七年级下册数学期中复习教案

时间:2019-05-15 01:52:18下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《七年级下册数学期中复习教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《七年级下册数学期中复习教案》。

第一篇:七年级下册数学期中复习教案

期中复习1 ——二元一次方程组

教学目标

1. 使学生对方程、方程组的概念有进一步理解。

2. 掌握解一次方程组的基本思想,基本方法。灵活选用代入法或加减法解方程

组。

3. 会列二元一次方程组解简单应用题。4. 提高概括能力,归纳能力。5. 培养思维灵活性,提高学习兴趣。教学重、难点

1. 根据方程组特点先合适方法求解使计算简便。2. 培养思维灵活性。教学过程一、二、概括本章主要内容。(概念,基本思想,基本方法等)例题。例1.2x3y0用代入法解方程组

5x7y1用加减法法解方程组

二元一次方程组的应用 例2.例3.2x3y0

5x7y1(1)、两在相距280千米,一般顺流航行需14小时,逆流航行需20小时,求船在静水中速度,水流的速度。

(2)、420个零件由甲、乙两人制造。甲 先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,还需3天完成。问:甲、乙每天各做多少个零件?

例4.下列各方程组怎样求解最简便。

3xy94x3y9(1)

(2)

2xy6yx1(3)6xy72x5y1

2(4)

3xy23x2y7对(3)(4)教师不给出统一答案。例5.讨论:不解方程组,观察下列方程组是否有解。

(1)2xy12xy

1(2)

2xy24x2y46x3y3(3)

4x2y4

三、练习。

P25 A组

第二题

A组

第八题

P26

期中复习2 ——整式的乘法

教学目标:

1、能较熟练地理解本章所学的公式及运算法则

2、能熟练地进行多项式的计算。

教学重点:正确选择运算法则和乘法公式进行运算。教学难点:综合运用所学计算法则及计算公式。教学方法:范例分析、归纳总结。教学过程:

一、各知识点复习

1、整式包括单项式和多项式。

2、求多项式的和与差,解题的几个步骤:一是写出和或差的运算式;二是去括号;三是找出同类项,将它们放在一起;四是合并同类项。

3、多项式的排列(按某一个字母降幂、升幂排列)。

4、同底数幂相乘:a

m

·a=a

n m+n

(m、n都是正整数)

语言叙述:同底数幂相乘,底数不变,指数相乘。

5、幂的乘方:(am)n==a mn(m、n为正整数)

语言叙述:幂的乘方,底数不变,指数相乘。

6、积的乘方:(ab)nanbn(n为正整数)文字叙述:积的乘方等于把各个因式分别乘方,再把所得的幂相乘。

7、单项式的乘法法则:

两个或两个以上的单项式相乘,把系数相乘,同底数幂的底数不变指数相加。(对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式)

8、单项式与多项式相乘的法则:即利用乘法的分配律 a(b+c)=ab+ac

9、多项式与多项式相乘:(m+n)(a+b)= a(m+n)+b(m+n)=(am+an+bm+bn)多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。

10、二项式的乘积:(xa)(xb)=x2bxaxab=x2(ab)xab

11、平方差公式: ababa2b2

文字叙述:两个数的和与这两个数的差的积等于这两个数的平方差。

12、完全平方公式:(ab)2a22abb2

两数和(或差)的平方,等于它们的平方的和,加上(或减去)它们的积的2倍。

13、三个数的和的平方公式:(abc)2==a2b2c22ab2ac2bc

二、范例分析:

1、计算:

(1)求4a2b5b3ab24与2a2b3ab223a3的和与差。(2)(abc)2(abc)2 例

2、先化简,再求值:

(1)(2xy)(2xy)(4x2y2),其中x=-2,y=-3(2)2(ab)(ab)(ab)2(ab)2其中a2,b例

3、解方程: 2(x3)(x3)(x1)(x4)x3

二、练习

P52

A组

第三题(1)、(2)P52

A组

第四题(1)、(2)P52

A组

第五题(1)、(2)

期中试卷分析

一、试卷结构:

本次测试涉及二元一次方程组、整式的乘法、因式分解三章内容,由本年级经验丰富的数学教师方讲礼命题,经年级数学组三位教师集体商议定稿。难度适中,基础题所占比例大,旨在测试学生的水平。

二、成绩分析:

本次应考50人,与考50人,优秀22人,占百分之四十四,高分达117分,及格29人,占百分之五十八,不及格21人,占百分之四十二。成绩在全年级三个班中偏低。

具体情况分析:

1、两级分化严重:

A、117分5人,优秀22人;

B、40分以下8人,占百分之一十六,低分至15分。

2、中差生所占比例大,41分-67分13人,占百分之二十六。

3、及格至优秀段(72分-95分)学生所占比例小,仅8人,占百分之一十六。

三、学生情况分析:

1、学生学习不主动、拖拉,作业不按时完成,完成者马虎了事,抄袭屡禁不止。

2、学生基础差,导致厌学情绪严重,进入了一个恶性循环,旧知掌握不牢,新知不积极把握,愈学愈厌烦。

3、学习不细心。粗枝大叶是通病,纵观平时作业和试卷情况,粗心失分是关键。

4、畏难情绪严重,稍有难度或稍微复杂的计算,学生大部分不愿意去动手做。

5、思维僵化,不主动积极地思考问题。

四、教师主观原因分析:

1、教者教材钻研深度不够,讲课不能做到深入浅出。

2、课堂结构不合理,讲的过多,练的过少。

五、今后措施:

1、关爱学生,不斥责学生,正确引导学生的学校态度。

2、搞活课堂,让学生在愉悦中接受知识。

3、少讲多练,精讲精练,向45分钟要质量。

4、营造学习氛围,创建互助学习风气,杜绝抄袭现象。

5、加强后进生的课后辅导,师生共同提高后进面。

六、查漏补缺:

1、二元一次方程组的概念的讨论(选择题第2题)

2、完全平方式的讨论(选择题第8题、填空题第7题,解答题第1题)

3、解二元一次方程组(解答题第2题),突出有要时间验算,保证正确率

4、应用题的等量关系的建立。(解答题第5题)

第二篇:七年级数学人教版下册期中复习题

2020-2021学年人教版七年级下册

数学

期中

复习题

一、单选题

1.式子①x+y=1;②x>y;③x+2y;④x-y≥1;⑤x<0是不等式的有()

A.2个

B.3个

C.4个

D.5个

2.若与是内错角,则()

A.B.C.D.的度数无法确定

3.下列四个判断:①,则;②若,则;③若,则

④若,则.其中正确的有

()

A.1个

B.2个

C.3个

D.4个

4.已知:△ABC中,则△ABC是

()

A、锐角三角形

B、直角三角形

C、钝角三角形

D、无法确定

5.如图,下列条件中:(1)

∠B+∠BCD=180°;(2)

∠1=∠2;(3)

∠3=∠4;(4)∠B=∠5;能判定AB∥CD的条件个数有

()

A.1

B.2

C.3

D.4

6.已知:关于的方程组,则的值为()

A.B.C.D.7.甲、乙两人分别从相距40千米的两地同时出发,若同向而行,则5小时后,快者追上慢者;若相向而行,则2小时后,两人相遇,那么快者速度和慢者速度(单位:千米/小时)分别是()

A.14和6

B.24和16

C.28和12

D.30和10

8.光线照射到平面镜CD上,然后在平面镜AB和CD之间来回反射.若已知∠1=55°,∠3=75°,则∠2=()

A.50°

B.55°

C.66°

D.65°

9.如图,将纸片的一角折叠,使点C落在△ABC内,若,则的度数为()

A.

200

B.300

C

.400

D.无法确定

10.如果关于的不等式组的解集为,且整数使得关于的二元一次方程组的解为整数(均为整数),则符合条件的所有整数的和是()

A.﹣2

B.2

C.4

D.12

二、填空题

11.在方程中,用含的代数式表示为:________.12.如图,此不等式的解集为________.

13.等腰三角形的两边长分别为4cm和6cm,则它的周长为___________.14.若方程是二元一次方程,则m=_______,n=________.15.给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高、三条中线、三条角平分线

⑥三角形的三条角平分线交于一点,且这点在三角形内.正确的命题有___________________(填正确的序号)

16.若不等式组的解集为,则的值等于_______.

