率 = %100⨯出粉物的重量
粉的重量 ⑦烘干率 = %100⨯烘干前的重量烘干后的重量 ⑧含水率 =
%100⨯-烘干前的重量烘干后的重量烘干前的重量 一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。(一般出粉率在70、80%,出油率在30、40%。
2、已知单位“1”的量(用乘法,求单位“1”的百分之几是多少的问题: 数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的” : 单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量
3、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。解法:(建议:最好用方程解答)(1)方程: 根据数量关系式设未知量为 X,用方程解答。(2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量
4、求一个数比另一个数多(少)百分之几的问题: 两个数的相差量÷单位“1”的量 × 100% 1 求多百分之几:(大数÷小数 – 1)× 100% ② 求少百分之几:(1 或: 小数÷大数)× 100%
(二)、折扣
1、折扣:商品按原定价格的百分之几出售,叫做折扣。通称“打折”。几折就表示十分之几,也就是百分之几十。例如八折=2、8 =80﹪,六折五=0.65=65﹪ 10 一成是十分之一,也就是 10%。三成五就是十分之三点五,也就是 35%
(三)、纳税
1、纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳 给国家。
2、纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。
3、应纳税额:缴纳的税款叫做应纳税额。
4、税率:应纳税额与各种收入的比率叫做税率。
5、应纳税额的计算方法:应纳税额 = 总收入 × 税率
(四)利息
1、存款分为活期、整存整取和零存整取等方法。11 1
2、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援 国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
3、本金:存入银行的钱叫做本金。
4、利息:取款时银行多支付的钱叫做利息。
5、利率:利息与本金的比值叫做利率。
6、利息的计算公式:利息=本金×利率×时间
7、注意:如要上利息税(国债和教育储藏的利息不纳税),则: 税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)
五、扇
形统计图
一、扇形统计图的意义: 用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。也就是各部分数量占总数的百分比(因此也叫百分比图)。
二、常用统计图的优点:
1、条形统计图:可以清楚的看出各种数量的多少。
2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。
3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。
三、扇形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角 越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周 角度数的百分比。)
六、比例
1、比例的意义 :表示两个比相等的式子叫做比例。如:2:1=6:3
2、组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。
3、比例的性质 :在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本 性质。例如:由 3:2=6:4 可知 3×4=2×6;或者由 x×1.5=y×1.2 可知 x:y=1.2: 1.5。(利用比例的意义和比例的基本性质可以判断两个比是否成比例)
4、解比例 :根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比 12 1 例中的另外一个未知项。求比例中的未知项,叫做解比例。例如:3:x = 4:8,内项乘内项,外项乘外项,则:4x =3×8,解得 x=6。5、正比例和反比例 :(1)、成正比例的量: 两种相关联的量,一种量变化,另一种量 也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成 正比例的量,他们的关系叫做正比例关系。用字母表示 y/x=k(一定)例如:①、速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。②、圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。③、圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。④、y=5x,y 和 x 成正比例,因为:y÷x=5(一定)。⑤、每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。(2)、成反比例的量 :两种相关联的量,一种量变化,另一种量也随着变化,如果这两 种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关 系。用字母表示 x×y=k(一定 例如:①、路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。②、总价一定,单价和数量成反比例,因为:单价×数量=
总价(一定)。③、长方形面积一定,它的长和宽成反比例,因为:长×宽=长方形的面积(一定)。④、40÷x=y,x 和 y 成反比例,因为:x×y=40(一定)。⑤、煤的总量一定,每天的烧煤量和烧的天数成反比例,因为:每天烧煤量×天数=煤的总量(一 定)。
6、图上距离:实际距离=比例尺;比例尺有两种形式:数值比例尺和线段比例尺。例如:
1、图上距离 2cm,实际距离 4km,则比例尺为 2cm:4km,最后求得比例尺是 1:200000。
