高中数学竞赛的教案:平面几何 第八讲 圆幂定理(模版)

时间:2019-05-15 01:14:54下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学竞赛的教案:平面几何 第八讲 圆幂定理(模版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学竞赛的教案:平面几何 第八讲 圆幂定理(模版)》。

第一篇:高中数学竞赛的教案:平面几何 第八讲 圆幂定理(模版)

数学竞赛辅导讲稿—平面几何

第八讲

圆幂定理

一、知识要点:

1、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

即:如图,PA·PC=PB·PD ACOBPD

2、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点的两条线

段长的比例中项。即:如图,PA2=PB·PC

CBAP

3、割线定理:从圆外一点P引两条割线与圆分别交于A、B、C、D,则有 PA·PB=PC·PD。

BAD

CP

二、要点分析:

1、相交弦定理、切割线定理和割线定理统称为圆幂定理。其可统一地表示为:过定点的弦被该点内分(或外分)成的两条线段的积为定值(该点到圆心的距离与圆的半径的22平方差的绝对值),即PAPB定值(OPr)

2、相交弦定理通常是通过相似三角形而得到的,所以,研究圆中一些线段的比例关系总离不开相似三角形。

3、相交弦定理揭示了与圆相关的线段的比例关系,应用较多,特别是在处理有关计算、作比例中项、证明角相等、四点共圆等问题时是重要的理论依据。数学竞赛辅导讲稿—平面几何

三、例题讲解:

1、已知:如图,在ABC中,AM、AD分别是其中线和角平分线,⊙ADM交AB于L,交AC于N,求证:BL=CN NLBMDAC

2、如图,⊙O1与⊙O2相交于M、N,D是NM的延长线上的一点,O2O1延长线交⊙O1于B、A,AD交⊙O1于C,MN交O2O1、BC于E、G,求证:EM2=ED·EG DCAMGO1EBO2N 例

3、在RtABC中,D在斜边BC上,BD=4DC,一圆过点C,且与AC相交于F,与AB相切于AB的中点G,求证:AD⊥BF AFGDC B数学竞赛辅导讲稿—平面几何

4、如图,AB是⊙O中任意一弦,M为AB的中点,过M任作两条弦CD、EF,连接CE、DF分别交AB于G、H,求证:MG=MH(蝴蝶定理)CAMGFHBDE

5、ABCD是圆内接四边形,AC是圆的直径,BD⊥AC,AC与BD的交点为E,点F在DA的延长线上,连接BF,点G在BA的延长线上,使得DG∥BF,点H在GF的延长线上,CH⊥GF,证明:B、E、F、H四点共圆。

GHFABDEC 数学竞赛辅导讲稿—平面几何

第八讲 圆幂定理练习

班级:_____________姓名:_________________

1、⊙O1与⊙O2外切于点P,过P的直线与⊙O1,⊙O2分别相交于点A、C,AB切⊙O2于B, ⊙O1与⊙O2的半径分别是5、3,则AC:AB=____________.CPO2BO1A

2、如图:⊙O与等边ABC交于点D、E、F、G、H、J,如果GF=13,FC=1,AG=2,HJ=7,那么DE=___________.AHGJFBDEC

3、如图:在ABC中,BAC90,D在BC上,F在AC上,G是AB的中点,且满足AG2=AF·AC,BF⊥AD,则BD:DC=_____________.AFGCD B

4、AD、AE分别为ABC的角平分线和中线,过点A、D、E的圆和AB、AC分别交于M、N,求证:BM=CN ANMBEDC 数学竞赛辅导讲稿—平面几何

5、如图,B是⊙O的切线PA的中点,过B引⊙O的割线与⊙O交于点D、C,PD的延长线交⊙O于E,PC交⊙O于F,求证:AP∥EF ABPOFCED

6、(1)、已知,如图,四边形ABCD内接于圆,求证:AB·DC+BC·AD=AC·BD DCAB

(2)、已知,如图,在凸四边形ABCD中,AB·DC+BC·AD=AC·BD,求证:四边形ABCD为圆内接四边形。

DCA

附加题: B

y1x1、集合A={(x,y)}的子集的个数为________ 2y1xabbcca,},2、已知三个非零实数a,b,c,集合A={记x为集合A的所有元素之cab和,y为集合A的所有元素之积,若x2y,则xy的值是__________.3、集合A={1,3,5,7},B={2,4,6,8,20},若C={S︱S=a+b,a∈A,b∈B},则集合C的元素个数为__________.

