第一篇:高中数学 《圆与方程》教案
圆的一般方程
一、教学目标(一)知识教学点
使学生掌握圆的一般方程的特点;能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程.
(二)能力训练点
使学生掌握通过配方求圆心和半径的方法,熟练地用待定系数法由已知条件导出圆的方法,熟练地用待定系数法由已知条件导出圆的方程,培养学生用配方法和待定系数法解决实际问题的能力.
(三)学科渗透点
通过对待定系数法的学习为进一步学习数学和其他相关学科的基础知识和基本方法打下牢固的基础.
二、教材分析
1.重点:(1)能用配方法,由圆的一般方程求出圆心坐标和半径;(2)能用待定系数法,由已知条件导出圆的方程.
(解决办法:(1)要求学生不要死记配方结果,而要熟练掌握通过配方求圆心和半径的方法;(2)加强这方面题型训练.)2.难点:圆的一般方程的特点.
(解决办法:引导学生分析得出圆的一般方程的特点,并加以记忆.)3.疑点:圆的一般方程中要加限制条件D2+E2-4F>0.(解决办法:通过对方程配方分三种讨论易得限制条件.)
三、活动设计
讲授、提问、归纳、演板、小结、再讲授、再演板.
四、教学过程(一)复习引入新课
前面,我们已讨论了圆的标准方程(x-a)2+(y-b)2=r2,现将展开可得x2+y2-2ax-2by+a2+b2-r2=0.可见,任何一个圆的方程都可以写成x2+y2+Dx+Ey+F=0.请大家思考一下:形如x2+y2+Dx+Ey+F=0的方程的曲线是不是圆?下面我们来深入研究这一方面的问题.复习引出课题为“圆的一般方程”.
(二)圆的一般方程的定义
1.分析方程x3+y2+Dx+Ey+F=0表示的轨迹 将方程x2+y2+Dx+Ey+F=0左边配方得:
(1)(1)当D2+E2-4F>0时,方程(1)与标准方程比较,可以看出方程
半径的圆;
(3)当D2+E2-4F<0时,方程x2+y2+Dx+Ey+F=0没有实数解,因而它不表示任何图形. 这时,教师引导学生小结方程x2+y2+Dx+Ey+F=0的轨迹分别是圆、法.
2.圆的一般方程的定义
当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0称为圆的一般方程.
同时强调:由圆的一般方程求圆心坐标和半径,一般用配方法,这要熟练掌握. 例2 求过三点O(0,0)、A(1,1)、B(4,2)的圆的方程. 解:设所求圆的方程为x2+y2+Dx+Ey+F=0,由O、A、B在圆上,则有
解得:D=-8,E=6,F=0,故所求圆的方程为x2+y2-8x+6=0. 例2小结:
1.用待定系数法求圆的方程的步骤:
(1)根据题意设所求圆的方程为标准式或一般式;(2)根据条件列出关于a、b、r或D、E、F的方程;
(3)解方程组,求出a、b、r或D、E、F的值,代入所设方程,就得要求的方程. 2.关于何时设圆的标准方程,何时设圆的一般方程:一般说来,如果由已知条件容易求圆心的坐标、半径或需要用圆心的坐标、半径列方程的问题,往往设圆的标准方程;如果已知条件和圆心坐标或半径都无直接关系,往往设圆的一般方程.再看下例: 例3 求圆心在直线 l:x+y=0上,且过两圆C1∶x2+y2-2x+10y-24=0和C2∶x2+y2+2x+2y-8=0的交点的圆的方程.
(0,2).
设所求圆的方程为(x-a)2+(y-b)2=r2,因为两点在所求圆上,且圆心在直线l上所以得方程组为
故所求圆的方程为:(x+3)2+(y-3)2=10. 这时,教师指出:
(1)由已知条件容易求圆心坐标、半径或需要用圆心的坐标、半径列方程的问题,往往设圆的标准方程.
(2)此题也可以用圆系方程来解: 设所求圆的方程为:
x2+ y2-2x+10y-24+λ(x2+y2+2x+2y-8)=0(λ≠-1)整理并配方得:
由圆心在直线l上得λ=-2.