17.某种型号汽车每行驶100km耗油10L,其油箱容量为40L.为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量不低于油箱容量的18,按此建议,一辆加满油的该型号汽车最多行驶的路程是__________km.

18.【题干序号】

如图,在中,射线AG∥BC,点E从点A出发沿射线AG以的速度运动,当点E先出发后,点F也从点B出发,沿射线BC以的速度运动,分别连接AF,CE.设点E运动的时间为,其中,当=___________时,.三、解答题

19.解方程组和不等式组:

(1)

(2)

20.画图并填空:如图,方格纸中每个小正方形的边长都为.在方格纸内将经过一次平移后得到,图中标出了点的对应点.利用网格点和三角板画图或计算:

(1)在给定方格纸中画出平移后的;

(2)画出边上的中线;

(3)画出边上的高线;

(4)的面积为

21.解不等式

并求出该不等式组的所有整数解的和.

22.把下面的证明补充完整

如图,已知直线分别交直线、于点、,平分,平分.

求证:

证明:(已知)

平分,平分(已知),,(等量代换)

23.如图,(1)求证:EF∥AB;

(2)求证:;

(3)若点D、E、F分别是AB、AC、CD边上的中点,.24.已知方程组的解为非正数,为负数.

(1)求的取值范围;

(2)化简;

(3)在的取值范围中,当为何整数时,不等式的解为?

25.如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程的解为,不等式组x-1>0x<4的解集为,因为,所以称方程为不等式组x-1>0x<4的关联方程.

(1)在方程中,不等式组2x-8<0-4x-3<x+2的关联方程是

.(填序号)

(2)若不等式组x-12<32x-3>-x+5的一个关联方程的解是整数,则这个关联方程可以是

.(写出一个即可)

(3)若方程都是关于的不等式组x+3≥m3x<2-m的关联方程,求的取值范围.

26.为了全面推进素质教育,增强学生体质,丰富校园文化生活,高新区某校将举行春季特色运动会,需购买A,B两种奖品,经市场调查,若购买A种奖品3件和B种奖品2件,共需60元:若购买A种奖品1件和B种奖品3件,共需55元.

(1)求A、B两种奖品的单价各是多少元;

(2)运动会组委会计划购买A、B两种奖品共100件,购买费用不超过1160元,且A种奖品的数量不大于B种奖品数量的3倍,运动会组委会共有几种购买方案?

(3)在第(2)问的条件下,设计出购买奖品总费用最少的方案,并求出最小总费用.

27.(10分)已知:,平分,点在射线上,、分别是射线、上的动点、不与点重合),连接交射线于点.设.

(1)如图1,若,则:①  ;②当时,;

(2)如图2,若,垂足为,则是否存在这样的的值,使得中存在两个相等的角?若存在,求出的值;若不存在,说明理由.

第三篇:七年级下册数学期中测试卷(一)

七年级下册数学期中检测题(一)

(时间120分钟,满分150分)

班级:

姓名:

得分:

一、选择题(每小题3分,共36分)

1.已知下列方程:①②③④⑤x=0

⑥.其中一元一次方程有()

A.2个

B.3个

C.4个

D.5个

2.若代数式x+2的值为1,则x等于()

A.1

B.-1

C.3

D.-3

3.若,则下列不等式中成立的是()

A.B.C.D.4.不等式组的所有整数解是()

A.-1,0

B.-2,-1

C.0,1

D.-2,-1,0

5.不等式组的解集在数轴上表示正确的是()

6.已知和是方程ax+by=2的两组解,则()

A.a=6,b=-2

B.a=-6,b=-2

C.a=6,b=2

D.a=-6,b=2

7.若关于x,y的方程组的解满足x+y=3,则m的值为()

A.-2

B.2

C.-1

D.1

8.超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()

A.0.8x-10=90

B.0.08x-10=90

C.90-0.8x=10

D.x-0.8x-10=90

9.已知a2+3a=1,则代数式2a2+6a-1的值为()

A.0

B.1

C.2

D.3

10.某种肥皂售价为每块2元,凡购买两块以上(含两块),商场推出两种优惠销售方法,第一种:“一块按原价,其余按原价的七折优惠”;第二种:“全部按原价的八折优惠”.你在购买相同数量的肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少要购买肥皂()

A.5块

B.4块

C.3块

D.2块

11.一元一次方程可化为()

A.

B.

C.

D.

12.已知方程组的解x为正数,y为非负数,给出下列结论:

①;

②当时,x=y;

③当时,方程组的解也是方程x+y=5+a的解;

④若x≤1,则y≥2.

其中正确的是()

A.①②

B.②③

C.③④

D.②③④

二、填空题(每小题3分,共30分)

13.若关于x、y的方程xm-1-2y3+n5是二元一次方程,则m,n

14.方程用含x的代数式表示y为

.15.若方程2x-m=1和方程3x=2(x-1)的解相同,则m的值为__

__.

16.若是方程组的解,则a+b的值为__

__.

17.已知关于x的方程x+2k=4(x+k)+1的解是负数,则k的取值范围是

__

_.

18.方程组的解是则关于x的不等式bx+2a≥0的非负整数解是__

_.

19.幼儿园分给“豆豆班”小朋友们零食,如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则老师准备了零食__

__袋.

20.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为_

21.定义运算“*”,规定x*y=ax2+by,其中a、b为常数,且1*2=5,2*1=6,则2*3=

.22.如图,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点按顺时针方向环行,乙点按逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2017次相遇在边__

__上.

三、解答题(共68分)

23.(10分)解下列方程(组):

(1)

-=5;

(2)

24.(10分)解下列不等式(组),并把解集在数轴上表示出来:

(1)1-<;

(2)

25.(8分)方程组的解满足方程2x-ky=10,求k的值.

26.(8分)若不等式组恰有两个整数解,求m的取值范围.

26.(8分)4月23日是世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元?

27.(8分)若关于x的方程2x-m=3(x-1)的解也是不等式组的解,求m的取值范围.

28.(10分)

阅读下列材料:求不等式的解集。

解:根据“同号两数相乘,积为正”可得

①,或②.解①,得.解②,得,∴不等式的解集为。

请你仿照上述方法解决下列问题:

(1)

求不等式的解集;

(2)求不等式的解集。

29.(10分)某校为学生开展拓展性课程,拟在一块长比宽多6米的长方形场地内建造由两个大棚组成的植物养殖区(如图①),要求两个大棚之间有间隔4米的路,设计方案如图②,已知每个大棚的周长为44米.

(1)求每个大棚的长和宽各是多少?

(2)现有两种大棚造价的方案,方案一是每平方米60元,超过100平方米优惠500元,方案二是每平方米70元,超过100平方米优惠总价的20%,试问选择哪种方案更优惠?

30.(12分)为了更好地保护美丽如画的邛海湿地,西昌市污水处理厂决定先购买A,B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.

(1)求A,B两型污水处理设备每周每台分别可以处理污水多少吨?

(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨.请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?

