第一篇:如何在初中开展数学建模
如何在初中开展数学建模
(一)数学建模与数学应用题的区别
与传统应用题相比,数学建模所解决的问题往往呈现一种“混沌”状态,没有明显的数据和关系可用,所给的条件也不一定有用,得出的结论往往不唯一,建立的数学模型也要在实践中反复修改验证,由于具有这些特点,数学建模是学习“数学应用”的最佳方式之一,能让学生更好地体验数学是怎样运用于实际的过程,形成他们的数学经验。
我们之所以要在初中渗透数学建模,一个很重要的理念是,要培养学生的实践能力,需要综合的利用知识,如果仅仅满足于在每一个具体的领域里,介绍具体领域的知识,可能就没有给学生综合使用知识的一个机会,另外,数学的发展非常关注应用,用数学去解决其他学科和领域的问题,用数学去解决我们日常生活的问题,这都是数学发展越来越重视的一件事情,怎么利用数学的知识,去解决生活中其它学科中的问题,我们需要有一个平台,让学生利用这个平台,去做这件事情。其次是对学生创新能力的培养,而创新的基础是需要有问题的,是需要解决问题,是需要在解决问题的过程中,提出自己的想法,而综合与实践活动,恰恰就为学生这方面的能力,提供了一个可操作的,可以实践的一个平台。对比第三阶段的综合与实践活动的要求,有哪些相对于前两阶段的提升?一个是能够结合实际情况,经历设定解决具体问题的方案,并加以实施的过程,体验建立模型,解决问题的过程,建立模型,并尝试发现问题,提出问题,这是一个比较高一点的要求,在前两个学段,主要是学生一起做老师提供的已经在课本上给好的问题,在这个初中要尝试,看学生自己能不能提出一些有价值的问题。要把数学建模的目标,和学生增长数学学习的经验,改进学生学习的方式联系起来,那么还提出要会反思,参与活动的全过程,会把研究的过程和解决形成报告和小论文,并进行交流,进一步获得社会活动的经验,要求结果要形成一个有价值的数学结果,像个小论文。
(二)初中数学建模的四个环节
第一个环节是提出问题,第二个环节是探求解题的途径,第三个环节是操作实践,第四个是反思交流评价。也可以简单地用“选题,开题,作题,解题”这样的操作方式来表达。具体来做数学建模的教学设计的时候,一个是要有一个清晰的线索,这个线索就是过程设计,核心是个问题,在问题引领下,突出活动。一个是“做”,不是老师做,是学生做,所以要围绕着做来设计,一个是“过程”,过程要让学生更多地参与,在过程中有所发现,有所收获,最后,要积累经验。
(三)数学建模的评价
可以通过几个不同的维度来评价。第一是过程,就是学生能不能完整地完成这个过程,老师给了问题以后,或者我们自己提出的问题也好,首先把问题说清楚,第二件事,要有思路,我们能不能把这个思路说清楚,就是我打算怎么做,先拿纸试,然后拿布裁,然后发现什么问题再怎么解决,在解决的过程中,会用到哪些数学,要先有一个设计。我们看学生是不是能在真正做之前,把这问题想一想清楚,然后就是做,最后就是做的结果的展示。万一出了问题,还可以有改进的一些思考。另外就是能不能拓展。第二是看数学用得怎么样,包括是不是正确,是不是科学,是不是好,能不能改进的问题;比如说还可以考虑,因为我们毕竟是做实践的东西,是否考虑到精度,是不是考虑到节约,是不是考虑到优化。第三就是情感态度价值观。学生做一件事情的关注度,投入度,兴奋度如何,也许做的并不太好,但是他非常专注,他不会的地方会向别人请教,而请教的态度非常好,他还可以去翻书和查资料等等。
将以上内容进行归纳,在数学建模评价中,我们不仅要关注结果,更要关注过程、关注学生的差异、学生个性的彰显、学生在建模前后发生的变化。出可以从以下几个角度入手观察、评价:学生提出问题是否有新意,操作求解是否有创意,合作学习是否有效率,结果呈现是否有特色,反思拓展是否有眼光,自我感受是否有收获,兴趣动力是否有增强,数学素养是否有提高。
(四)初中数学建模的若干简要案例
4.1初中数学建模学习案例1:——与自行车有关的问题(小组学习实践)课题:了解自行车中的数学问题,应用学过的数学知识,解决以下问题。问题1:用自己或同学的一辆自行车为观察对象,观察并解决下列问题:(1)我观察的这辆自行车是什么牌子的?
(2)它的直径是cm,轮子转动一周,在地面走过的距离是____________cm,精确到1cm。
(3)自行车中轴的大齿轮盘的齿数是_________齿,后轴的小齿轮(飞轮)的齿数是_____________,中轴的大齿轮被踏动一周时,后轴的小齿轮在链条传动下,不计算惯性将转动_____________周(保留2位小数)。
问题2:如果你有自行车,并骑车上学,你能借助于自行车,测量出从你的家到学校的路程吗?请你设计一个测量方案,并尽可能地通过实际操作测量出从你的家到学校的路程。
问题3:如果你的(或你的朋友)自行车是可以变速的自行车(如山地车、多飞轮的自行车)、请你观察一下在这辆自行车上有几个(中轴上的)大轮盘,几个飞轮,它们都各有多少齿?记录这些数据。如果你骑车时每一秒脚蹬一圈,请你根据上面测量的数据计算出这辆自行车运行时最大的速度和最小的速度各是每小时多少公里?
选做问题4:你认为对问题3中的自行车的各个齿轮的齿数安排的合理吗?你能发现或提出什么样的问题?如果有可能请你做设计改进的话,你会做什么? 求解工作的表格省略。
4.2初中数学建模案例2:——线路设计问题(自学、探索、创新实践)课题:为所在小区设计一个最佳的邮政投递路线,一个合理的保安巡逻路线。实施建议:
1.按居住地成立4-6人的小组,对你们要研究的小区,进行观察,收集必要的数据和信息,(如平面图,楼的门洞的朝向,道路情况,小区的进出口位置等).发挥各自的特长,分工合作完成测量方案的设计、实测、作图、计算、论证、比较、计算机文稿录入、结果介绍等。
2.复习必要的知识,如一笔画方法,最短邮路的画法和算法等。
3.画出小区的平面示意图,(最好复印一下,以避免后面画坏时重画),在图上完成邮政投递路线的设计,(使邮递员走的路线最短)。
4.实践环节:先不加思索按投递要求随意地走一遍,再按你设计的路线,实际走一遍,测算出路程看一看相差多少(记录数据)? 创新实践项目:为你们居住的小区设计一个合理的保安巡逻路线、或合理的送奶的路线。首先思考“合理”的含义。
4.3初中数学建模案例3:——穿衣镜的最佳设计(个人的创意与设计)
课题:自己提出几个有关穿衣镜设计的问题,给出你们认为最合理、最佳、最有创意的设计方案或解决办法。实施建议:
1.成立工作小组,讨论本小组的工作目标、分工。
2.有可能的话到家具店、超市、(别忘了带尺子或相机)有关杂志或网站上收集一点相关资料,可以发现问题或提出你们更好的设计。
3.分工合作完成你们的设计,最好有一个图、或一个小的模型,可以用纸板做。4.准备在全班交流,可以用实物、照片、模型、“ppt”,等形式表现你们的成果和创意,如果给你3分钟讲演、展示,怎样让班里同学为你们的成果叫好? 4.4数学建模的可供学生选择上的假期作业
1.利用放寒假与父母逛商场的机会,认真注意收集春节商场“打折消费”、“诱导消费”的各种广告信息,测算化1000元可以最多实际买到价值多少的商品。计算实际打折率。开动你的大脑,为消费者设计一种收益较多的购物方式;或者为商场设计一个更好的吸引消费者的、也使的商场收益较多的购物方式。2.测量一个比较高的建筑物的高度,说明测量方案,测量过程和测量数据。看谁想出更好的方法?