第二篇:高中数学竞赛中平面几何涉及的定理

1、勾股定理(毕达哥拉斯定理)

2、射影定理(欧几里得定理)

3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分

4、四边形两边中心的连线的两条对角线中心的连线交于一点

5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。

6、三角形各边的垂直一平分线交于一点。

7、从三角形的各顶点向其对边所作的三条垂线交于一点

8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。

10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上

12、库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。

13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半

14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点

15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)

16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有

n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上

19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。

22、爱尔可斯定理2:若△ABC、△DEF、△GHI都是正三角形,则由三角形△ADG、△BEH、△CFI的重心构成的三角形是正三角形。

23、梅涅劳斯定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有 BPPC×CQQA×ARRB=

124、梅涅劳斯定理的逆定理:(略)

27、塞瓦定理:设△ABC的三个顶点A、B、C的不在三角形的边或它们的延长线上的一点S连接面成的三条直线,分别与边BC、CA、AB或它们的延长线交于点P、Q、R,则BPPC×CQQA×ARRB()=1.32、西摩松定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线)

34、史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心。

36、波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2∏).不用掌握

37、波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点

38、波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点。

39、波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆珠笔的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点

40、波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是

D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点。

41、关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上。

42、关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点。

43、卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线。

44、奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆取一点P,则PL、PM、PN与△ABC的三 边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线

45、清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线

46、他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW与边BC、CA、AB或其延长线的交点分别为ED、E、F,则D、E、F三点共线。(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP 则称P、Q两点关于圆O互为反点)

47、朗古来定理:在同一圆同上有A1B1C1D14点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上。

48、九点圆定理:三角形三边的中点,三高的垂足和三个欧拉点[连结三角形各顶点与垂心所得三线段的中点]九点共圆[通常称这个圆为九点圆[nine-point circle],或欧拉圆,费尔巴哈圆.49、一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点。

50、康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点。

51、康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松的交点在同一直线上。这条直线叫做M、N两点关于四边形ABCD的康托尔线。

52、康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L两点的关于四边形ABCD的康托尔线交于一点。这个点叫做M、N、L三点关于四边形ABCD的康托尔点。

53、康托尔定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上。这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线。

54、费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切。

55、莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形。这个三角形常被称作莫利正三角形。

56、牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三条共线。这条直线叫做这个四边形的牛顿线。

57、牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线。

58、笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。

59、笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。60、布利安松定理:连结外切于圆的六边形ABCDEF相对的顶点A和D、B和E、C和F,则这三线共点。

60、巴斯加定理:圆内接六边形ABCDEF相对的边AB和DE、BC和EF、CD和FA的(或延长线的)交点共线。

高中竞赛中重要,一般称做帕斯卡定理,而且是圆锥曲线内接六边形

第三篇:高中数学常用平面几何名定理

高中数学常用平面几何名定理

定理1 Ptolemy定理托勒密(Ptolemy)定理

四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。

定理2 Ceva定理

定理3 Menelaus定理

定理4 蝴蝶定理定理

内容:圆O中的弦PQ的中点M,任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。

定理5 张角定理

在△ABC中,D是BC上的一点。连结AD。张角定理指出:sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD

定理6 Simon line西姆松(Simson)定理(西姆松线)

从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。

定理7 Eular line:

同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半

定理8 到三角形三定点值和最小的点——费马点

已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。

定理9 三角形内到三边距离之积最大的点是三角形的重心

定理10到三角形三顶点距离的平方和最小的点是三角形的重心 在几何里,平面是无限延展的,是无大小的,是不可度量的,是无厚度的,通常画平行四边形来表示平面

0、勾股定理,即直角三角形两直角边的平方和等于斜边的平方。这是平面几何中一个最基本、最重要的定理,国外称为毕达哥拉斯定理。

1、欧拉(Euler)线:

同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半

2、九点圆:

任意三角形三边的中点.三条高线的垂足.垂心与各顶点连线的中点,这9点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

3、费尔马点:

已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。

4、海伦(Heron)公式:

在△ABC中,边BC、CA、AB的长分别为a、b、c,若p=0.5*(a+b+c),则△ABC的面积S=√ p*(p-a)(p-b)(p-c)