2、:在一幅某乡农作物布局图上,20 厘米表示实际距离 16 千米。求这幅图的比例尺。16 千米 = 1600000 厘米 20 1 = 1600000 80000
3、例题:说出下面比例尺表示的意思。这是线段比例尺,它表示图上 1 厘米的距离代表实际距离 200 千米。
7、实际距离=图上距离÷比例尺; 例如:已知图上距离 2cm 和比例尺,则实际距离为:2÷ 13 1 =400000cm=4km。200000 1
8、图上距离=实际距离×比例尺; 例如: 已知实际距离 4km 和比例尺 1:200000,则图上距离为: 400000×
9、图形的放大或缩小 把一个图形按一定比放大或缩小,就是把它的每条边按一定的比放大或缩小。(比的前项 大于比的后项是放大,反之是缩小)1 =2(cm)200000 常用单位换算 长度单位换算 1 千米=1000 米 1 米=10 分米 1 分米=10 厘米 1 米=100 厘米 1 厘米=10 毫米 面积单位换算 1平方千米=100 公顷 1 公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容积单位换算 1 立方米=1000 立方分米 1 立方分米=1000 立方厘米 1 立方分米=1 升 1 立方厘米=1 毫升 1 立方米=1000 升 重量单位换算 1 吨=1000 千克 1 千克=1000 克 1 千克=1 公斤 人民币单位换算 1 元=10 角 1 角=10 分 1 元=100 分 时间单位换算 1 世纪=100 年 1 年=12 月 大月(31 天有:135781012 月 小月(30 天的有:46911 月平年 2 月 28 天, 闰年 2 月 29 天平年全年 365 天, 闰年全年 366 天 1 日=24 小时 1 时=60 分 1 分=60 秒 1 时=3600 秒 14 1
第二篇:六年级上册数学知识点总结
圆知识点总结
一、与圆有关的概念
1、圆是由一条曲线围成的平面图形。
(以前所学的图形如长方形、梯形等都是由几条线段围成的平面图形)
2、画圆时,针尖固定的一点是圆心,通常用字母O表示;
连接圆心和圆上任意一点的线段是半径,通常用字母r表示;
通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。
在同一个圆里,有无数条半径和直径。
在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。在同一个圆内的所有线段中,圆的直径是最长的。
3、用圆规画圆的过程:先两脚叉开,再固定针尖,最后旋转成圆。
画圆时要注意:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变;要旋转一周。
4、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r=d÷2)
5、圆是轴对称图形,有无数条对称轴,对称轴就是直径所在的直线。
6、圆心决定圆的位置,半径决定圆的大小。要比较两圆的大小,就是比较两个圆的直径或半径。
7、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。用字母π表示。
π是一个无限不循环小数。π=3.141592653„„
我们在计算时,一般保留两位小数,取它的近似值3.14。π>3.14
8、周长相等的平面图形中,圆的面积最大; 面积相等的平面图形中,圆的周长 最短。
9、几个直径和为n的圆的周长=直径为n的圆的周长(如图)
几个直径和为n的圆的面积<直径为n的圆的周长
10、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,面积的倍数=半径倍数的平方
(即r扩大n倍,直径扩大n倍,周长扩大n倍,面积扩大n2倍)
11、常用的3.14的倍数:
3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×12=37.68 3.14×14=43.96 3.14×16=50.24 3.14×18=56.52 3.14×24=75.36 3.14×25=78.5 3.14×36=113.04 3.14×49=153.86 3.14×64=200.96 3.14×81=254.34
12、常用的平方数:
11²=121 12²=144 13²=169 14²=196 15²=225 16²=256 17²=289 18²=324
19²=361
20²=400 25²=625
二、圆的周长公式
1、已知圆的半径(r),求圆的周长(c):C=2πr
2、已知圆的直径(d),求圆的周长(c)C=πd
3、已知圆的周长,求圆的半径:r=C÷π÷2
4、已知圆的周长,求圆的直径:d=C÷π
5、求半圆的弧长,半圆的弧长等于圆周长的一半:半圆的弧长=πr或者半圆的弧 长=πd÷2
6、求半圆的周长,半圆的周长等于圆周长的一半加一条直径: C半圆= πr+2r=5.14r
C半圆= πd÷2+d=2.57d
7、车轮滚动一周前进的路程就是车轮的周长。
每分前进米数(速度)=车轮的周长×每分的转数
8、求阴影部分的周长:总体思路,记住一点,周长的概念,所有围成这个图形的线段或曲线的长度之和。所以求阴影部分的周长时,首先把阴影部分这个图形的轮廓画出来,找出这个图形都由哪些线段、哪些曲线组合起来的。再分别求出这些线段、曲线的长度,最后相加。圆面积公式1、2、已知圆的半径,求圆的面积S=πr²
3、已知圆的直径,求圆的面积S=(d÷2)²
4、已知圆的周长,求圆的面积S=(C÷π÷2)²
5、半圆的面积,即整圆面积的一半:半圆面积=πr²÷2=(d÷2)²÷2=(C÷π÷2)²÷2总之,即得除以2
6、求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算。
S圆环=S外圆—S内圆=πR²-πr²=π(R²-r²)
7、正方形里最大的圆。两者联系:边长=直径;圆的面积=78.5%正方形的面积
画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。
8、长方形里最大的圆。两者联系:宽=直径
画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以宽为直径画圆。
例:在长10分米,宽8分米的长方形中画一个最大的圆,圆的周长和面积各是多少?