第四篇:七年级下册数学期中模拟试题

一、判断题(每小题2分,共16分)

1、顶点相对的两个角叫对顶角。()

2、从直线外一点到这条直线的垂线段,叫点到直线的距离。()

3、过线段AB外一点,一定能作线段AB的垂线。()

4、两条直线被第三条直线所截同旁内角的平分线一定垂直。()

5、在图形平移过程中,图形上可能会有不动点。()

6、以A、B、C为顶点的三角形可记作△ ABC,也可记作△BCA,还可以记作△CBA。()

7、n边形的内角和可以随n值变化而改变,但外角和不随n值变化而改变。()

8、若a<0,b<-2,则点(a,b+2)应在第三象限。()

二、填空题:(每小题3分,共30分)

9、如图:∠1和∠2是直线 和 被直线 所截而成的 角;∠3和∠4是

直线 和 被直线 所截而成的 角。

10、命题“同角或等角的补角相等”的题设是,结论是,这个命题是 命题。(填真或假)。

11、O为平面上一点,过O点引不同的直线,当引3条时,图中有 对对顶角;若引6条有 对对

顶角;若引8条时,则图中有 对对顶角。

12、两条平行线被第三条直线所截 相等,相等,互补。

13、如果a∥b,b∥c,则 ∥,因为。

14、在同一平面内,两条直线的位置关系只有。

15、已知点P(m,z),Q(3,n)关于原点对称,则m=,n=。

16、点P(x,y),且xy<0,则点在第 象限。

17、三角形按边的关系分类可分 三角形和 三角形。

18、如果四边形的四个内角度数比为1:2:3:4,那么这四个内角的度数分为。

三、选择题:(每小题3分,共24分)

19、在下面四个图形中,∠1和∠2不是同位角的是()

20、互不重合的三条直线公共点的个数是()

A、只可能是0个、1个或3 B、只可能是0个、1个或2个

C、只可能是0个、2个或3个 D、0个、1个或3个都有可能

21、下列语句正确的是()

A、同旁内角互补,两直线平行 B、内错角互补,两直线平行

C、同位角互补,两直线平行 D、同旁内角相等,两直线平行

22、点到直线的距离是()

A、点到直线上一点的连线 B、点到直线的垂线

C、点到直线的垂线段 D、点到直线的垂线段的长度

23、在直角坐标平面上有一点P,点P到Y轴的距离为2,点P的纵坐标为-3,则点P坐标是()

A、(-3,-2)B、(-2,-3)C、(2,-3)D、(2,-3)或(-2,-3)

24、已知点P(x,y)满足x2+y2=0,则点P在()

A、横轴上 B、纵轴上 C、坐标原点 D、横轴或纵轴上

25、如图,△ABC中,∠ACB=90°,CD⊥AB于D,则图中互余的角共有()对。

A、2 B、3 C、4 D、526、如图,已知AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=50°,则∠2的度数()

A、50° B、65° C、60° D、70°

四、解答题:(27~28各5分,29~33每题8分,共50分)

27、如图:E是AB上一点,F是CD上一点,G是BC的延长线上一点。

(1)∵∠B=∠DCG(已知)

∴ ∥()

(2)∵∠D=∠DCG(已知)

∴AD∥()

(3)∵∠D+∠DFE=180°(已知)

∴ ∥()

28、如图所示: ∵∠3=∠4(已知)

而∠4=∠5()

∴∠3=∠5()

∵∠1=∠2(已知)

∴∠1+∠3=∠2+∠5()

即 =

∴ ∥()

29、如图,已知∠ABC=∠ADC,还应加上一个什么条件,才能使得AD∥BC?并证明。

30、如图,已知AB∥CD,∠AMP=150°,∠PND=60°,那么MP⊥PN吗?为什么?

31、已知点A(-4,3)且AB∥Y轴,AB=5,求B点的坐标。

31、已知点A(-4,3)且AB∥Y轴,AB=5,求B点的坐标(要求画出直角坐标系)。

32、如图,在直角坐标系中,A(-4,2)、B(-2,-2),0为坐标原点,求三角形AOB的面积。(单位:cm)

33、在四边形式ABCD中,∠A与∠C互补,∠A的3倍与∠B的2倍相等,∠B的5倍与∠C的6倍相等,求∠A:∠B:∠C:∠D。

第五篇:七年级数学下册教案

七年级数学下册教案

七年级数学下册教案1

教学目标:

1、通过现实情景感受利用有序数对表示位置的广泛性,能利用有序数对来表示位置。

2、让学生感受到可以用数量表示图形位置,几何问题可以转化为代数问题,形成数形结合的意识。

教学重点:理解有序数对的概念,用有序数对来表示位置。

教学难点:理解有序数对是“有序的”并用它解决实际问题,课时安排:1课时

教学过程

一、创设问题情境,引入新课

展示书P105画面并提出问题,在建国50周年的庆典活动中,天安门广场上出现了壮观的背景图案,你知道它是怎么组成的吗?

原来,他们举起不同颜色的花束(如第10排第25列举红花,第28排第30列举黄花)整个方阵就组成了绚丽的背景图章。类似用“第几排第几列”来确定同学的位置,我们在日常生活中经常用的方法。

二、师生共同参于教学活动

(1)影院对观众席所有的座位都按“几排几号”编号,以便确定每个座位在影院中的位置观众根据入场券上的“排数”和“号数”准确入座。

师:只给一个数据如“第5号”你能确定某个同学的位置吗?为什么?要确定必须怎样?

生:不能,要确定还必须知道“排数”。

(2)教师书写平面图通知,由学生分组讨论。

今天以下座位的同学放学后参加数学问题讨论:(1,5), (2,4),(4,2),(3,3),(5,6)。

师:你们能明白它的意思吗?

学生通过交流合作后得到共识:规定了两个数所表示的含义后就可以表示座位的位置。

师:请同学们思考以下问题:

①怎样确定你自己的座位的位置?

②排数和列数先后须序对位置有影响吗?

生:通过讨论,交流后得到以下共识:

①可用排数和列数两个不同的数来确定位置。

②排数和列数的先后须序对位置有影响。

(3)让学生的问题都是通过像“9排8号”,第2列第4排,这样含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的'含义。例如前面的表示“排数”后面的表示“列数”。我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。

(4)在生活中还有用有序数对表示一个位置的例子吗?

学生分组讨论,交流,教师深入小组参与活动,倾听学生的交流,并对学生提供的生活素材给予肯定和鼓励。

例如:人们常用经纬度来表示,地球上的地点

三、巩固练习

让学生完成p46的练习。

四、布置作业

1、课本习题6,1,1。

2、“怪兽吃豆豆”是一种计算机游戏,图中标志表示“怪兽”按图中箭头先后经过的几个位置,如果用(1,2)表示“怪兽”按图中箭头所指路线经过的第3个位置,那么你能用同样的方式表示出图中“怪兽”经过的其他几个位置吗?

1 2 3 4 5 6 7 8

五、教后反思

师:谈谈本节课,你有哪些收获?

由同学交流解决问题,教师设疑为以后的学习奠定基础。

七年级数学下册教案2

认识三角形教学目标:

1.知识与技能

结合具体实例,进一步认识三角形的概念,掌握三角形三条边的关系.

2.过程与方法

通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力.

3.情感、态度与价值观

联系学生的生活环境、创设情景,帮助学生树立几何知识源于实际、用于实际的观念,激发学生的学习兴趣.

教学重点难点:

1.重点

让学生掌握三角形的概念及三角形的三边关系,并能运用三边关系解决生活中的实际问题.

2.难点

探究三角形的三边关系应用三边关系解决生活中的实际问题.

教学设计:

本节课件设计了以下几个环节:回顾与思考、情境引入、三角形的概念、探索三角形三边关系、练习应用、课堂小结、探究拓展思考、布置作业.

第一环节 回顾与思考

1、如何表示线段、射线和直线?

2、如何表示一个角?

第二环节 情境引入

活动内容:让学生收集生活中有关三角形的图片,课上让学生举例,并观察图片.

活动目的:让学生能从生活中抽象出几何图形,感受到我们生活在几何图形的世界之中.培养学生善于观察生活、乐于探索研究的学习品质,从而更大地激发学生学习数学的兴趣

第三环节 三角形概念的讲解

(1)你能从中找出四个不同的三角形吗?

(2)与你的同伴交流各自找到的三角形.

(3)这些三角形有什么共同的特点?

通过上题的分析引出三角形的概念、三角形的表示方法及三角形的边角的表示方法.并出两道习题加以练习,从练习中归纳出三角形的三要素和注意事项.

第四环节 探索三角形三边关系第一部分 探索三角形的任意两边之和大于第三边

活动内容:在四根长度分别是8cm、10cm、15cm、20cm的小木棒中选三根木棒摆三角形.学生统计能否摆成三角形的情况.

第二部分 探索三角形的任意两边之差小于第三边

活动内容:通过让学生测量任意三角形三边长度来比较两边之差与第三边的关系,教师通过几何画板验证,从而得出结论.

第五环节 练习提高

活动内容:

1.有两根长度分别为5厘米和8厘米的木棒,用长度为2厘米的木棒与它们能摆成三角形吗?为什么?长度为13厘米的木棒呢?