3.自编3道方程和方程组的应用题,要求联系实际,有真实的实际背景,请写出题目、题解,看谁编的有趣。
4.到超市观察各种不同包装设计的同种商品,如同一个牌号的大、小牙膏,收集它们的价格信息,找一个表示它们的重量和价格的公式。
5.到各大商场,超市观察不同的商品的外包装,提出一个与“节约”有关的问题,将问题数学化,并用学过的知识试着解决它。进而自己在提出一些新的问题,或将自己得到的结果推广以适用于更大的范围。
6.了解出租车的计价方式,(如起步每公里,每种车型多少钱;运行中每公里,每种车型多少钱;等候时每分钟,每种车型多少钱?)给出一个根据距离、等候时间计算付多少钱的方法或公式。
7.调查邮局中不同重量、寄往本市、外地、港澳、国外的平信(包括航空)的邮资表,如果限定信封上只准贴至多3枚邮票,请你设计邮票应该有哪些面值? 8.自己找到的用学过和还没有学过的数学知识解决的实际问题,(可以只提出问题,或仅仅提供一个解决问题的想法)。学生实际的学习成果从略。
五、数学建模对教学和教师的影响
开展数学建模学习不仅是学习方式的改变,而且是育人模式的变化。
人才培养模式集中而具体的体现形式是教育教学模式。改革传统的以“升学—应试”为目标的学校教育教学模式,创建以全体学生全面发展为目标的、体现素质教育方向和要求的新型教育教学模式,是当前学校实施素质教育的首要任务。而创建体现素质教育思想和要求的教育教学模式重要的着眼点就是要改变学生那种单纯地被动接受教师知识传输的学习方式,帮助和指导学生在开展有意义接受学习的同时,形成一种对知识技能进行主动探求、并重视实际问题解决的主动积极的学习方式。这就是培养学生在教师指导下,从自身的学习生活和社会生活、自然界以及人类自身的发展中选取研究专题(专题、主题),以探究的方式主动地获取知识、应用知识、解决问题的数学建模。这对于培养学生的创新精神和实践能力、创造能力、终身学习的能力具有十分重要的意义。而数学建模活动的实际结果告诉我们,它不仅对好学生、而且对学习有一定困难的学生都能起到培养兴趣、激发创造的目的。数学建模的成果还可以为学生建立一种更表现学生素质的评价体系。数学建模的过程可以为不同水平的学生都提供体验成功的机会,真正把筛子变成泵。实际上,数学建模的教学过程(或者更自然地说是师生一起学和做的过程)对教师的成长和专业发展,更新教育观念,主动参与并推进素质教育,有着越来越重要的作用。
主要表现在下面的几个方面:
首先,它可以帮助教师转变教学观,更有利于发挥教师的主导作用和学生的主体作用。教师的主导作用体现在创设好的问题环境,激发学生自主地探索解决问题的积极性和创造性上;学生的主体作用体现在问题的探索、发现、解决的深度和方式尽量由学生自主控制和完成。它体现了教学过程由以教为主到以学为主的重心的转移。课堂的主活动不应都是教师的讲授,而应是学生自主的自学、讨论、调查、探索、解决问题。教师要自觉适时地改变他的教育角色,平等地参与学生的探索、学习活动。教师不应只是“讲演者”、不应是“总是正确的指导者”,而应不时扮演下列角色:模特——他不仅演示正确的开始,也表现失误的开端和“拨乱返正”的思维技能;参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断;询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度;仲裁者和鉴赏者——评判学生工作及成果的价值、意义、优劣,鼓励学生的有创造性的想法和作法;在教学的组织中体现“学法”,把教和学融为一体。
其次,它可以帮助教师转变学习观。
过去在封闭式教育中,教师是知识的输出者。由于教育被定位为在学校这个“围墙”内,由知识的拥有者和惟一源泉——教师向知识的需求者——学生输出知识的活动,教师和学生之间的关系就是教师“单向输出”和学生“被动接受”的关系。在数学建模的实践活动中,问题环境充分敞开,教师不可能也不再是学生获取知识的惟一源泉,而且常常会无计可施,教师的指导作用更多地表现在“策略”的指导。教师把握教学目标时应立足于“做”而不是讲,立足于学生对问题的分析,对解决问题过程的理解,而不以仅仅有正确的解答为满足。要让学生在问题、困难、挑战、挫折、取胜的交替体验中;在选择、判断、协作、交流的轮换操作中;经历一个个学、用知识,进而发现问题,走向新的学、用知识的过程。从而培养能力、激发兴趣、形成学生主动学习的良性循环。第三,它还可以改变教师自己的成材观、发展观。
事实上,数学建模对教师也很陌生,对许多问题教师可能都不会,怎么教学生?在数学建模过程中表现出的问题形式与内容的多样,问题解决方法的多样性、新奇性和个性的展示,问题解决过程和结果层次的多样性,无疑是对参与者创造力的一种激发、挑战、考验和有效的锻炼。教师在陌生的问题前感到困难、失去相对于学生的优势是自然的,常常出现的。这里有两个认识需要改变,一是数学建模教学能力提高的主要途径恰恰是自己多参与,多独立的思考和实际去“做”;二是数学建模的教学过程中,教师的角色不应该总是“正确的指导者,总是正确的化身”,而应该平等地参与,适时扮演“同事、参谋、建议者、欣赏者”。教师要在自己的视野内努力寻找宜于学生使用的数学建模问题,做好每个问题解决过程的记录,学生成功的经验和自己在挫折中得到的教训对于今后的数学建模的教学设计有重要的价值,也是教师由数学建模的生手到行家的有效途径之一。
六、对在数学新课程中开展数学建模活动的小结
问题和内容的选择:联系学生和教材的实际。好入手、有趣味、可深入。常态的环节和步骤:选题(问题引领),开题(交流预设的解决问题方案),做题(合作、探究、利用工具和资源),结题(交流分享、反思评价、积累资源)。动静结合的资源:你的学生、家长、同事、朋友和他们的实践;相关刊物和网站。教与学的过程设计:强调------学生活动,做中学想、开放思维、小组功能、过程体验、经验积累。
关注和鼓励:激发兴趣、善用工具、提出问题、多途求解、情感交流、共享成果。着力促进:学习方式的转变、学习过程的良性循环、课内知识的学习和应用、对数学的价值的感悟和理解。
评价:关注过程、关注变化。提出问题是否有新意,操作求解是否有创意,合作学习是否有效率,结果呈现是否有特色,反思拓展是否有眼光,自我感受是否有收获,兴趣动力是否有增强,数学素养是否有提高。
第二篇:初中数学建模论文
初中数学建模论文范文
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。