9、在圆内画一个最大的正方形 这个最大的正方形的面积=直径×半径 画法:
10、在半圆内画一个最大的三角形,三角形的底就是圆的直径,三角形的高就是圆的关径。三角形的面积=直径直径×半径÷2
11、周长相等的平面图形中,圆的面积最大; 面积相等的平面图形中,圆的周长最短。
11、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,面积的倍数=半径倍数的平方(即r扩大n倍,直径扩大n倍,周长扩大n倍,面积扩大n2倍)
二、分数混合运算
(一)分数混合运算
1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减);有括号的先算(括号里面的),再算(括号外面的)。
2、整数的运算律在分数运算中同样适用。加法运算定律:
加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)乘法定律:
乘法交换律:a×b=b×a 乘法结合律:a×b×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c 减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c)=a-b-c 除法的性持:a÷b÷c=a÷(b×c)或a÷(b×c)= a÷b÷c
3、用方程解决有关分数混合运算的实际问题,关键是找出(单位1),并把它设为未知数,再找出等量关系计算。
4、分数基本性质:分数的分子和分母同时乘以或除以相同的数(0除外)分数的大小不变。
5、分数加减法
同分母分数相加减,分母不变,分子相加减,异分母分数相加减,要先通分为同分母分数再相加减。
(二)分数混合运算的应用
1、打折 计算方法:现价÷原价=折扣
2、一件商品打几折,求现价。计算方法:原价×折数
3、一件商品打几折,求原价。计算方法:现价÷折数
4、分数混合运算的应用题解答方法
基本知识规律:解答方法:
1、找单位“1”
2.确定乘或除:已知单位1,用乘法;未知单位1,用除法
3.对应量和对应分率:单位1×对应分率=对应量;对应量÷对应分率=单位1.若用方程,一般设单位1未未知数 找单位1:
三、百分数及百分数的应用
1、表示一个数是另一个数的百分之几的数叫作(百分数),也叫作(百分率)或(百分比)。
2、百分率一般是指(部分)占(整体)的百分之几。
3、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。
4、百分数化成小数时,把(百分号)先去掉,再把小数点向(左)移动(两)位;百分数化成分数,先写成分母是(100)的分数形式,再化成(最简)分数。
5、求一个数是另一个数的几分之几(或百分之几)?
“是”字前面的数÷“是”字后面的数
6、求一个数比另一个数多(或少)几分之几(或百分之几)?