2.如果三角形的两边长分别是2和4,且第三边是奇数,那么第三边长为 .若第三边为偶数,那么三角形的'周长 .

3.有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒与它们能摆成三角形吗?为什么?长度为13cm的木棒呢?动手摆一摆.学生回答完上面问题后想一想能取一根木棒与原来的两根木棒摆成三角形吗?

第六环节 课堂小结

活动内容:学生自我谈收获体会,说说学完本节课的困惑.教师做最终总结并指出注意事项.

学生对本节内容归纳为以下两点:

1.了解了三角形的概念及表示方法;

2.三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边.

注意事项为:判断a,b,c三条线段能否组成一个三角形,应注意:a+b>c,a+c>b,b+c>a三个条件缺一不可.当a是a,b,c三条线段中最长的一条时,只要b+c>a就是任意两条线段的和大于第三边.

第七环节 探究拓展思考

1.若三角形的周长为17,且三边长都有是整数,那么满足条件的三角形有多少个?你可以先固定一边的长,用列表法探求.

2.在例1中,你能取一根木棒,与原来的两根木棒摆成三角形吗?

3.以三根长度相同的火柴为边,可以组成一个三角形,现在给你六根火柴,如果以每根火柴为边来组成三角形,最多可组成多少个三角形?试试看.

第八环节 作业布置

七年级数学下册教案3

教学目标

以实际问题的需要出发,引出平方根的概念,理解平方根的意义,会求某些数的平方根.

教学重、难点

重点:了解平方根的概念,求某些非负数的平方根.

难点:平方根的意义.

教学过程

一、提出问题,创设情境.

问题1、要剪出一块面积为25cm2的正方形纸片,纸片的边长应是多少?

问题2、已知圆的面积是16πcm2,求圆的半径长.

要想解决这些问题,就来学习本节内容.

二、想一想:

1、你能解决上面两个问题吗?这两个问题的实质是什么?

2、25的平方根只有5吗?为什么?

3、-4有平方根吗?为什么?

三、知识引入:

一个正数a的平方根有两个,它们互为相反数.我们用a表示a的正的平方根,读作

“根号a”,其中a叫做被开方数.这个根叫做a的算术平方根,另一个负的平方根记为-a.0的.平方根是0,0的算术平方根也是0,负数没有平方根.

求一个数的平方根的运算叫做开平方.

四、能力、知识、提高

同学们展示自学结果,老师点拔

1、情境中的两个问题的实质是已知某数的平方,要求这个数.

2、概括:如果一个数的平方等于a,那么这个数叫做a的平方根.

如52=25,(-5)2=25∴25的平方根有两个:5和-5.

3、任何数的平方都不等于-4,所以-4没有平方根.

五、知识应用

1、求下列各数的平方根

①49②1.69③(-0.2)2

2、将下列各数开平方

①1②0.09

七年级数学下册教案4

【教材分析】

这部分内容是在学生学习了比例的意义基础上进行教学的,是对比例的意义的深化和发展,是后面学习解比例知识的基础。它起着承前启后的作用,是小学阶段学习比例初步知识的一项重要内容。

【教学目标】

1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。

【教学重点】探索并掌握比例的基本性质。

【教学难点】根据乘法等式写出正确的比例。

【设计理念】

数学课程标准指出:数学课堂教学要从学生已有的知识经验出发,创设有助于学生自主学习、合作交流的情境,让学生经历观察、操作、归纳、类比、猜想、反思等数学活动,获得基本的数学知识与技能,进一步激发学生的兴趣,发展学生的思维能力。本节课的教学紧紧围绕这一理念,先让学生学习比例的各部分名称,再探究比例的基本性质,最后通过简炼的分层练习,深化比例的基本性质,体验比例基本性质的应用价值,渗透假设、验证、优化等解决问题的策略和方法,感受“一一对应”和“变与不变”的思想。

【教学预设】

一、认识比例各部分的名称

1、呈现:4:5和8:10

(1)认识吗?叫什么?

(2)正确吗?为什么?(4:5=0.8,8:10=0.8,所以4:5=8:10)

(3)求比值,判断两个比能否组成比例。

2、介绍比例各部分的名称

4:5=8:10中,组成比例的四个数“4、5、8、10”叫做这个比例的项。两端的两项“4和10”叫做比例的外项。中间的两项“5和8”叫做比例的內项。

3、你能说出下面比例的内项和外项各是多少吗?

(1)1.4: =:5 (2) =

【设计意图:简洁的情境,简单的问答,准确定位教学的起点,沟通比例各部分的名称,嫁接新知探究的支点。】

二、探究比例的基本性质

1、猜数

(1)老师这里也有一个比例“12∶□=□∶2”,不过它的两个內项看不清了,想一想,这两个内项可能是哪两个数?(如1和24,2和12,……)

(2)追问:正确吗?为什么?(求比值判断)

(3)还有不同答案吗?

(4)你能举出项不是整数的例子吗?

(5)这样的例子举得完吗?

2、猜想

仔细观察这组等式,你有什么发现?(两个外项的积等于两个内项的积;两个內项的位置可以交换……)

3、验证

(1)是不是所有的比例都有这样的规律呢,有什么好办法?(举例验证)

(2)你觉得应该怎样举例呢?

示范:①任意写一个简单的比;②求出比值;③根据比值写出另一个比的一项,求出另一项;④组成比例;⑤算出外项的积和內项的积。

(3)合作要求

1)前后4个同学为一个小组;

2)每个同学写出一个比例,小组内交换验证。

3)通过举例验证,你们能得出什么结论?

4、归纳

(1)老师这里也有一个比例3:5=4:6,为什么两个外项的积不等于两个內项的'积?

(2)其实我们的发现与数学家不谋而合,他们也发现在“比例中,两个外项的积等于两个内项的积”,并且给它起了个名字,叫做比例的基本性质。(板书:比例的基本性质)

5、完善

(1)如果用字母表示比例的四个项,即a:b=c:d,那么,比例的基本性质可以表示成什么?(ad=bc或bc=ad)

(2)老师这里也有一个比例0:3=0:4,可以吗?3:0=4:0呢?

(3)比例中两个比的后项都不能为0。

6、如果比例写成分数形式=,这怎么相乘?(交叉相乘)

【设计意图:不完整的比例激发学生根据比例的意义猜数的兴趣,教师举例示范,为学生小组合作举例验证比例的基本性质搭建支点,意在让学生经历“猜数——猜想——验证——归纳——完善”的知识探究过程,激发学生的探究欲望,让学会学习的方法,提高学习能力。】

三、巩固练习,应用比例的基本性质

1、判断下面哪组中的两个比可以组成比例。

示范:6:3和8:5 (1)1.2:和:5

(2):和: (3)和

〖学法指导:假设两个比能组成比例,根据比例的基本性质,分别算出两个外项和两个內项的积,再肯定两个比能否组成比例。〗

(1)先让学生尝试判断,再交流,明确思考方法。

(2)还可以用什么方法来判断?用求比值的方法判断1.2:和:5能否组成比例可以吗?

(3)这两种方法,你更喜欢哪种?为什么?

2、在比例中,两个外项的积等于两个內项的积,如果知道两个外项的积和两个內项的积,你会写比例吗?

六(3)班智聪同学根据“2×9=3×6”写出了比例,猜猜他可能是怎么写得?请在练习本上写一写。

追问:你为什么写得那么块?有什么窍门吗?

补问:根据这个乘法等式,一共可以写多少个比例?

3、如果a×2=b×4,则a:b=( ):( );

如果a:b=4:2,则a=4,b=2。这种说法对吗?为什么?

那么a、b还可能是多少?你发现了什么?

4、猜猜我是谁?

6:( )=5: 4

延伸:如果把“( )”改为“x”就是我们下节课要学习的知识:解比例。

【设计意图:通过分层练习,巩固对比例基本性质的掌握,体验比例基本性质的应用价值,促进所有学生都能在动静结合的练习过程中获得发展,不同学生获得不同程度的发展。同时渗透假设、验证、有序思考的解题策略和方法,体验解决问题方法的多样性和优化策略,感受“一一对应”和“变与不变”的数学思想。】

四、分享收获畅谈感想

这节课,我们学习了什么?我们是怎样探究比例的基本性质的?