一、数学应用题的特点
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
二、数学应用题如何建模 第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
1提高分析、理解、阅读能力。
2强化将文字语言叙述转译成数学符号语言的能力。3增强选择数学模型的能力。4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
第三篇:初中数学建模论文
初中数学建模论文
有意义地利用“压岁钱”
在正月里,长辈们每年都会给我们压岁钱,而大多数同学都把压岁钱当做了零花钱,没有意义。为了能帮助失学儿童,学校办一个“压岁钱小银行”,要求同学们有多少钱存多少钱,存入学校里“压岁钱小银行”,学校统一将同学们的压岁钱存入银行。毕业时本金还给同学们,利息捐给经济有困难的同学。
假如平均每年按照200元压岁钱存入银行,初中三年每个学生总共存入600元计算,若初
一、初
二、初三各16个班,每班按60人计算,初三的存一年,初二的存两年,初一的存三年,年利率分别按2.25%、2.40%、2.60%计算,则:
初一学生存三年的利息:
(200×2.60%×3)×(60×16)=14976(元);
初二学生存二年的利息:
(200×2.40%×2)×(60×16)=9216(元);
初三学生存一年的利息:
(200×2.25%×1)×(60×16)=4320(元);
一年全校利息合计:
14976+9216+4320=28512(元)。
假设学校每年招生班级以及人数都不变,则学校每年都有28512元利息,日照市有那么多所中学,假如每所中学都建立“压岁钱小银行”,假如小学也建立“压岁钱小银行”,那么,每个学生六年下来,每年全校利息将比中学利息要高上好几倍。所以成立“压岁钱小银行”很有意义与必要。为了灾区儿童有良好的读书环境,为了国家更繁荣,昌盛,同学们行动起来吧,拿出你们的压岁钱,奉献我们的一片爱心。
第四篇:在初中数学课堂教学中数学建模初探专题
初中数学课堂教学建模研究与案例评析
(一)初中数学课堂教学建模研究:
数学课堂教学建模是联系数学与实际问题的桥梁。建立数学模型是把错综复杂的实际问题简化,抽象为合理的数学结构的过程。要通过调查收集数据资料,观察和研究对象固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数学关系,然后利用数学理论和方法去分析和解决问题。
1.由于我们教育教学对象是初中生,总体上看数学知识还很肤浅,数学能力还较低,教师应充分发挥主导作用,引领学生开展数学建模活动,明确学生是建模活动的主体,教师起组织引领作用。
2.教材中体现了数学建模思想,我们必须深入挖掘教材,充分利用好教材,要灵活处理教材,特别要注意引入问题的选择,尊重教材但不照搬教材。教材中知识内容是开展建模的载体,提升学生的数学能力和数学素养是教学活动目标。
3.课堂教学中的数学建模,不能等同于科学研究意义上的数学建模,它主要受限于教学主体——初中生,他们的数学知识还很少,能力较差,思维水平尚缺少严谨性。初中课堂教学中的数学建模过程,实质上是模仿科学研究意义上数学建模过程,为今后应用数学奠定思想和方法基础。
(二)建立模型环节:本阶段是将实际问题转化为数学问题。在构建数学模型时,运用数学建模课程指导思想:以实验为基础,以学生为中心,以问题为主线,以培养能力为目标组织教学。这个阶段 要调动学生已有的数学经验,寻求面对实际问题的数学解决策略。(1)从课本出发,注重一题多变。(2)从实际中的数学问题出发,增强建模意识。(3)从人们关注的问题出发讲解建模方法。(4)通过游戏中的数学,从中培养学生的数学建模应用能力。实施策略的教学程序为:(1)创设问题情境,激发求知欲。(2)逐步概括,建立数学模型。(3)分析模型,猜想数学知识。(4)解决实际应用问题,感受数学知识。(5)归纳总结,升华数学知识。
(三)初中常见数学教学建模案例:
在初中阶段,常见的数学应用题模型有下面几个:建立方程(组)模型、建立不等式(组)模型、建立直角坐标系、建立函数模型、统计型问题、建立三角模型、建立几何模型。教师在平时的新课教学特别是初三复初中学生的数学知识有限,在初中阶段数学教学中渗透数学建模思想,应以教材为载体,以改革教学方法为突破口,通过对教学内容的科学加工、处理和再创造达到在学中用,在用中学,进一步培养学生用数学意识以及分析和解决实际问题的能力。下面结合多年来的教学体会粗略的谈谈如何在初中数学教学中渗透数学建模思想。(1)建立方程模型。数学中不少问题,用常规方法不可解,但是适当构造方程或方程组,并利用方程知识却能顺利地求解
例1 某商场销售一种服装,平均每天可售出20 件, 每件赢利40 元.经市场调查发现: 如果每件服装降价1 元,平均每天能多售出2 件.在国庆节期间, 商场决定采取降价促销的措施, 以达到减少库存、扩大销售量的目的.如果销售这种服装每天赢利1200 元, 那么每件 服装应降价多少元?
解析: 本题的主要数量关系是: 每件服装的赢利×每天销售的服装件数= 1 200 元
设每件服装降价x 元, 则每件服装的赢利为(40-x)元, 每天销售的服装为(20+2x)件, 问题转化为求方程的解:(40-x)(20+2x)=1200.解得x1=10(舍去),x2=20.故每件服装应降价20 元
例2 某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明: 这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?简析 本题的主要等量关系是: 每个台灯的销售利润×平均每月销售台灯的数量= 10000元.设每个台灯涨价x元,那么每个台灯定价是(40 + x)元,每个台灯的销售利润为(40 +x-30)元,平均每月销售台灯的数量为(600-10x)个,问题转化为求方程的解:
(40 +x-30)(600-10x)= 10000.解得:x = 10或40.(2)构造不等式(或不等式组)模型
例3某地的气象资料表明, 山脚下的平均气温为22 ℃, 从山脚下起, 每升高1000m, 气温就下降6℃.如果要在山上种植一种适宜生长在平均气温为18℃--20 ℃的植物, 那么把这种植物种植在高于山脚的什么地方较合适?