(大数-小数)÷“比”字后面的数 7、8、打折 计算方法:现价÷原价=折扣
9、一件商品打几折,求现价。计算方法:原价×折数
10、一件商品打几折,求原价。计算方法:现价÷折数
11、应纳税额。计算方法: 营业额×税率
12、利息=本金×利率×时间,本金=利息÷利率÷时间,利率=利息÷本金÷时间,时间=利息÷本金÷利率
13、税后利息 计算方法:利息-利息×税率
14、到期后可以取出的钱数 计算方法:本金+税后利息
15、生活中的百分率:
出勤率、缺勤率、发芽率、优秀率、及格率、合格率、命中率、近视率、出粉率、出米率、成活率、出油率、入学率、升学率、森林覆盖率、绿化覆盖率、收视率、体育达标率、疫苗接种率、含糖率、含盐率、正确率、错误率
达标率 = 达标学生人数 ÷ 学生总人数 发芽率 = 发芽种子数 ÷ 种子总数 出勤率 = 出勤人数 ÷ 学生总人数 合格率 = 合格的产品数 ÷ 产品总数 出粉率 = 粉的重量 ÷ 小麦的重量 出油率 = 油的重量 ÷ 花生的重量 出米率 = 米的重量 ÷ 稻谷的重量 成活率 = 成活的数量 ÷ 种植总数 命中率 = 命中的次数 ÷ 投篮总数 含盐率 = 盐的重量 ÷ 盐水的重量
有关分数百分数应用题解题技巧与方法指导
一、解分数,百分数应用题的基本步骤:
1、找准单位1——并在题目的文字下面标注
二、找单位1的方法
1、部分数和总数
在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。例如我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”。再如,食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”。解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了。
2、两种数量比较
分数应用题中,两种数量相比的关键句非常多。有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。例如:六(2)班男生比女生多1/2。就是以女生人数为标准(单位“1”),男生比女生多的人数作为比较量。在另外一种没有比字的两种量相比的时候,我们通常找到分 率,看“占” 谁的,“相当于”谁的,“是”谁的几分之几。这个“占”,“相当于”,“是”后面的数量——谁就是单位“1”。例如,一个长方形的宽是长的5/12。在这关键句中,很明显是以长作为标准,宽和长相比较,也就是说长是单位“1”。又如,今年的产量相当于去年的4/3倍。那么相当于后面的去年的产量就是标准量,也就是单位“1”。
3、原数量与现数量
有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。这类分数应用题的单位“1”比较难找。例如,水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12。象这样的水和冰两种数量到底谁作为单位“1”?两句关键句的单位“1”是不是相同?用上面讲过的两种方法不容易找出单位“1”。其实我们只要看,原来的数量是谁?这个原来的数量就是单位“1”!比如水结成冰,原来的数量就是水,那么水就是单位“1”。冰融化成水,原来的数量是冰,所以冰的体积就是单位“1”。
四、百分数题型分类及解题方法 百分数应用题三种类型
第一大类求分率用除法:求一个数是另一个数的百分之几
1.直接求一个数是另一个数的百分之几 一个数÷另一个数 2.求一个数比另一个数多百分之几 多的部分÷单位1 3.求一个数比另一个数少百分之几 少的部分÷单位1 例:(1)男生有25人,女生有20人,女生是男生的百分之几?(2)男生有25人,女生有20人,男生比女生多百分之几?(3)男生有25人,女生有20人,女生比男生少百分之几? 第二大类单位1已知用乘法:求一个数的百分之几是多少
1.直接求一个数的百分之几是多少 单位1×分率 2.求比一个数多百分之几的数是多少 单位1×(1+分率)3.求比一个数少百分之几的数是多少 单位1×(1-分率)例:(1)男生有25人,女生是男生的80%,女生有多少人?(2)女生有20人,男生比女生多25%,女生有多少人?(3)男生有25人,女生比男生少20%,女生有多少人?
第三大类单位1未知用除法:已知一个数的百分之几是多少,求这个数。1.已知一个数的百分之几是多少,求这个数。已知量÷分率=单位1 2.已知比一个数多百分之几的数是多少,求这个数 已知量÷(1+多的分率)=单位1 3.已知比一个数少百分之几的数是多少,求这个数 已知量÷(1-少的分率)=单位1 例:(1)女生有25人,是男生的80%,男生有多少人?(2)男生有25人,比女生多25%,女生有多少人?(3)女生有20人,比男生少20%,男生有多少人?
四、比的认识
(一)、比的意义
1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。(比值通常用分数表示,也可以用小数或整数表示)
比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:
路程÷速度=时间。
3、区分比和比值
比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、比和除法、分数的联系:
7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
(二)、比的基本性质
1、根据比、除法、分数的关系:
商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4、化简比:
5、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。
6、路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)
工作总量一定,工作效率和工作时间成反比。(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)
(三)和比的应用题有关的概念
1、求每份数的方法
和÷分数和=每份数
相差数÷相差份数=每份数
部分数÷对应份数=每份数
2、图形求比的常见公式
长方体:(长+宽+高)的和=棱长和÷4
长方形:(长+宽)的和=周长÷2
3、相遇问题 速度和 = 路程÷相遇时间
(四)比的应用
★知识体系
1、在工农业生产和生活中,常常需要把一个数量按照一定的比来进行分配。这种分配方法通常叫按比例分配。
按比例分配应用题分为三种情况,看下面的三个例子:
例(1)一年级与二年级共有学生130人,一年级与二年级人数比是5︰8,两个年级各有学生多少人?