五、板书设计

七年级数学下册教案5

教学目标:

1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;

2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;

3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

教学难点:

数轴的概念和用数轴上的点表示有理数

知识重点

教学过程(师生活动) 设计理念

设置情境

引入课题

教师通过实例、课件演示得到温度计读数.

问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?

(多媒体出示3幅图,三个温度分别为零上、零度和零下)

问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.

(小组讨论,交流合作,动手操作) 创设问题情境,激发学生的学习热情,发现生活中的数学。

探究新知

教师:由上述两问题我们得到什么启发?你能用一条直线上的'点表示有理数吗?

让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?

从而得出数轴的三要素:原点、正方向、单位长度 体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

从游戏中学数学 做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗? 学生游戏体验,对数轴概念的理解

寻找规律

归纳结论

问题3:

1, 你能举出一些在现实生活中用直线表示数的实际例子吗?

2, 如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?

3, 哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

4, 每个数到原点的距离是多少?由此你会发现了什么规律?

(小组讨论,交流归纳)

归纳出一般结论,教科书第12的归纳。 这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

巩固练习

教科书第12页练习

小结与作业

课堂小结

请学生总结:

1, 数轴的三个要素;

2, 数轴的作以及数与点的转化方法。

本课作业

1, 必做题:教科书第18页习题1.2第2题

2,选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1, 数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

2, 教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

3, 注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

七年级数学下册教案6

平方根教学设计

一、情景引入(复习引入)

1、求下列和数的算术平方根4、9、100、9/16、0.25

2、如果一个数的平方等于9,这个数是多少?

讨论:这样的数有两个,它们是3和-3.注意中括号的作用.

又如:,则x等于多少呢?

二、探索新知

1、平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根.

求一个数的平方根的运算,叫做开平方.

例如:3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算.

2、观察:课本P45的图6.1-2.

图6.1-2中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.并根据这个关系说出1,4,9的平方根.

例4求下列各数的平方根。

(1) 100 (2) (3) 0.25

3、按照平方根的概念,请同学们思考并讨论下列问题:

正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?

一个是正数有两个平方根,即正数进行开平方运算有两个结果,一个是负数没有平方根,即负数不能进行开平方运算,符号:正数a的算术平方根可用表示;正数a的负的平方根可用-表示.

例5说出下列各式的意义,并求出它们的值。

归纳:平方根和算术平方根两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

4、堂上练习:课本P46小练习1、2、3

三、归纳小结(学生归纳,老师点评)

1、什么叫做一个数的`平方根?

2、正数、0、负数的平方根有什么规律?

3、怎样求出一个数的平方根?数a的平方怎样表示?

四、布置作业

P47-48习题6、1第3、4题。

五、板书设计:

6.1平方根

1、平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根.

2、a的平方根记为:

3、平方根的性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

《平方根》同步练习题

1已知第一个正方形纸盒的棱长是6厘米,第二个正方形纸盒的体积比第一个正方形纸盒的体积大127立方厘米,试求第二个正方形纸盒的棱长.

《6.1平方根》课时练习含答案

1.下面说法正确的是( )

A.4是2的平方根

B.2是4的算术平方根

C.0的算术平方根不存在

D.-1的平方的算术平方根是-1

答案:B

知识点:平方根;算术平方根

解析:

解答:A、4不是2的平方根,故本选项错误;

B、2是4的算术平方根,故本选项正确;

C、0的算术平方根是0,故本选项错误;

D、-1的平方为1,1的算术平方根为1,故本选项错误.

故选B.

分析:根据一个数的平方根等于这个数(正和负)开平方的值,算术平方根为正的这个数的开平方的值,由此判断各选项可得出答案.

七年级数学下册教案7

知识与技能:

1、了解一元一次不等式组的概念、

2、理解一元一次不等式组的解集,能求一元一次不等式组的解集、

3、会解一元一次不等式组、

过程与方法:

通过具体问题得到一元一次不等式组,从而了解一元一次不等式组的概念,解出每个不等式,利用数轴求出各不等式解集的公共部分,从而得到不等式组的解集,通过解几个有代表性的一元一次不等式组,总结出求不等式组解集的法则、

情感态度:

运用数轴确定不等式组的解集是行之有效的方法、这种“数形结合”的方法今后经常用到,锻炼同学们数形结合的能力,提高学习兴趣、

教学重点:

一元一次不等式组的解法、

教学难点:

确定一元一次不等式组的解集、

一、情境导入,初步认识

问题1:

现有两根木条a和b,a长10cm,b长3cm,如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么木条c的长度有什么要求?

解:由于三角形中两边之____大于第三边,两边之____小于第三边,设c的长为xcm,则x<____,①

x>____,②

合起来,组成一个__________

由①解得_____________

由②解得_____________

在数轴上表示就是________________

容易看出:x的取值范围是____________________

这就是说,当木条c比____cm长并且比____cm短时,它能与木条a和b一起钉成三角形木框、

问题2:

由上面的解不等式组的过程用自己的语言归纳出一元一次不等式组的解法

教学说明:全班同学可独立作业,也可分组自由讨论,10分钟后交流成果,逐步得出结论

二、思考探究,获取新知

思考什么叫一元一次不等式组,什么叫一元一次不等式组的解集,什么叫解不等式组?

归纳结论

1、定义:

(1)一元一次不等式组:几个含有相同未知数的'一元一次不等式合起来组成一个一元一次不等式组、(2)一元一次不等式组的解集:几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集、(3)解不等式组:求一元一次不等式组的解集的过程叫解一元一次不等式组、

2、一元一次不等式组的解法:

(1)求出每个一元一次不等式的解集、

(2)求出这些解集的公共部分,便得到一元一次不等式组的解集

七年级数学下册教案8

一、教学目标

(一)教学目标

1.了解平方差公式的几何背景.

2.会用面积法推导平方差公式,并能运用公式进行简单的运算.

3.体会符号运算对证明猜想的作用.

(二)能力目标

1.用符号运算证明猜想,提高解决问题的能力.

2.培养学生观察、归纳、概括等能力.

(三)情感目标

1.在拼图游戏中对平方差公式有一个直观的几何解释,体验学习数学的乐趣.

2.体验符号运算对猜想的作用,享受数学符号表示运算规律的简捷美.

二、教学重难点

(一)教学重点

平方差公式的几何解释和广泛的'应用.

(二)教学难点

准确地运用平方差公式进行简单运算,培养基本的运算技能.

三、教具准备

一块大正方形纸板,剪刀.

投影片四张

第一张:想一想,记作(1.7.2 A)

第二张:例3,记作(1.7.2 B)

第三张:例4,记作(1.7.2 C)

第四张:补充练习,记作(1.7.2 D)

四、教学过程

Ⅰ.创设问题情景,引入新课

[师]同学们,请把自己准备好的正方形纸板拿出来,设它的边长为a.

这个正方形的面积是多少?

[生]a2.

[师]请你用手中的剪刀从这个正方形纸板上,剪下一个边长为b的小正方形(如图1-23).现在我们就有了一个新的图形(如上图阴影部分),你能表示出阴影部分的面积吗?

[生]剪去一个边长为b的小正方形,余下图形的面积,即阴影部分的面积为(a2-b2).

[师]你能用阴影部分的图形拼成一个长方形吗?同学们可在小组内交流讨论.