5、塞瓦(Ceva)定理:

在△ABC中,过△ABC的顶点作相交于一点P的直线,分别交边BC、CA、AB与点D、E、F,则 ;其逆亦真

6、密格尔(Miquel)点:

若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点,构成四个三角形,它们是△ABF、△AED、△BCE、△DCF,则这四个三角形的外接圆共点,这个点称为密格尔点。

7、葛尔刚(Gergonne)点:

△ABC的内切圆分别切边AB、BC、CA于点D、E、F,则AE、BF、CD三线共点,这个点称为葛尔刚点。

8、西摩松(Simson)线:

已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足,则D、E、F三点共线,这条直线叫做西摩松线。

9、黄金分割:

把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB)与较小线段(BC)的比例中项,这样的分割称为黄金分割

11、笛沙格(Desargues)定理:

已知在△ ABC与△A'B'C'中,AA'、BB'、CC'三线相交于点O,BC与B'C'、CA与C'A'、AB与A'B'分别相交于点X、Y、Z,则X、Y、Z三点共线;其逆亦真。

12、摩莱(Morley)三角形:

在已知△ABC三内角的三等分线中,分别与BC、CA、AB相邻的每两线相交于点D、E、F,则三角形DDE是正三角形,这个正三角形称为摩莱三角形。

13、帕斯卡(Paskal)定理:

已知圆内接六边形ABCDEF的边AB、DE延长线交于点G,边BC、EF延长线交于点H,边CD、FA延长线交于点K,则H、G、K三点共线

14、托勒密(Ptolemy)定理:

在圆内接四边形中,AB•CD+AD•BC=AC•BD15、阿波罗尼斯(Apollonius)圆

一动点P与两定点A、B的距离之比等于定比m:n,则点P的轨迹,是以定比m:n内分和外分定线段的两个分点的连线为直径的圆,这个圆称为阿波罗尼斯圆,简称“阿氏圆”

16、梅内劳斯定理

梅内劳斯定理(Menelaus’ theorem)的表述:如果一条直线和三角形ABC的三边或其延长线分别交于点P、Q、R,则有,BP/PC·CQ/QA·AR/RB=-

1此定理得逆命题也成立。

17、布拉美古塔(Brahmagupta)定理:

在圆内接四边形ABCD中,AC⊥BD,自对角线的交点P向一边作垂线,其延长线必平分对边

第四篇:圆幂定理及其证明

圆幂定理

圆幂的定义:一点P对半径R的圆O的幂定义如下:OPR

所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。圆幂定理是相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们推论的统称。

(1)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

DA22PC

如图,AB、CD为圆O的两条任意弦。相交于点P,连接AD、BC,则∠D=∠B,∠A=∠C。所以△APD∽△BPC。所以 BAPPDAPBPPCPD PCBP(2)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点的两条线段长的比例中项。

TPAB

如图,PT为圆切线,PAB为割线。连接TA,TB,则∠PTA=∠B(弦切角等于同弧圆周角)所以△PTA∽△PBT,所以

PTPAPT2PAPB PBPT(3)割线定理:从圆外一点P引两条割线与圆分别交于A.B.C.D 则有

PA·PB=PC·PD。

DCPAB

这个证明就比较简单了。可以过P做圆的切线,也可以连接CB和AD。证相似。存在:PAPBPCPD 进一步升华(推论):

过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D。则PA·PB=PC·PD。若圆半径为r,则

PCPD(POR)(POR)PO2R2|PO2R2|(一定要加绝对值,原因见下)为定值。这个值称为点P到圆O的幂。(事实上所有的过P点与圆相交的直线都满足这个值)

若点P在圆内,类似可得定值为R2PO2|PO2R2|

故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差的绝 对值。(这就是“圆幂”的由来)

第五篇:高中数学联赛平面几何定理

①鸡爪定理:设△ABC的内心为I,∠A内的旁心为J,AI的延长线交三角形外接圆于K,则KI=KJ=KB=KC。

由内心和旁心的定义可知∠IBC=∠ABC/2,∠JBC=(180°-∠ABC)/2 ∴∠IBC+∠JBC=∠ABC/2+90°-∠ABC/2=90°=∠IBJ 同理,∠ICJ=90° ∵∠IBJ+∠ICJ=180°