解析: 从山脚下起, 每升高1000m, 气温就下降6 ℃.那么每升高1m, 气温就下降6/1000℃.设这种植物适宜种植在高于山脚xm 的 地方.根据题意, 得22—6/1000x≥18 与 22—6/1000x≤20
解得1000/3≤x≤2000/3 例4南充火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往某市。这列货车可挂A、B两种不同规格的货厢共50节。已知用一节A型货厢的运费是0.5万元,用一节B型货厢的运费是0.8万元。
(1)如果甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢。按此要求安排A、B两种货厢的节数,有哪几种运输方案?请你设计出来。(2)在这些方案中,哪种方案总运费最少?最少运费是多少万元? 解:(1)设用A型货的节数为x(节),则B型货厢的节数为(50—x)节,由题意得,35x+25×(50-x)≥1530 且 15x+35×(50-x)≥1150 解得28≤x≤30 所以方案有:
1.A 28节 B 22节 2.A 29节 B 21节 3.A 30节 B 20节
(2)设运输这批货物的总运费为y(万元),用A型货的节数为x(节),则由题意得,y=0.5x+0.8×(50-x)=40-0.3x(0≤x≤50)化简,得y=40-0.3x,由一次函数的性质,当k=-0.3时,y 随 x的增大而减小,因此方案三最省钱。
(3)建立函数模型。有些数学问题可以从中找到作为自变量的因数或函数,这一数学问题是可以表示一变量的函数,这时可构造函数模型,通过对函数性质与关系的研究,使问题得到解决。
例5在学习不等式的应用时,我发现学生对手机收费比较感兴趣,于是设计如下问题:小周购买了一部手机想入网,朋友小王介绍他加入中国联通130网,收费标准是:月租费15元,每月来电显示费6元,本地电话费每分钟0.2元,朋友小李向他推荐中国电信的“神州行”储值卡,收费标准是:本地电话每分钟0.4元,月租费和来电显示费全免了,小周的亲戚朋友都在本地,他也想拥有来电显示服务,请问该选择哪一家更为省钱?
简析:设小周每月通话时间x分钟,每月话费为y元。则y1=15+6+0.2x=21+0.2x,y2=0.4x,所以:0.2x+21=0.4x,x=105分
当x=105分钟时,y1=y2;可选择任何一家
当x>105分钟时,y1 < y2 应该选择中国联通130网; 当x<105分钟时,y1 > y2 应选择中国电信的“神州行”储值
(四)认识数学教学建模的重要意义:
现代教育家认为,数学教学的任务是提高公民的数学素养,形成和发展那些具有数学思维特点的智力活动结构,并且促进数学发现与 应用;同时又把数学教学看做是数学活动的教学,而数学建模就是这样一种既能创设情境来完成教学任务又能促进数学发现与应用的特别活跃的数学活动。因此数学建模是现代数学教育研究中不可缺少的课题,数学建模教育具有特殊的教育性质与功能。
数学建模不仅是学生走向能力卓越光辉之路,而且是启迪学生数学心灵的必然之路!
第五篇:初中数学“数学建模”的教学研究
初中数学“数学建模”的教学研究
张思明(北大附中,数学特级教师)鲍敬谊(北大附中数学学科主任,高级教师)
白永潇(北京教育学院数学教师)
一、什么是数学建模?
1.1数学建模(Mathematical Modeling)是建立数学模型并用它解决问题这一过程的简称,有代表的定义如下:
(1)普通高中数学课程标准中认为,数学建模是运用数学思想、方法和知识解决实际问题的过程,已经成为不同层次数学教育的重要内容和基本内容。
(2)叶其孝在《数学建模教学活动与大学数学教育改革》一书中认为,数学建模(Mathematical Modeling)就是应用建立数学模型来解决各种实际问题的方法,也就是通过对实际问题的抽象、简化,确定变量和参数,并应用某些“规律”建立起变量、参数间的确定的数学问题(也可称为一个数学模型),求解该数学问题,解释、验证所得到的解,从而确定能否用于解决实际问题的多次循环、不断深化的过程。
两种定义的区别在于课程标准对数学建模的定义没有强调建立特定的解决问题的数学模型。数学建模的过程中当然会运用数学思想、方法和知识解决实际问题,但仅仅如此很难称得上是“数学建模”。处理很多事情,比如法律和组织上的问题,常常会用到分类讨论的思想、转化的思想、类比的思想,而并没有建立数学模型,这就不能说是进行了数学建模。这里所谈(实际上,同大部分人认为的一样)的数学建模,其过程是要建立具体的数学模型的。
什么是数学模型?根据徐利治先生在《数学方法论选讲》一书中所谈到,所谓“数学模型”(Mathematic Model)是一个含义很广的概念,粗略的讲,数学模型是指参照某种事物系统的特征或数量相依关系,采用形式化数学语言,概括地或近似地表达出来的一个数学结构。广义的说,一切数学概念、数学理论体系、数学公式、数学方程以及由之构成的算法系统都可以称为数学模型;狭义的解释,只有那些反应特定问题或特定的具体事物系统的数学关系结构才叫数学模型。
本论文所谈到的数学建模,其过程一定是建立了一定的数学结构。
另外,我们所谈的数学建模主要侧重于解决非数学领域内的问题。这类问题往往来自于日常生活、经济、工程、医学等其他领域,呈现“原胚”状态,需要分析、假设、抽象等加工,才能找出其隐含的数学关系结构。
一般地,数学建模的过程可用下面的框图表示:
1.2什么是中学数学建模?