(教师可巡视同学们拼图的情况,了解同学们拼图的想法)

七年级数学下册教案9

一、指导思想:

根据学生的实际情况,从生活入手,结合教材内容。通过本学期数学课堂教学,夯实学生的基础,提高学生的基本技能,培养学生学习数学知识和运用数学知识的能力,帮助学生初步建立数学思维模式。最终圆满完成七年级下册数学教学任务。

二、情况分析:

通过上学期考试情况,发现本班学生的数学成绩不甚理想。基础知识不扎实,计算能力较差,思路不灵活,缺乏创新思维能力,尤其是解难题的能力低下。总体上来看,低分很多,两极分化较为严重。

三、教学目标

知识与技能目标:认识实数和相交线及平行线,理解平行线的判定及其证明;掌握平面直角坐标系;学会解二元一次方程组以及不等式的具体解法。

过程与方法目标:学会抽取实际问题中的数学信息,发展几何思维模式。培养学生的观察和思维能力,尤其是自主探索的能力。

情感与态度目标:培养学生学习数学的兴趣,认识数学源自生活实践,最终回归生活。

四、教材分析

第五章、相交线与平行线:本章主要学习有理数的基本性质及运算。本章重点内容是有理数的概念,性质和运算。本章的难点在于理解有理数的基本性质、运算法则,并将它们应用到解决实际问题和计算中。

第六章、实数:本章主要是学习单项式和多项式的加减运算。本章重点内容是单项式、多项式、同类项的概念;合并同类项及去括号的法则及整式的加减运算。本章难点在于理解合并同类项和去括号的法则。

第七章、平面直角坐标系:本章主要学习一元一次方程的概念、等式的基本性质、一元一次方程的.解法及应用。本章重点内容是理解等式的基本性质;掌握解一元一次方程的一般步骤;列方程解决实际问题的基本思路。本章难点在于解一元一次方程,并利用一元一次方程解决简单的实际问题。

第八章、二元一次方程组及不等式组:本章主要学习线段和角有关的性质。本章的重点是区别直线、射线、线段,角的有关性质和计算;理解互为余角、互为补角的性质及应用。本章的难点在于线段和角的有关计算。

五、教学措施

1、潜心钻研教材,结合学生实际情况,进行针对性的备课,精心设置课堂教学内容和模式。上好每一堂课,阅好每一份试卷,搞好每一节辅导,组织好每一次测验。

2、开展丰富多彩的课外活动,课外调查,向学生介绍数学家、数学史、数学趣题,喻教于乐,激发学生的学习兴趣,挖掘学生的潜能,培养数学特长生。

3、开展分层教学实验,使不同的学生学到不同的知识,使人人能学到有用的知识,使不同的人得到不同的发展,获得成功感,使优生更优,差生逐渐赶上。

六、课时安排

教学进度计划安排如下:

第一周正数和负数及有理数5课时

第二周有理数的加减法5课时

第三周有理数的乘法5课时

第四周有理数的乘方5课时

第五周第一单元复习与单元测试5课时

第六周测试质量分析及小结 5课时

第七周整式----单项式5课时

第八周整式----多项式5课时

第九周整式的加减5课时

第十周期中复习及段考5课时

第十一周段考测试质量分析及小结 5课时

第十二周从算式到方程5课时第十三周解一元一次方程(一) 5课时第十四周解一元一次方程(二)5课时第十五周

第十六周

第十七周

第十八周

第十九周

第二十周

实际问题与一元一次方程第三单元复习及测试测试质量分析及小结多姿多彩的图形及直线射线、线段、角期末复习及考试5课时

七年级数学下册教案10

学习目标

1. 理解有序数对的应用意义,了解平面上确定点的常用方法

2. 培养用数学的意识,激发学习兴趣.

学习重点: 理解有序数对的意义和作用

学习难点: 用有序数对表示点的位置

学习过程

一.问题导入

1.一位居民打电话给供电部门:“卫星路第8根电线杆的路灯坏了,”维修人员很快修好了路灯.

2.地质部门在某地埋下一个标志桩,上面写着“北纬44.2°,东经125.7°”。

3.某人买了一张8排6号的电影票,很快找到了自己的座位。

分析以上情景,他们分别利用那些数据找到位置的。

你能举出生活中利用数据表示位置的例子吗?

二.概念确定

有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)

利用有序数对,可以很准确地表示出一个位置。

1.在教室里,根据座位图,确定数学课代表的位置

2.教材40页练习

三.方法归类

常见的确定平面上的点位置常用的方法

(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。

(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的'位置。

1.A点为原点(0,0),则B点记为(3,1)

2.以灯塔A为观测点,小岛B在灯塔A北偏东45,距灯塔3km 处。

例2是某次海战中敌我双方舰艇对峙,对我方舰艇来说:

(1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?

(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?

(3)要确定每艘敌舰的位置,各需要几个数据?

[巩固练习]

1.是某城市市区的一部分,对市政府来说:

北偏东60的方向有哪些单位?要想确定单位的位置。还需要哪些数据?火车站与学校分别位于市政府的什么方向,怎样确定他们的位置?

结合实际问题归纳方法

学生尝试描述位置

2. 马所处的位置为(2,3).

(1) 你能表示出象的位置吗?

(2) 写出马的下一步可以到达的位置。

[小结]

1. 为什么要用有序数对表示点的位置,没有顺序可以吗?

2. 几种常用的表示点位置的方法.

[作业]

必做题:教科书44页:1题

七年级数学下册教案11

教学目标

在了解同底数幂乘法意义的基础上掌握法则,会进行同底数幂的乘法基本运算。

在推导法则的过程中,培养观察、概括与抽象的能力。

通过对具体事例的观察和分析,归纳、总结出同底数幂乘法的法则,培养学生归纳、总结,以及从特殊到一般的抽象概括等思维能力。

让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。

重点难点

重点

同底数幂相乘的法则的推理过程及运用

难点

同底数幂相乘的运算法则的推理过程

教学过程

一、温故知新

1. 表示什么意义?(是乘方运算,表示10个2相乘;也可以用来表示运算的结果)

2.下列四个式子① ,② ,③ ④ 中,运算结果是 的有哪些?你能说明理由吗?(学生通过讨论,明确两个幂只有当底数相同时才可以乘起来,同时初步感受计算的方法)

3.光的传播速度是每秒 米,若一年以 秒计算,那么光走一年的路程是多少米呢?

学生列出式子 。这个式子怎样运算呢?解决这个问题的关键是弄清楚两个同底数幂相乘的一般方法,下面我们就来探索同底数幂的乘法法则。

二、新课讲解

探究新知

你能计算出 吗?

学生解答,教师板书

那么 等于多少呢?更一般的, 等于多少呢?

学生回答,教师板书

你发现运算的方法了吗?

师生共同概括归纳出同底数幂乘法的法则:

同底数幂相乘,底数不变,指数相加。

用公式表示是: (、n都是正整数)

动脑筋

当3个或三个以上的同底数幂相乘时,怎样用公式表示运算的结果呢?

学生思考并讨论解答,最后教师总结: (,n,p都是正整数)

三、典例剖析

例1 计算:(1) ;(2)

分析:直接运用公式计算,教师板书计算过程,强调初学时要注意弄清楚计算的步骤。

例2 计算:(1) ;(2)

让学生独立完成。这题意在进一步训练运用法则进行计算,注意观察学生是否会用法则进行计算,点评时要强调对法则的运用。

例3 计算:(1) ;(2)

学生解答并讨论,教师注意拓展学生对法则的运用,培养符号演算的能力,指出公式中的底数可以是具体的数,也可以是字母或式子表示的'数,提高学生的运算能力。

四、课堂练习

基础训练:

1.计算:

(1) ;(2) ;(3) ;(4)

2.计算:

(1) ;(2) ;(3) ;(4)

(学生解答各题,教师组织学生互相批改,对学生出错比较多的地方做讲解和变式训练)

提高训练

3. 计算 ;(2)

4.制作拉面需将长条形面团摔匀拉伸后对折,并不断重复若干次这组动作. 随着不断地对折, 面条根数不断增加. 若一碗面约有64 根面条,则面团需要对折多少次? 若一个拉面店一天能卖出2 048 碗拉面,用底数为2的幂表示拉面的总根数。

(用以提升学生运算的灵活性,提高学习兴趣。)

五、小结

师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。(如:对法则的理解,解决了什么问题,体会从特殊到一般探索规律的数学思想等等)

六、布置作业

教材P40 第1题,P41 第12题

七年级数学下册教案12

一、教材分析

同底数幂的乘法是北师大版初中数学七年级(下)第一章整式的乘除第一节的内容。在此之前,学生已经掌握了用字母表示数的技能,会判断同类项、合并同类项,同时在学习了有理数乘方运算后,知道了求n个相同数a的积的运算叫做乘方,乘方的结果叫做幂,即,在中,a叫底数,n叫指数,这些基础知识为本节课的学习奠定了基础。学生已经学习了幂的概念,具备了幂的运算的方法,为本课打下了基础,同底数幂的乘法运算法则的学习有助于培养训练学生的数感与符号感,同时也发展了他们的推理能力和有条理的表达能力,而本课内容又是学习整式除法及整式的乘除的基础。