∴IBJC四点共圆,且IJ为圆的直径 ∵AK平分∠BAC ∴KB=KC(相等的圆周角所对的弦相等)

又∵∠IBK=∠IBC+∠KBC=∠ABC/2+∠KAC=∠ABI+∠BAK=∠KIB ∴KB=KI ∵IBJC四点共圆 且 KB=KI=KC ∴点K是四边形IBJC的外接圆的圆心(只有圆心满足与圆周上超过三个以上的点的距离相等)∴KB=KI=KJ=KC 鸡爪定理逆定理:设△ABC中∠BAC的平分线交△ABC的外接圆于K。在AK及延长线上截取KI=KB=KJ,其中I在△ABC的内部,J在△ABC的外部。则I是△ABC的内心,J是△ABC的旁心。证明:利用同一法可轻松证明该定理的逆定理。

取△ABC的内心I'和旁心J’,根据定理有KB=KC=KI'=KJ' 又∵KB=KI=KJ ∴I和I'重合,J和J’重合 即I和J分别是内心和旁心。

②蝴蝶定理:设S为圆内弦AB的中点,过S作弦EF和CD。设CF和DE各相交AB于点M和N,则S是MN的中点。

过O作OL⊥ED,OT⊥CF,垂足为L、T,连接ON,OM,OS,SL,ST,易明△ESD∽△CSF 证法1:霍纳证法

∴ES/CS=ED/FC 根据垂径定理得:LD=ED/2,FT=FC/2 ∴ES/CS=EL/CT 又∵∠E=∠C ∴△ESL∽△CST ∴∠SLN=∠STM ∵S是AB的中点所以OS⊥AB ∴∠OSN=∠OLN=90°

∴O,S,N,L四点共圆,(一中同长)同理,O,T,M,S四点共圆

∴∠STM=∠SOM,∠SLN=∠SON ∴∠SON=∠SOM ∵OS⊥AB ∴MS=NS ③西姆松定理:过三角形外接圆上异于三角形顶点的任意一点作三边或其延长线上的垂线,则三垂足共线。(此线常称为西姆松线)。西姆松定理的逆定理为:若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上。

证明一:△ABC外接圆上有点P,且PE⊥AC于E,PF⊥BC于F,PD⊥AB于D,分别连FE、FD、BP、CP.易证P、B、D、F和P、F、C、E分别共圆,(四点共圆)

在PBDF圆内,∠DBP+∠DFP=180度,在ABPC圆内∠ABP+∠ACP =180度,∴∠DFP=∠ACP ①,在PFCE圆内 ∠PFE=∠PCE②

而∠ACP+∠PCE=180°③ ∴∠DFP+∠PFE=180°④,即D、F、E共线。反之,当D、F、E共线时,由④→②→③→①可见A、B、P、C共圆。④九点圆:三角形三边的中点,三高的垂足和三个欧拉点(连结三角形各顶点与垂心所得三线段的中点)九点共圆。作图如下:△ABC的BC边垂足为D,BC边中点为L,AC边垂足为E,AC边中点为M,AB边垂足为F,AB边中点为N, 垂心为H,AH,BH,CH中点分别为P,Q,R(思路:以PL为直径,其它任意某点,去证P某L为90°)证明:(由中位线)PM∥CH,LM∥AB,又CH⊥AB∴PM⊥LM,又PD⊥LD ∴PMDL共圆。

(由中位线)PR∥AC,LR∥BH,BH⊥AC,所以PR⊥LR ∴PMRDL五点共圆。PE为Rt△AHE斜边中线 ∴∠PEA=∠PAE 同理∠LEC=∠LCE所以∠PEL=180°—∠ADC ∴∠LEP等于90°

∴PEMRDL六点共圆,PL为直径,同理PFNQL五点共圆,PL为直径 ∴PEMRDLQNF九点共圆,PL为直径,PL中点(设为V)就是圆心 下证 九点圆的圆心在垂心与外心连线的中点

O为外心,OL平行等于AH一半(小定理)所以OL平行等于PH OLPH为平行四边形,V是PL中点,就是OH中点。

⑤托勒密定理:圆内接凸四边形两对对边乘积的和等于两条对角线的乘积。

在任意凸四边形ABCD中(如右图),作△ABE使∠BAE=∠CAD ∠ABE=∠ ACD,连接DE.则△ABE∽△ACD 所以 BE/CD=AB/AC,即BE·AC=AB·CD(1)由△ABE∽△ACD得AD/AC=AE/AB,又∠BAC=∠EAD, 所以△ABC∽△AED.BC/ED=AC/AD,即ED·AC=BC·AD(2)(1)+(2),得