例(2)二年级比一年级多30人,一年级与二年级人数比是5︰8,两个年级各有多少人? 例(3)二年级有80人,一年级与二年级人数比是5︰8,一年级有多少人? ★解题方法总结:
在解决“比的应用”的有关问题时,要抓住解题关键,用所给的数量除以对应的份数,求出每份数,然后用每份数分别乘所求数量的份数,从而求出所求数量。类型不同的题要用不同的方法求出每份数:
(1)“已知两数的和与两数的比,求两数分别是多少?” 每份数=两数的和÷比各项的和
(2)“已知两数的差与两数的比,求两数分别是多少?”每份数=两数的差÷比各项的差
(3)“已知其中一项与两数的比,求另一个数是多少?” 每份数=其中一项÷对应的份数 题型体系
●己知总数和比。
解题方法:
(1)每份数=两数的和÷比中各项的和(2)用各部分数占的份数×每份数 求出每部分量。
3、答题并检验。
●已知一个量和比。
解题方法:
1、每份数=其中一项÷对应的份数
2、用各部分数占的份数×每份数 求出每部分量。
3、答题并检验。
●已知相差数和比。
解题方法:
1、每份数=两数的差÷比中各项的差
2、用各部分数占的份数×每份数 求出每部分量。
3、答题并检验。
五、数据处理
六、常用的数量关系
1、每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2、速度×时间=路程
路程÷速度=时间
路程÷时间=速度
3、单价×数量=总价
总价÷单价=数量
总价÷数量=单价
4、工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
5、加数+加数=和
和-一个加数=另一个加数
6、被减数-减数=差
被减数-差=减数
差+减数=被减数
7、因数×因数=积
积÷一个因数=另一个因数
8、被除数÷除数=商
被除数÷商=除数
商×除数=被除数
七、常见的单位换算 【长度单位】
1千米=1000米=10000分米=100000厘米=1000000毫米 1米=10分米=100厘米 1厘米=10毫米 1分米=10厘米 【面积单位】
1平方千米=100公顷 1公顷=10000平方米 一平方千米=1000000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 相邻面积单位间的进率是100。大单位转化成小单位乘以进率,小单位转化成大单位除以进率。【体积、容积单位】
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米 1升=1000毫升 1立方分米=1升 1立方厘米=1毫升
相邻体积间进率为1000。大单位转化成小单位乘以进率,小单位转化成大单位除 以进率。【质量单位】
1吨=1000千克 1千克=1000克 【人民币单位换算】
1元=10角 1角=10分 1元=100分
【时间换算】 1世纪=100年 1年=12月 1日=24小时=60秒 例题
时=60分分 1 1
第三篇:初一数学上册、下册重要知识点总结
初一数学上册、下册重要知识点总结
初一数学上册主要包括四个章节的内容;下册主要包括相六章内容。为帮助大家更好地掌握七年级数学每个章节的重要内容,小编整理了一些知识点以供学习复习参考!
七年级数学(上)知识点
第一章有理数
一、知识框架
二.知识概念
1.有理数:
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
(2)有理数的分类:①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0?a+b=0?a、b互为相反数.4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:或;绝对值的问题经常分类讨论;
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=-1?a、b互为负倒数.7.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题.体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。
第二章整式的加减
一.知识框架二.知识概念
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
通过本章学习,应使学生达到以下学习目标:
1.理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2.理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3.理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
第三章一元一次方程
本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。
一.知识框架
二.知识概念
1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).3.一元一次方程解法的一般步骤:整理方程„„去分母„„去括号„„移项„„合并同类项„„系数化为1„„(检验方程的解).4.列一元一次方程解应用题:
(1)读题分析法:„„„„多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:„„„„多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:
(1)行程问题:距离=速度·时间;
(2)工程问题:工作量=工效·工时;
(3)比率问题:部分=全体·比率;
(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;
(5)商品价格问题:售价=定价·折·,利润=售价-成本,;
(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=πR2h.