二、教学目标

知识与技能:让学生在现实背景中进行体会同底数幂的乘法运算,并能解决一些实际问题。

过程与方法:经历在实际背景中探索同底数幂乘法运算性质的过程,进一步体会幂的意义,经历观察、归纳、猜想、解释等数学活动,增强学生的数感符号感,体验解决问题方法的多样性,发展合作交流能力,发展学生的合情推理和演绎推理能力以及有条理的表达能力。

情感与态度:在解决问题的过程中了解数学的价值,渗透数学公式的简洁美与和谐美。培养学生观察、概括、抽象、归纳的能力。体会数学的抽象性、严谨性和广泛性。

三、教学重难点

教学重点:同底数幂乘法运算法则及其应用。

教学难点:同底数幂乘法运算法则的探索及灵活运用。

突破方法:通过实例,让学生感觉到学习同底数幂乘法运算法则的必要性,从而引起学生的兴趣和注意力。然后引导学生利用幂的意义,将同底数幂相乘转化为几个相同因式相乘。让学生通过思考、讨论、交流、归纳,个人思考、小组合作探究等方式,进行知识迁移,总结出同底数幂乘法运算法则。让学生在探究问题的过程中理解转化的数学思想,初步理解“特殊—一般—特殊”的认知规律,养成用数学的思维和方法解决问题的习惯。

四、教学过程设计

本课时设计了七个教学环节:旧知链接、情境引入、归纳法则、探索拓广、反馈延伸、课堂小结、布置作业。

第一环节旧知链接

活动内容:1、前面我们学习了乘方,那么乘方的意义是什么?并用字母表示出来(学生课前将数学符号表述写黑板上,上课只口答文字描述。)

2、指出下列各式的底数与指数:54,x3 ,(-2)2,-22 。

设计意图:通过此活动,让学生回忆幂与乘法之间关系,即,从而为下一步探索得到同底数幂的乘法法则提供了依据,培养学生知识迁移的能力,为探究新知做好知识准备。

第二环节情境引入

活动内容:1、光在真空中的速度大约是3×108m/s,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年。一年以3×107秒计算,比邻星与地球的距离约为多少千米?

2、.计算下列各式:

(1)102×103;

(2)105×108;

(3)10m×10n(m,n都是正整数).你发现了什么?

3、2m×2n等于什么?(1/7)m ×(1/7)n呢?(-3)m×(-3)n呢?(m,n都是正整数)

(学生独立思考后,小组内交流,进行推导尝试,力争独立得出结论。.教师鼓励算法的多样化。 )

设计意图:从实际问题情境中建立数学模型,让学生感受到数学来源于生活,自然地体会到学习同底数幂的乘法的必要性。鼓励学生利用已学知识解决问题,善于将陌生问题转化为熟悉的.问题,培养学生数学转化的思想及重视算理的习惯。

第三环节新知探究,归纳法则

活动内容一:你能用字母表示同底数幂的乘法运算法则并说明理由吗?

(1)将引例中的各算式改写成乘法的字母算式。

(2)观察计算结果有什么规律?

(3)试猜想:am . an=( ) (自主完成改写算式,观察思考,并进行猜想,发表见解。)

(4)验证你的猜想。

(5)小结归纳法则。

(小组讨论,相互交流。鼓励学生用进行验证。对比同底数幂的乘法法则,引导学生用语言、数学符号两种方式表述,便于理解和记忆,互相补充。)

同底数幂相乘,底数不变,指数相加。

am· an=am+n(m,n是正整数)

设计意图:学生经历观察、猜想、验证等探究活动,体会知识的生成过程,并感悟从特殊到一般的研究解决问题的方法。在验证、小结归纳的活动中,进一步发展符号、化归等推理能力和有条理的表达能力。

活动内容二:am · an · ap等于什么?你是怎样做的?与同伴交流

am· an· ap = am+n+p

法则应用注意事项:(1)等号左边是同底数幂相乘法。

(2)等号两边的同底相同。

(3)等号右边的指数等于左边的指数和。

(4)公式中的底数a可以表示数、字母、单项式、多项式等整式。

设计意图:让学生明白同底数是三个或三个以上时相乘,同底数幂的乘法法则也成立,培养学生的联系拓广能力。

第四环节活学活用

活动内容一:

例1、计算:(1)(-3)7×(-3)6(2)(1/111)3×(1/111)2

(3)-x3.x5(4)b2m.b2m+1

(学生口述计算的每步过程和依据,师板书(1)解题过程。强调运算方法;强调字母a的指数;强调括号问题。其余自主完成计算,板演练习。集体讲评纠错。)

设计意图:规范解题步骤的同时,进一步体会算理,并深刻地理解同底数幂的乘法运算法则,达到熟练、准确运用法则进行计算的目的。

活动内容二:

例2光在真空中的速度约为3×108m/s,太阳光照射到地球大约需要5×102s.地球距离太阳大约有多远?

(独立审题,认真计算,交流讨论,发表见解。小组内交流方法。小结归纳,相互补充。)

设计意图:应用同底数幂的乘法运算法则解决实际问题,灵活运用同底数幂的乘法法则,同时培养学生用心审题的好习惯。

第五环节巩固练习

活动内容:课本随堂练习

1.计算:

(1)52×57;(2)7×73×72;

(3)-x2·x3;(4)(-c)3·(-c)m.

2.一种电子计算机每秒可做4×109次运算,它工作5×102s可做多少次运算?

3.解决本节课一开始比邻星到地球的距离问题.

(小组讨论、交流、展示。自主探究完成。)

设计意图:以小组讨论的方式突破难点,在交流过程中理解、尊重他人意见,从交流中获得成功的体验,培养学生勇于探索的精神。

第六环节课堂小结

活动内容:这节课你学到了哪些知识及哪些数学思想?

(鼓励学生多角度地对本节课的学习进行小结、评价,大胆发表见解和疑问。)

设计意图:在知识的整理中拓展学生的思维,养成良好的学习习惯,教师予以鼓励,激发学生的学习兴趣与自信心。

第七环节布置作业

习题7.1A组1.B组1、2、3

设计意图:作业分层布置,因材施教,培养学生的自信心。

四、教学设计反思:

1.培养学生数学思想,让学生掌握方法

在教学过程中让学生多观察,多思考,多讨论,给他们时间空间,教师在教学中应当有意识、有计划地设计教学活动,引导学生体会到数学知识之间的联系,感受转化的数学思想和整体的数学思想,不断丰富解决问题的策略,提高解决问题的能力。

2.改进教学和评价方式,为学生提供自主探索的机会

数学教学活动,应激发学生兴趣,调动学生积极性,引发学生的数学思考;学生学习应当是一个生动活泼的、主动地和富有个性的过程,因此我们的数学课堂应该努力改进教学和评价的方式,给学生提供更多自主探索的机会。课上通过学生自主讲解展示学习效果,教师只根据学生自学的情况点拨部分难点即可。

七年级数学下册教案13

七年级数学教案

1.2 一元一次不等式组的解法

2.2二元一次方程组的解法

2.3二元一次方程组的应用(1)

第10教案

教学目标

1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。

2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型。

3.引导学生关注身边的数学,渗透将来未知转达化为已知的`辩证思想。

教学重点

1.列二元一次方程组解简单问题。

2.彻底理解题意

教学难点

找等量关系列二元一次方程组。

教学过程

一、情境引入。

小刚与小玲一起在水果店买水果,小刚买了3千克苹果,2千克梨,共花了18.8元。小玲买了2千克苹果,3千克梨,共花了18.2元。回家路上,他们遇上了好朋友小军,小军问苹果、梨各多少钱1千克?他们不讲,只讲各自买的几千克水果和总共的钱,要小军猜。聪明的同学们,小军能猜出来吗?