这里的“中学数学建模”有两重含义。
一是按数学意义上的理解、在中学中做的数学建模。主要指基于中学范围内的数学知识所进行的建模活动,同其它数学建模一样,它仍以现实世界的具体问题为解决对象,但要求运用的数学知识在中学生认知水平内,专业知识不能要求太高,并且要有一定的趣味性和教学价值。
二是按课程意义理解,它是本文要展开讨论的,一种要在中学中实施的特殊的课程形态。它是一种以“问题引领、操作实践”为特征的活动型课程。学生要通过经历建模特有的过程,真实地解决一个实际问题,由此积累学数学、用数学的经验,提升对数学及其价值的认识。其设置目的是希望通过教师对数学建模有目标、有层次的教与学的设计和指导,影响学生的学习过程,改变传统的学习方式,实现激发学生自主思考,促进学生合作交流,提高学生学习兴趣,发展学生创新精神,培养学生应用意识和应用数学的能力,最终使学生提升适应现代社会要求的可持续发展的素养。
二、数学建模进入中学课堂的背景
(一)数学建模从大学到中学的历程
1.大学开设数学建模课程以及大学生数学建模竞赛的开展。
目前,数学建模在大部分高校已经成为数学专业的必修课,其它工科、金融、社会学科的选修课程。而且,与计算机技术相结合,大学开设了数学实验课程。
美国的大学生数学建模竞赛有MCM(Mathematical Contestin Modeling)和ICM(Interdisciplinar yContestin Modeling),我国的有全国大学生数学建模竞赛(CUMCM)(China Undergraduate Mathematical Contestin Modeling)。
2.数学建模从大学进入中学。
1988年,第六届ICME就把“问题解决、建模和应用”列入大会七个主要研究课题之一,认为“问题解决、建模和应用必须成为从中学到大学——所有学生的数学课程的一部分。”
美国科学院下属的国家研究委员会在1989年发表的调查报告《关于未来数学教育的报告》中,把“数学建模进入中学”列为数学教育改革最急需的项目。
(二)国外中学数学建模相关课程的发展
很多国家在中学开设了类似“数学建模”的数学应用课程,将数学知识和现实生活中的问题融合起来进行学习,形成了各具特色的中学数学课程。
1.美国——两种课程模式。
(1)以项目为中心的学习(Project-Based Learning)
强调长期的、跨学科的、以学生为中心的学习活动,并结合现实世界中的问题与实践进行教学。
(2)以问题为中心的学习(Problem-Based Learning)
是一种关注经验的学习,它围绕现实生活中的一些结构不明确的问题展开调查,并寻求解决方法。
1991年美国出版了由Frank Swetz和JeffersonS.Hartaler编的《中学课程中的数学建模—课堂练习资料导引》。此书介绍了自1975年以来美国的中学数学教学是如何强调问题解决和数学建模的,简要分析了问题解决和数学建模的关系,指出在中学发展数学建模活动的必要性和可能性。
2.英国——课程整合。其主要内容是: ①从现实生活题材中引入数学;
②加强数学和其他科目的联系;
③打破传统格局和学科限制、允许在数学课中研究与数学有关的其他问题。在课程标准下,将“运用和应用数学”单独列为一项成绩目标,贯穿于整个数学课程之中。“运用和应用数学”十分注意面对解决实际问题与日常生活中的问题,包括提出问题、设计任务、做出计划、收集信息、选用数学、运用策略、获得结论、检验和解释结果等环节,而不是局限在书本上现成的“问题”。例如,为研究最好的储蓄方式(或地点),就要去调查各家银行不同存款形式、期限的利率等。
3.日本——课题学习。
受美国“问题解决”等因素的影响,日本教育界提出了“课题学习”(Problem Situation Learning)。“课题学习”于1989年作为中学数学教学内容写进了《中学数学学习指导要领》,自1993年4月开始在初中二、三年级中开始实施。
为了配置“课题学习”的实施,1993年日本出版了6套初中数学科书,共设置255个课题。大阪教育大学松宫哲夫先生提出了CRM(Composite Real Mathematics)型课题学习,特别重视课题的现实性,积极主张从现实世界中的问题情境出发进行课题学习。提出“湖水中的数学”、“高层建筑中的数学”、“田径场中的数学”、“交通安全中的数学”、“铁路运输中的数学”等课题。
日本第15届中央教育审议会在1996年提出了要在中小学设置综合课程的建议,经过论证后修订了中小学《学习指导纲要》,规定小学(从三年级开始)和初中从2002年开始,高中从2003年开始正式开设综合学习课程。综合活动课程不是课外活动,而是利用教学时间进行的正式课程。它没用既定的教学目标和教科书。各校根据自己的兴趣等选择学习内容。
4.法国——多样化途径(初中)有指导的学生个人实践活动(高中)。
1994年,法国开始进行中小学校的课程改革,增加了“多样化途径”课程,并于1995年-1996年首次在初二年级实施。
1999年,法国政府又规定,将这一实验从初二推向初三,规定在初三年级增加“综合实践课程”,并且设为必修课。
2002年,法国几乎所有的高中二年级都开始进行“有指导的学生个人实践活动”。5.国际数学教育大会对数学建模的重视。
在近几届的国际数学教育大会(ICME)上,数学建模与应用都有固定的专题分组。1996年6月在西班牙召开的第八届ICME大会上,不仅有欧美国家的数学建模的专题报告和经验介绍,也有巴西这样的发展中国家的代表介绍巴西国内10年来数学建模的发展情况。我国代表叶其孝教授在“数学建模与应用专业组”报告中,介绍了我国首创的中学数学知识应用竞赛的情况。
(三)国内中学数学建模的发展
中学数学建模竞赛的开展,展示了数学建模在培养学生方面的特殊作用,产生了巨大的影响,对数学建模课程进入中学起了积极的推动作用。从1991年以来,上海市举办了“金桥杯”中学生数学知识应用竞赛;北京市在1994年第一届“方正杯”中学生数学知识应用竞赛,从1997年开始,由北京数学会等五家单位组织,把《高中数学知识应用竞赛》作为正式的科普活动,定期开展。
北京市数学会从1994年起,组织了“中学数学教学改革和数学建模”讨论班;经过研讨形成一批教学素材,在北京师范大学的“数学学校”中进行了教学建模案例实践。评价中,高考逐年加大了对数学应用能力的考察力度。教学中,“研究性学习”、“课题学习”、“数学建模”等教学方式陆续提出。
(四)课堂教学的尝试和教学资源的发展历程
•1993年,北大附中采用叶其孝引进的美国建模教材,组织部分同学在课外活动的时间开始开展数学建模活动。
•1997年,北大附中有了正式选修课,积累了一批案例资源作为教学之用,并为高中数学课程标准中数学建模内容的制订,提供了经验和案例。
•1997年,叶其孝主编的《中学数学建模》出版。