第四篇:新人教六年级数学上册《分数乘法应用题》教案
新人教六年级数学上册《分数乘法应用题》教案
分数乘法应用题
求一个数的几分之几是多少的一步应用题
教学目标:使学生学会解答求一个数的几分之几是多少的一步计算的应用题。教学重难点:让学生掌握分数乘法应用题的基本数量关系。明确求一个数的几分之几是多少用乘法计算。
教学策略:
1.教学例1(求一个数量的几分之几是多少)。教师应把这道题的数量关系用线段图表示,帮助学生理解题意,学生在自己的练习本上画,培养分析此类题数量关系的方法.在线段图上标明题目的条件和问题,使学生明确哪部分表示100千克,哪部分表示吃了,哪部分表示要求的吃的千克数。
教师:“吃了,是吃了哪个数量的 ?”(是吃了100千克的。)
“应该把哪个数量看作单位„1‟?”(应该把100千克看作单位“1”。)
“那么,要求吃了100千克的 是多少,应该怎样计算呢?根据什么列出算式?”
(根据一个数乘以分数的意义,求一个数的几分之几是多少,要用乘法计算。)
学生独立列式计算。解答后,再让学生分析一下题目里的数量关系。
2、集体订正时,让两名学习比较好的学生说一说是怎样分析的。要特别注意说明以哪个数量为单位“1”,哪个数量占哪个数量的几分之几。
3、要求学生记住分数乘法应用题的基本数量关系:“1”的量×对应分率=对应数量。
分数乘法两步应用题
教学目标:使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法两步应用题,培养分析能力,发展学生思维。
教学策略:
1.教学例2中(涉及三个数量的乘法应用题)教师可以先让学生想一想“这道题怎样用线段图表示它的数量关系呢?”自己试着画一画,可以提示一下:题里有小亮、小华和小新的储蓄三个量,所以可以三条线段来表示题里的数量关系。学生画完后指名说一说是怎样画的,教师再根据学生的回答,在黑板上画出线段图。在画图的过程中教师还可以提一些问题,使学生明确画线段图的思考方法。
2、教师要注意指导学生学会用线段图表示已知条件和问题。
(1)先画一条线段,表示谁储蓄的钱数?为什么?
学生回答后,教师画线段图,学生在练习本上画。
再画一条线段,表示谁储蓄的钱数?画多长?根据什么?学生回答:
根据“小华储蓄的钱数是小亮的 ”,把小亮的钱数作为单位“1”,平均分成6份,再画出与这样的5份同样长的线段。
然后画一条线段表示谁的钱数?画多长?根据什么?引导回答:
根据“小新储蓄的钱数是小华的 ”,把小华的钱数作为单位“1”,平均分成3份,再画出与这样的2份同样长的线段。
18元
? 小亮:
小华:
小新:
教师画并分析数量关系。
让学生说明确小新储蓄的钱数,必须先求小华储蓄的钱数。确定每一步的算法并列式计算。
①求小华储蓄的钱数怎样想?
引导学生回答:根据“小华储蓄的钱数是小亮的 把小亮的钱数看作单位“1”,就是求18的 是多少,所以用乘法计算。列式:
5(元)3
②求小新储蓄的钱数怎样想?
引导学生回答:根据“小新储蓄的钱数是小华的 ”,把小华的钱数看作单位“1”,就是求15的 是多少,所以也用乘法计算。列式:
(元)3
把上面的分上步算式列成综合算式,该怎样列?