AC(BE+ED)=AB·CD+AD·BC 又因为BE+ED≥BD(仅在四边形ABCD是某圆的内接四边形时,等号成立,即“托勒密定理”)⑥三弦定理:圆上一点A,引出三条弦AB(左)、AC(右)、及中间弦AD,BC与AD交于P,则: ABsin∠CAP +ACsin∠BAP= ADsin∠BAC。

证明如下;连BD、CD, 由圆的相交弦定理→△ABP∽△CDP→AB/CD=AP/CP→AB·CP=CD·AP→

AB·CP-CD·AP=0→同理→AC·BP-BD·AP=0, 所以有AB(AB·CP-CD·AP)=0, AC(AC·BP-BD·AP)=0,两式相加→AB·AB·CP + AC·AC·BP=AB·CD·AP +AC·BD·AP=AP(AB·CD+AC·BD)=AP·BC·AD⑴(托氏定理)。

由AC外分∠BAP, 由《分角定理》→(sin∠CAP/ sin∠BAC)=(CP/BC)·(AB/AP), →

(ABsin∠CAP/ sin∠BAC)=(CP/BC)·(AB·AB/AP)⑵, 同理有, 由AB外分∠CAP, 由《分角定理》→(ACsin∠BAP/ sin∠BAC)=(BP/BC)·(AC·AC/AP)⑶, 由⑵+⑶→

(ABsin∠CAP+ ACsin∠BAP)/ sin∠BAC=(AB·AB·CP+ AC·AC·BP)/BC·AP,由⑴→

(AB·AB·CP+ AC·AC·BP)/BC·AP=AD, 所以(ABsin∠CAP+ ACsin∠BAP)/ sin∠BAC=AD, 所以,ABsin∠CAP+ ACsin∠BAP= ADsin∠BAC。证毕。

下载高中数学竞赛的教案:平面几何 第八讲  圆幂定理(模版)word格式文档
下载高中数学竞赛的教案:平面几何 第八讲 圆幂定理(模版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    4个圆幂定理及其证明

    相交弦定理如图,⊙P中,弦AB,CD相交于点P,则AP·BP=CP·PD证明:连结AC,BD,由圆周角定理的推论,得∠A=∠D,∠C=∠B。∴△PAC∽△PDB,∴PA∶PD=PC∶PB,PA·PB=PC·PD注:其逆定理可作为证明......

    高中数学联赛平面几何重点——梅涅劳斯定理

    梅涅劳斯定理梅涅劳斯定理证明梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长 线交于F、D、E......

    高中数学培优材料1:平面几何(梅涅劳斯定理)

    国光中学数学培优系列讲座——竞赛二试系列讲座高中数学培优讲座第一讲:平面几何——梅涅劳斯定理、塞瓦定理在中国数学奥林匹克(CMO)的六道试题中,以及国际数学奥林匹克(IMO)的......

    中级班第八讲教案

    经典诵读中级班第八讲教案 一、复习上次课内容 1、《论语》为政篇(共二十四章) 第二 2.14子曰:“君子周而不比,小人比而不周。” 2、《千字文》坚持雅操,好爵自縻。都邑华夏,东西......

    高中数学:1.6-微积分基本定理(教案)

    三、教学过程 1、复习: 定积分的概念及用定义计算 2、引入新课 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分......

    高中数学 《圆与方程》教案

    圆的一般方程 一、教学目标 (一)知识教学点 使学生掌握圆的一般方程的特点;能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方......

    全国初中数学竞赛辅导(初3) 第19讲平面几何中的几个著名定理

    第十九讲*平面几何中的几个著名定理 几何学起源于土地测量,几千年来,人们对几何学进行了深入的研究,现已发展成为一门具有严密的逻辑体系的数学分支.人们从少量的公理出发,经过......

    数字信号处理——第八讲(教案)

    1 第八讲(3.6节 离散时间LTI系统的Z域分析 3.7节 梳状滤波器、全通滤波器和最小相位系统) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1、回顾第七讲内容:%%%%%......