二、建立模型。

1.怎样设未知数?

2.找本题等量关系?从哪句话中找到的?

3.列方程组。

4.解方程组。

5.检验写答案。

思考:怎样用一元一次方程求解?

比较用一元一次方程求解,用二元一次方程组求解谁更容易?

三、练习。

1.根据问题建立二元一次方程组。

(1)甲、乙两数和是40差是6,求这两数。

(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。

(3)已知关于求x、的方程,

是二元一次方程。求a、b的值。

2.P38练习第1题。

四、小结。

小组讨论:列二元一次方程组解应用题有哪些基本步骤?

五、作业。

P42。习题2.3A组第1题。

后记:

2.3二元一次方程组的应用(2)

第11教案

教学目标

1.会列二元一次方程组解简单的应用题并能检验结果的合理性。

2.提高分析问题、解决问题的能力。

3.体会数学的应用价值。

教学重点

根据实际问题列二元一次方程组。

教学难点

1.找实际问题中的相等关系。

2.彻底理解题意。

教学过程

一、引入。

本节课我们继续学习用二元一次方程组解决简单实际问题。

二、新课。

例1. 小琴去县城,要经过外祖母家,头一天下午从她家走到个祖母家里,第二天上午,从外外祖母家出发匀速前进,走了2小时、5小时后,离她自己家分别为13千米、25千米。你能算出她的速度吗?还能算出她家与外祖母家相距多远吗?

探究: 1. 你能画线段表示本题的数量关系吗?

2.填空:(用含S、V的代数式表示)

设小琴速度是V千米/时,她家与外祖母家相距S千米,第二天她走2小时趟的路程是______千米。此时她离家距离是______千米;她走5小时走的路程是______千米,此时她离家的距离是________千米。

3.列方程组。

4.解方程组。

5.检验写出答案。

讨论:本题是否还有其它解法?

三、练习。

1.建立方程模型。

(1)两在相距280千米,一般顺流航行需14小时,逆流航行需20小时,求船在静水中速度,水流的速度。

(2)420个零件由甲、乙两人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,还需3天完成。问:甲、乙每天各做多少个零件?

2.P38练习第2题。

3.小组合作编应用题:两个写一方程组,另两人根据方程组编应用题。

四、小结。

本节课你有何收获?

五、作业。

七年级数学下册教案14

1.2二元一次方程组的解法

1.2.1代入消元法

教学目标

1.了解解方程组的基本思想是消元。

2.了解代入法是消元的一种方法。

3.会用代入法解二元一次方程组。

4.培养思维的'灵活性,增强学好数学的信心。

教学重点

用代入法解二元一次方程组消元过程。

教学难点

灵活消元使计算简便。

教学过程

一、引入本课。

接上节课问题,写出所得一元一次方程及二元一次方程组提问怎样解二元一次方程组?

二、探究。

比较此列二元一次方程组和一元一次方程,找出它们之间的联系。

xy46.41(xx5.646.4 )xx5.646.4与xy46.4比xy5.62较而由(2)可得yx5.6(3)。把(3)代入(1)。xy46.4中的y就是x5.6,

可得一元一次方程。想一想本题是否有其它解法?讨论:解二元一次方程组基本想法是什么?

15xy9例1:解方程组 2y3x1

讨论:怎样消去一个未知数?

解出本题并检验。

12x3y0例2:解方程组 25x7y1

讨论:与例1比较本题中是否有与y3x1类似的方程?

怎样解本题?

学生完成解题过程。

草稿纸上检验所得结果。

简要概括本课中解二元一次方程组的基本想法,基本步骤。介绍代入消元法。(简称代入法)

三、练习

P27.练习题。

四、小结

本节课你有什么收获?

五、作业

习题2.2A组第1题。

后记

七年级数学下册教案15

情景引入→探究新知→知识应用→知识拓展→归纳小结,布置作业→探寻点的坐标变化与点平移规律

(一)情境引入

本环节主要是创设情境,在实际问题中引出本节课题.

【设计意图】

引导学生发现:可以借助游戏创设情境,导入新课.

(二)探究新知

1、利用丹凤地图的实际情境探索点的平移与坐标变化的规律.

2、如图,已知A(–2,–3),根据下列条件,在相应的坐标系中分别画出平移后的点,写出它们的坐标,并观察平移前后点的'坐标变化.

(1)将点A向右平移5个单位长度,得到点A1;

(2)将点A向左平移2个单位长度,得到点A2;

(3)将点A向上平移6个单位长度,得到点A3;

(4)将点A向下平移4个单位长度,得到点A4;

教学过程中注重让学生明确:将哪个点沿着什么方向,平移几个单位后,得到的是哪个点.

3、在此基础上可以归纳出:点的左右平移点的横坐标变化,纵坐标不变

点的上下平移点的横坐标不变,纵坐标变化

4、点的平移的应用.(见课件)

5、比一比看谁反应快

(1)点A(–4,2)先向右平移3个单位长度后得到点B,求点B的坐标.

(2)点A(–4,2)先向左平移2个单位长度后得到点B,求点B的坐标.

(3)点A(–4,2)先向下平移4个单位长度后得到点B,求点B的坐标.

(4)点A(–4,2)先向上平移3个单位长度后得到点B,求点B的坐标.

6、逆向思维:由点的变化探索点的方向和距离

(1)如果A,B的坐标分别为A(-4,5),B(-4,2),将点A向___平移___个单位长度得到点B;将点B向___平移___个单位长度得到点A。

(2)如果P、Q的坐标分别为P(-3,-5),Q(2,-5),将点P向___平移___个单位长度得到点Q;将点Q向___平移___个单位长度得到点P。

(3)点A′(6,3)是由点A(-2,3)经过__________________得到的.点B(4,3)向______________得到B′(4,5)

7、应用平移解决简单问题在平面直角坐标系中,有一点(1,3),要使它平移到点(-2,-2),应怎样平移?说出平移的路线。

下载七年级下册数学期中复习教案word格式文档
下载七年级下册数学期中复习教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    七年级数学下册教案

    七年级数学下册教案1 知识与技能:1、了解一元一次不等式组的概念、2、理解一元一次不等式组的解集,能求一元一次不等式组的解集、3、会解一元一次不等式组、过程与方法:通过具......

    2012政治七年级下册期中复习[大全]

    2012政治七年级下册期中复习 5.1生命宝贵 1、说说我们应如何珍惜自然界的其他生命? ①尊重自然规律,善待大自然; ②树立生态道德观,养成保护自然的思想意识和行为习惯; ③具体:略......

    七年级下册历史期中复习[精选合集]

    《期中考试复习》第1课繁盛一时的隋朝 一、大运河的开通1、 结合《隋朝大运河》,动手制作一幅隋朝大运河图。(四段运河、连接的河流)看图回答:1、隋朝时期,开通大运河的目的是什......

    北师大版七年级语文下册期中复习

    北师大版七年级语文下册期中复习:文学常识 北师大版初一语文下册期中文学常识归纳 课题作者国籍或时代称谓出处代表作品 《长江》郭风1917--当代作家(大自然的歌手)《英雄和花......

    七年级语文下册复习教案

    第一课时 复习目标:第一单元基础知识测查梳理。 复习方式:讲清要点、学生自己总结复习。 复习重点:第一单元基础知识、文言文。 教学过程: 一、课前考察字词复习二、默写《假......

    七年级下册文言文复习教案

    七年级下册文言文复习教案 复习目标: 1、朗读文言文,提高诵读古文的能力。 2、继续积累常见文言词汇。 3、理解重点篇目的主要内容。 复习重点: 1、 学会分类整理常见文言现象......

    七年级下册地理复习教案

    七年级下册地理复习教案第六章 我们生活的大洲---亚洲 第一节 自然环境 1.地理位置: ① 亚洲的半球位置:亚洲大部分位于东半球和北半球,但它又同时地跨东西半球和南北半球 ② 亚......

    七年级语文下册 复习教案

    复习教案:记叙文阅读指导 一: 四步阅读法 四步阅读法是根据语文结构教学法的理论,把阅读文本根据新课程标准的要求,设计的一种语文阅读方法。它由基本理解、内容理解、技巧理解......