•2000年9月,张思明编著的《中学数学建模的实践与探索》出版。•2002年12月,《北京高中数学知识应用竞赛试题及解析》出版。•2003年,《中学生研究性学习案例---中学生数学建模论文选编》出版。
•2003年,数学建模被写进有教育部制订的《普通高中数学课程标准(实验)》,成为高中数学正式的学习内容。
•2004年,张思明、白永潇编著的《数学课题学习的实践和探索》出版。•2006年,拍摄17集专题片《数学建模走进中学课堂》。
•2007-2009年,在全国部分地区的“数学新课程的网上培训”课程中,数学建模成为培训内容之一。
•2008年,北京“数学建模”双课堂“实验,依托网络、真实课堂和虚拟课堂结合的中学数学建模课程,探索了中学数学建模教学的可操作模式。
三、《义务教育数学课程标准(修订稿)》和高中数学课标中有关数学建模的内容 教育部新启动的《义务教育阶段数学课程标准》的修订中,东北师大史宁中校长提议,将原来的“双基”增加到“四基”,增加了“基本数学活动经验和基本数学思想”。基本活动经验是指学生亲自或间接经历了活动过程而获得的经验。另外,《全日制义务教育数学课程标准(修改稿)》在“数与代数”的内容中提出了“要初步形成模型思想”,对“综合与实践”部分内容加以明确并提供了具体课例。上述变化正是课标对培养学生数学应用能力的应措。相比数学建模,综合与实践部分是学习数学建模的最初阶段,因此内容包含的更加基本、广泛,下面我们将分别介绍全日制义务教育数学课程标准(修改稿)提出的“模型思想”,“综合与实践”的内容,以及内容在实验稿基础上的变化,最后在通过实例来说明综合与实践部分的学习内容。
(一)模型思想
2007年12初全日制义务教育数学课程标准(修改稿)提出在“数与代数”的教学中,应帮助学生建立数感和符号意识,发展运算能力和推理能力,初步形成模型思想。模型思想的建立是帮助学生体会和理解数学与外部世界联系的基本途径。建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果、并讨论结果的意义。这些内容的学习有助于学生初步形成模型思想,提高学习数学的兴趣和应用意识。
(二)与实验稿相比“综合与实践”部分的变化
目的和内涵进一步明确,统一了名称,给出了明确的定义:“综合与实践”,是一类以问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验、培养学生应用意识与创新意识的重要途径。针对问题情境,学生综合所学的知识和生活经验,独立思考或与他人合作,经历发现问题和提出问题、分析问题和解决问题的全过程,感悟数学各部分内容之间、数学与生活实际之间、数学与其他学科之间的联系,加深对所学数学内容的理解。
明确要求“综合与实践”应当保证每学期至少一次。三个学段“综合与实践”的要求和教学目标有了差异。
(三)“综合与实践”的常用教学形式和案例
按照教学内容不同,“综合与实践”可以分为两种内容形式:体现数学知识内部联系;体现数学与生活和其它学科联系。
若按照活动开展的地点不同,可以分为课堂内、课堂内外结合、课堂外三种形式。(可见下表)
解决数学内部问题
解决数学外部问题(生活、的综合与实践活动 其他学科等)的综合与实践
活动
课堂内进行的综合与实践活动
例80--用几何研究代数、例78--看图说故事
课堂内外结合进行的综合与实践活动 课堂外进行的综合与实践活动
(四)《高中数学课程标准》中关于数学建模的定位
在《高中数学课程标准》的研制过程中,对是否增加数学建模的要求是有争议的。一些专家认为,中学数学是打基础的阶段,核心是学好将来需要的基础知识,应用不必强调,强调了也没有用——在大跃进时期我们曾强调过“理论联系实际”,文革中我们的教学内容里加入了类似“三机一泵”,地主如何算“变天帐”一类的内容,弱化了基础理论的学习,效果是不好的。但一批数学家深刻注意到了数学的发展和变化,姜伯驹、李大潜、丁石孙、叶其孝等先生都分别撰文阐明在中学培养学生数学应用能力的重要性。我们多年开展中学数学建模竞赛和中学数学建模教学的实践也证明了,数学建模对培养中学生应用能力的良好作用。种种努力,使数学建模最终成为新高中数学标准中规定的高中数学内容的一部分。
新高中数学标准在基本理念的第5条即是发展学生的数学应用意识,认为高中数学课
例46--空间想象与分类计数。
例77--包装盒中的数学 例79--利用树叶的特征对树木分类 例21--钮扣分类
例75--直觉的误导 例76--从年历中想到的 程应提供基本内容的实际背景,反映数学的应用价值,开展“数学建模”的学习活动,设立体现数学某些重要应用的专题课程。高中数学课程应力求使学生体验数学在解决实际问题中的作用、数学与日常生活及其他学科的联系,促进学生逐步形成和发展数学应用意识,提高实践能力。由此在数学内容中特别加入了:数学探究、数学建模。这些内容不单独设置,渗透在每个模块或专题中。标准要求高中阶段至少各应安排一次较为完整的数学探究、数学建模活动。
这里标准中谈到的数学建模,内容即是一般意义上的数学建模。数学建模是运用数学思想、方法和知识解决实际问题的过程,已经成为不同层次数学教育重要和基本的内容。数学建模可以通过以下框图体现:
数学建模是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力。
课程标准提出的教学要求是:
1.在数学建模中,问题是关键。数学建模的问题应是多样的,应来自于学生的日常生活、现实世界、其他学科等多方面。同时,解决问题所涉及的知识、思想、方法应与高中数学课程内容有联系。
2.通过数学建模,学生将了解和经历上述框图所表示的解决实际问题的全过程,体验数学与日常生活及其他学科的联系,感受数学的实用价值,增强应用意识,提高实践能力。
3.每一个学生可以根据自己的生活经验发现并提出问题,对同样的问题,可以发挥自己的特长和个性,从不同的角度、层次探索解决的方法,从而获得综合运用知识和方法解决实际问题的经验,发展创新意识。
4.学生在发现和解决问题的过程中,应学会通过查询资料等手段获取信息。5.学生在数学建模中应采取各种合作方式解决问题,养成与人交流的习惯,并获得良好的情感体验。
6.高中阶段至少应为学生安排1次数学建模活动。还应将课内与课外有机地结合起来,把数学建模活动与综合实践活动有机地结合起来。
标准未对数学建模的课时和内容做具体安排。学校和教师可根据各自的实际情况,统筹安排数学建模活动的内容和时间。例如,可以结合统计、线性规划、数列等内容安排数学建模活动。
四、如何在初中开展数学建模
(一)数学建模与数学应用题的区别
与传统应用题相比,数学建模所解决的问题往往呈现一种“混沌”状态,没有明显的数据和关系可用,所给的条件也不一定有用,得出的结论往往不唯一,建立的数学模型也要在实践中反复修改验证,由于具有这些特点,数学建模是学习“数学应用”的最佳方式之一,能让学生更好地体验数学是怎样运用于实际的过程,形成他们的数学经验。