(元)
3、注意引导学生与前一节所学的一步计算的分数乘法应用题比较归纳有什么相同点和不同点?解答这类应用题的关键是什么?怎样判断计算方法?明确解答这类应用题的关键是要能正确地判断第一步把谁看作单位“1”,第二步把谁看作单位“1”。
4.要培养学生[此文转于斐斐课件园 FFKJ.Net]独立分析、解答的良好习惯,对学习有困难的学生进行个别辅导。集体订正时,指名中等生说一说是怎样想的,仍然要强调把什么看作单位“1”。如果有必要,可以画线段图帮助学生理解,但不要求学生画图。
第五篇:四年级数学上册重要知识点归纳
四年级数学上册重要知识点归纳
大数的认识
1.10个一万是十万,10个十万是一百万,10个一百万是一千万,10个一千万是一亿。相邻两个计数单位之间的进率是“十”,这种计数方法叫做十进制计数法。
特别注意:计数单位与数位的区别。
2、多位数的读法:
①、从高位数读起,一级一级往下读。
②、万级的数要按照个级的数的读法来读,再在后面加一个万字。
③、每级末尾不管有几个零都不读,其他数位有一个“零”或连续几个“零”,都只读一个“零”。
3、多位数的写法
①、从高级写起,一级一级往下写。②、当哪一位上一个计数单位也没有,就在哪一位上写0。
特别注意:多位数的读写都先划上分级线。
4、多位数的大小比较:
①、位数多的时候,这个数就比较大。
②、当这两个数位数相同的时候,就从最高位开始比,哪个数位上的数大,这个数就大。
5、“万”“亿”作单位的数:
有时候,为了读写方便,我们把整万(亿)的数改写成有“万”(亿)做单位的数。方法概括:分级、去0,写万(写亿)
6、求近似数:
这种求近似数的方法叫“四舍五入法”,是“舍”还是“入”,要看省略的尾数部分的最高位是小于5 还是等于或大于5。方法概括:分级、去尾、四舍五入约
7、表示物体个数的数:0、1、2、3、4、5、6 …….叫自然数一个物体也没有:用0来表示。0也是自然数。最小的自然数是0,没有最大的自然数,自然数的个数是无限的。
公顷、平方千米、角的度量 1、1公顷=10000平方米 1平方千米=100 0000平方米=100公顷
2、直线、射线、角
没有端点,可以向两端无限延伸,这种线叫直线。只有一个端点,向一端无限延伸,这种线叫射线。
直线、射线与线段有什么联系和区别?
①、直线和射线都可以无限延伸,因此无法量出长短。②、线段可以量出长度。
③、线段有两个端点,直线没有端点,射线只有一个端点。
3、角的计量单位是“度”,用符号“ °”表示。把半圆平分成180 等份,每一份所对的、角的大小是l 度。记做1°
4、角的大小与角的两边的长短没关系。角的大小看两条边叉开的大小,叉开越大,角越大。
5、小于90°的角叫做锐角 直角=90°,大于90而小于180°的角叫做钝角
平角=180°=2个直角,周角=360°=2个平角=4个直角 特别注意:直线射线都无法度量,在判断题中,与直线射线比较长短的都是错误的。
平行四边形对角相等,邻角和等于180°,只需要量一个角的度数,就可以知道其他几个角的度数。
6、角的个数=n×(n-1)÷2,n为边的条数。数线段的方法也如此。
7、用一副三角尺画出的角都是15°的倍数,你知道为什么吗?
三位数乘两位数(常用的数量关系)速度×时间=路程
路程÷时间=速度
路程÷速度=时间
单价×数量=总价
总价÷单价=数量
总价÷数量=单价
工作效率×工作时间=工作总量
工作总量÷工作时间=工作效率
工作总量÷工作效率=工作时间
积的变化规律:一个因数不变,另一个因数乘或除以几,积也乘或除以几(零除外)一个因数乘几,另一个因数除以几,积不变(零除外)。两位数乘三位数,积最多五位数,最少四位数。
平行四边形和梯形
1、直线外一点到直线所画的垂直线段最短;这点到这条直线的垂足之间的长度叫距离。
2、两条平行线之间的距离处处相等。
3、两组对边分别平行的四边形叫做平行四边形;平行四边形有无数条高,平行四边形不是轴对称图形。
4、一个平行四边形在拉动过程中,面积变化,高变化,周长不变。平行四边形具有易变性。
5、只有一组对边平行的四边形叫梯形。当梯形的两条腰相等时,这两腰相等的梯形叫做等腰梯形。
等腰梯形是轴对称图形。四个角都是直角的四边形叫长方形。四个角都是直角,并且四条边都相等的四边形叫正方形。
6、画高:从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高。垂足所在的边叫做平行四边形的底。当梯形的两条腰相等时,这两腰相等的梯形叫做等腰梯形。
特别注意:画高时,请注意三点:虚线、垂直标记、和名称
数学广角:
1、烙饼类问题策略: 饼个数×2÷同时可以烙的个数=需要烙多少次
需要烙多少次×每一面的时间=至少需要的时间
2、沏茶类问题策略:
首先要明确沏茶的大致顺序,也就是说哪些事情要先做,然后再考虑还有哪些事情可以同时做,能同时做的事尽量同时做,这样才能节省时间。
3、排队论问题策略:依次从等候时间较少的事情做起,就能使总的等候时间最少。
4、“田忌赛马”问题策略:田忌用下等马对齐王的上等马,用上等马对齐王的中等马,用中等马对齐王的下等马。三场两胜,田忌胜出。