我们之所以要在初中渗透数学建模,一个很重要的理念是,要培养学生的实践能力,需要综合的利用知识,如果仅仅满足于在每一个具体的领域里,介绍具体领域的知识,可能就没有给学生综合使用知识的一个机会,另外,数学的发展非常关注应用,用数学去解决其他学科和领域的问题,用数学去解决我们日常生活的问题,这都是数学发展越来越重视的一件事情,怎么利用数学的知识,去解决生活中其它学科中的问题,我们需要有一个平台,让学生利用这个平台,去做这件事情。其次是对学生创新能力的培养,而创新的基础是需要有问题的,是需要解决问题,是需要在解决问题的过程中,提出自己的想法,而综合与实践活动,恰恰就为学生这方面的能力,提供了一个可操作的,可以实践的一个平台。
对比第三阶段的综合与实践活动的要求,有哪些相对于前两阶段的提升?一个是能够结合实际情况,经历设定解决具体问题的方案,并加以实施的过程,体验建立模型,解决问题的过程,建立模型,并尝试发现问题,提出问题,这是一个比较高一点的要求,在前两个学段,主要是学生一起做老师提供的已经在课本上给好的问题,在这个初中要尝试,看学生自己能不能提出一些有价值的问题。要把数学建模的目标,和学生增长数学学习的经验,改进学生学习的方式联系起来,那么还提出要会反思,参与活动的全过程,会把研究的过程和解决形成报告和小论文,并进行交流,进一步获得社会活动的经验,要求结果要形成一个有价值的数学结果,像个小论文。
(二)初中数学建模的四个环节
第一个环节是提出问题,第二个环节是探求解题的途径,第三个环节是操作实践,第四个是反思交流评价。也可以简单地用“选题,开题,作题,解题”这样的操作方式来表达。具体来做数学建模的教学设计的时候,一个是要有一个清晰的线索,这个线索就是过程设计,核心是个问题,在问题引领下,突出活动。一个是“做”,不是老师做,是学生做,所以要围绕着做来设计,一个是“过程”,过程要让学生更多地参与,在过程中有所发现,有所收获,最后,要积累经验。
(三)数学建模的评价
可以通过几个不同的维度来评价。第一是过程,就是学生能不能完整地完成这个过程,老师给了问题以后,或者我们自己提出的问题也好,首先把问题说清楚,第二件事,要有思路,我们能不能把这个思路说清楚,就是我打算怎么做,先拿纸试,然后拿布裁,然后发现什么问题再怎么解决,在解决的过程中,会用到哪些数学,要先有一个设计。我们看学生是不是能在真正做之前,把这问题想一想清楚,然后就是做,最后就是做的结果的展示。万一出了问题,还可以有改进的一些思考。另外就是能不能拓展。第二是看数学用得怎么样,包括是不是正确,是不是科学,是不是好,能不能改进的问题;比如说还可以考虑,因为我们毕竟是做实践的东西,是否考虑到精度,是不是考虑到节约,是不是考虑到优化。第三就是情感态度价值观。学生做一件事情的关注度,投入度,兴奋度如何,也许做的并不太好,但是他非常专注,他不会的地方会向别人请教,而请教的态度非常好,他还可以去翻书和查资料等等。
将以上内容进行归纳,在数学建模评价中,我们不仅要关注结果,更要关注过程、关注学生的差异、学生个性的彰显、学生在建模前后发生的变化。出可以从以下几个角度入手观察、评价:学生提出问题是否有新意,操作求解是否有创意,合作学习是否有效率,结果呈现是否有特色,反思拓展是否有眼光,自我感受是否有收获,兴趣动力是否有增强,数学素养是否有提高。
(四)初中数学建模的若干简要案例
4.1初中数学建模学习案例1:——与自行车有关的问题(小组学习实践)课题:了解自行车中的数学问题,应用学过的数学知识,解决以下问题。问题1:用自己或同学的一辆自行车为观察对象,观察并解决下列问题:(1)我观察的这辆自行车是什么牌子的?
(2)它的直径是cm,轮子转动一周,在地面走过的距离是____________cm,精确到1cm。
(3)自行车中轴的大齿轮盘的齿数是_________齿,后轴的小齿轮(飞轮)的齿数是_____________,中轴的大齿轮被踏动一周时,后轴的小齿轮在链条传动下,不计算惯性将转动_____________周(保留2位小数)。
问题2:如果你有自行车,并骑车上学,你能借助于自行车,测量出从你的家到学校的路程吗?请你设计一个测量方案,并尽可能地通过实际操作测量出从你的家到学校的路程。
问题3:如果你的(或你的朋友)自行车是可以变速的自行车(如山地车、多飞轮的自行车)、请你观察一下在这辆自行车上有几个(中轴上的)大轮盘,几个飞轮,它们都各有多少齿?记录这些数据。如果你骑车时每一秒脚蹬一圈,请你根据上面测量的数据计算出这辆自行车运行时最大的速度和最小的速度各是每小时多少公里?
选做问题4:你认为对问题3中的自行车的各个齿轮的齿数安排的合理吗?你能发现或提出什么样的问题?如果有可能请你做设计改进的话,你会做什么?
求解工作的表格省略。
4.2初中数学建模案例2:——线路设计问题(自学、探索、创新实践)课题:为所在小区设计一个最佳的邮政投递路线,一个合理的保安巡逻路线。实施建议:
1.按居住地成立4-6人的小组,对你们要研究的小区,进行观察,收集必要的数据和信息,(如平面图,楼的门洞的朝向,道路情况,小区的进出口位置等).发挥各自的特长,分工合作完成测量方案的设计、实测、作图、计算、论证、比较、计算机文稿录入、结果介绍等。
2.复习必要的知识,如一笔画方法,最短邮路的画法和算法等。
3.画出小区的平面示意图,(最好复印一下,以避免后面画坏时重画),在图上完成邮政投递路线的设计,(使邮递员走的路线最短)。
4.实践环节:先不加思索按投递要求随意地走一遍,再按你设计的路线,实际走一遍,测算出路程看一看相差多少(记录数据)? 创新实践项目:为你们居住的小区设计一个合理的保安巡逻路线、或合理的送奶的路线。首先思考“合理”的含义。
4.3初中数学建模案例3:——穿衣镜的最佳设计(个人的创意与设计)
课题:自己提出几个有关穿衣镜设计的问题,给出你们认为最合理、最佳、最有创意的设计方案或解决办法。
实施建议:
1.成立工作小组,讨论本小组的工作目标、分工。
2.有可能的话到家具店、超市、(别忘了带尺子或相机)有关杂志或网站上收集一点相关资料,可以发现问题或提出你们更好的设计。
3.分工合作完成你们的设计,最好有一个图、或一个小的模型,可以用纸板做。4.准备在全班交流,可以用实物、照片、模型、“ppt”,等形式表现你们的成果和创意,如果给你3分钟讲演、展示,怎样让班里同学为你们的成果叫好?
4.4数学建模的可供学生选择上的假期作业
1.利用放寒假与父母逛商场的机会,认真注意收集春节商场“打折消费”、“诱导消费”的各种广告信息,测算化1000元可以最多实际买到价值多少的商品。计算实际打折率。开动你的大脑,为消费者设计一种收益较多的购物方式;或者为商场设计一个更好的吸引消费者的、也使的商场收益较多的购物方式。
2.测量一个比较高的建筑物的高度,说明测量方案,测量过程和测量数据。看谁想出更好的方法?
3.自编3道方程和方程组的应用题,要求联系实际,有真实的实际背景,请写出题目、题解,看谁编的有趣。
4.到超市观察各种不同包装设计的同种商品,如同一个牌号的大、小牙膏,收集它们的价格信息,找一个表示它们的重量和价格的公式。5.到各大商场,超市观察不同的商品的外包装,提出一个与“节约”有关的问题,将问题数学化,并用学过的知识试着解决它。进而自己在提出一些新的问题,或将自己得到的结果推广以适用于更大的范围。
6.了解出租车的计价方式,(如起步每公里,每种车型多少钱;运行中每公里,每种车型多少钱;等候时每分钟,每种车型多少钱?)给出一个根据距离、等候时间计算付多少钱的方法或公式。
7.调查邮局中不同重量、寄往本市、外地、港澳、国外的平信(包括航空)的邮资表,如果限定信封上只准贴至多3枚邮票,请你设计邮票应该有哪些面值?
8.自己找到的用学过和还没有学过的数学知识解决的实际问题,(可以只提出问题,或仅仅提供一个解决问题的想法)。
学生实际的学习成果从略。
五、数学建模对教学和教师的影响
开展数学建模学习不仅是学习方式的改变,而且是育人模式的变化。
人才培养模式集中而具体的体现形式是教育教学模式。改革传统的以“升学—应试”为目标的学校教育教学模式,创建以全体学生全面发展为目标的、体现素质教育方向和要求的新型教育教学模式,是当前学校实施素质教育的首要任务。而创建体现素质教育思想和要求的教育教学模式重要的着眼点就是要改变学生那种单纯地被动接受教师知识传输的学习方式,帮助和指导学生在开展有意义接受学习的同时,形成一种对知识技能进行主动探求、并重视实际问题解决的主动积极的学习方式。这就是培养学生在教师指导下,从自身的学习生活和社会生活、自然界以及人类自身的发展中选取研究专题(专题、主题),以探究的方式主动地获取知识、应用知识、解决问题的数学建模。这对于培养学生的创新精神和实践能力、创造能力、终身学习的能力具有十分重要的意义。而数学建模活动的实际结果告诉我们,它不仅对好学生、而且对学习有一定困难的学生都能起到培养兴趣、激发创造的目的。数学建模的成果还可以为学生建立一种更表现学生素质的评价体系。数学建模的过程可以为不同水平的学生都提供体验成功的机会,真正把筛子变成泵。
实际上,数学建模的教学过程(或者更自然地说是师生一起学和做的过程)对教师的成长和专业发展,更新教育观念,主动参与并推进素质教育,有着越来越重要的作用。
主要表现在下面的几个方面:
首先,它可以帮助教师转变教学观,更有利于发挥教师的主导作用和学生的主体作用。教师的主导作用体现在创设好的问题环境,激发学生自主地探索解决问题的积极性和创造性上;学生的主体作用体现在问题的探索、发现、解决的深度和方式尽量由学生自主控制和完成。它体现了教学过程由以教为主到以学为主的重心的转移。课堂的主活动不应都是教师的讲授,而应是学生自主的自学、讨论、调查、探索、解决问题。教师要自觉适时地改变他的教育角色,平等地参与学生的探索、学习活动。教师不应只是“讲演者”、不应是“总是正确的指导者”,而应不时扮演下列角色:模特——他不仅演示正确的开始,也表现失误的开端和“拨乱返正”的思维技能;参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断;询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度;仲裁者和鉴赏者——评判学生工作及成果的价值、意义、优劣,鼓励学生的有创造性的想法和作法;在教学的组织中体现“学法”,把教和学融为一体。
其次,它可以帮助教师转变学习观。
过去在封闭式教育中,教师是知识的输出者。由于教育被定位为在学校这个“围墙”内,由知识的拥有者和惟一源泉——教师向知识的需求者——学生输出知识的活动,教师和学生之间的关系就是教师“单向输出”和学生“被动接受”的关系。在数学建模的实践活动中,问题环境充分敞开,教师不可能也不再是学生获取知识的惟一源泉,而且常常会无计可施,教师的指导作用更多地表现在“策略”的指导。教师把握教学目标时应立足于“做”而不是讲,立足于学生对问题的分析,对解决问题过程的理解,而不以仅仅有正确的解答为满足。要让学生在问题、困难、挑战、挫折、取胜的交替体验中;在选择、判断、协作、交流的轮换操作中;经历一个个学、用知识,进而发现问题,走向新的学、用知识的过程。从而培养能力、激发兴趣、形成学生主动学习的良性循环。
第三,它还可以改变教师自己的成材观、发展观。
事实上,数学建模对教师也很陌生,对许多问题教师可能都不会,怎么教学生?在数学建模过程中表现出的问题形式与内容的多样,问题解决方法的多样性、新奇性和个性的展示,问题解决过程和结果层次的多样性,无疑是对参与者创造力的一种激发、挑战、考验和有效的锻炼。教师在陌生的问题前感到困难、失去相对于学生的优势是自然的,常常出现的。这里有两个认识需要改变,一是数学建模教学能力提高的主要途径恰恰是自己多参与,多独立的思考和实际去“做”;二是数学建模的教学过程中,教师的角色不应该总是“正确的指导者,总是正确的化身”,而应该平等地参与,适时扮演“同事、参谋、建议者、欣赏者”。教师要在自己的视野内努力寻找宜于学生使用的数学建模问题,做好每个问题解决过程的记录,学生成功的经验和自己在挫折中得到的教训对于今后的数学建模的教学设计有重要的价值,也是教师由数学建模的生手到行家的有效途径之一。
六、对在数学新课程中开展数学建模活动的小结 问题和内容的选择:联系学生和教材的实际。好入手、有趣味、可深入。
常态的环节和步骤:选题(问题引领),开题(交流预设的解决问题方案),做题(合作、探究、利用工具和资源),结题(交流分享、反思评价、积累资源)。
动静结合的资源:你的学生、家长、同事、朋友和他们的实践;相关刊物和网站。教与学的过程设计:强调------学生活动,做中学想、开放思维、小组功能、过程体验、经验积累。
关注和鼓励:激发兴趣、善用工具、提出问题、多途求解、情感交流、共享成果。着力促进:学习方式的转变、学习过程的良性循环、课内知识的学习和应用、对数学的价值的感悟和理解。
评价:关注过程、关注变化。提出问题是否有新意,操作求解是否有创意,合作学习是否有效率,结果呈现是否有特色,反思拓展是否有眼光,自我感受是否有收获,兴趣动力是否有增强,数学素养是否有提高。