将λ=-2代入所假设的方程便可得所求圆的方程为x2+y2+6x-6y+8=0.此法到圆与圆的位置关系中再介绍,此处为学生留下悬念. 的轨迹,求这个曲线的方程,并画出曲线. 此例请两位学生演板,教师巡视,并提示学生:
(1)由于曲线表示的图形未知,所以只能用轨迹法求曲线方程,设曲线上任一点M(x,y),由求曲线方程的一般步骤可求得;
(2)应将圆的一般方程配方成标准方程,进而得出圆心坐标、半径,画出图形.(五)小结
1.圆的一般方程的定义及特点; 2.用配方法求出圆的圆心坐标和半径;
第二篇:高中数学第四章圆与方程4.1.1圆的标准方程教案
圆的标准方程
教学目标
(1)在理解推导过程的基础上,掌握圆的标准方程的形式特点,理解方程中各个字母的含义,能合理应用平面几何中圆的有关性质,结合方程解决圆的有关问题.
(2)理解掌握圆的切线的求法.包括已知切点求切线;从圆外一点引切线;已知切线斜率求切线等.
教学重点和难点
重点:圆的标准方程的理解、应用;圆的切线方程.(已知切点求切线;从圆外一点引切线;已知切线斜率求切线).
难 点:从圆外一点引切线,求切线方程,已知切线斜率求切线.
教学过程设计
(一)导入新课,教师讲授.
同学们,前面我们研究了直线(特殊的曲线)的方程及其有关问题,今天我们研究圆及与圆有关的问题.
什么是“圆”.想想初中我们学过的圆的定义.
“平面内与定点距离等于定长的点的集合(轨迹)是圆”.
定点就是圆心,定长就是半径.
根据圆的定义,我们来求圆心是c(a,b),半径是r的圆的方程.(引导学生推导)
设 M(x,y)是圆上任意一点,圆心坐标为(a,b),半径为r.
则│CM│=r,两边平方.(x-a)
2+(y-b)2
=r2,我们得到圆的标准方程,这就是圆心为C(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程. 如果圆的圆心在原点.O(0,0).即a=0.b=0.
问题1.说出下列圆的方程:
(1)圆心在点C(3,-4), 半径为7.(2)经过点P(5,1),圆心在点C(8,-3).问题2 说出下列方程所表示的圆的圆心坐标和半径:
(1)(x + 7)2 +(y 4)2
= 36(2)x2 + y2 4x + 10y + 28 = 0(3)(x a)2 + y 2
= m2
例1.写出圆心为C(2,-3),半径长等于5的圆的方程,并判断点 m1(5.-7),m2(-5,-1)是否在这个圆上。
跟踪训练
已知两点M(3,8)和N(5,2).(1)求以MN为直径的圆C的方程;
(2)试判断P1(2,8),P2(3,2),P3(6,7)是在圆上,在圆内,还是在圆外?
探究:在平面几何中,如何确定点与圆的位置关 系? 点与圆的位置关系:(x2220-a)+(y0-b)>r时,点M在圆C外(x2220-a)+(y0-b)=r时,点M在圆C上(x2220-a)+(y0-b) 例2 ⊿ABC的三个顶点的坐标分别是A(5,1), B(7,-3),C(2,-8),求它的外接圆的方程 例3 己知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心在直线l:x-y+1=0上,求圆心为C的圆的标准方程.(二)学生课堂练习 1.点(2a, 1 a)在圆x2 + y2 = 4的内部,求实数 a 的取值范围.2.根据下列条件,求圆的方程: (1)求过两点A(0,4)和B(4,6),且圆心在直线x-y+1=0上的圆的标准方程。(2)圆心在直线5x-3y=8上,又与两坐标轴相切,求圆的方程。(3)求以C(1,3)为圆心,且和直线3x-4y-7=0相切的直线的方程。 1、课本练习题1.(1)x 2+y2 =9;(2)(x-3)2 +(y-4)2 =5; (3)(x-8)2+(y+3)2 =25. 2、课本练习题2.x 2+y2 =196. 教师讲授,师生研究 下面我们来研究圆的切线问题: (1)已知切点坐标,求过这切点的切线方程. 例1 已知圆的方程是x2 +y2 =r2,求经过圆上一点M(x0,y0)的切线的方程. [分析]切线是直线,已知切线过切点,因此应从点斜式考虑,连接圆心O与切点M,切线l⊥OM,OM的斜率可求出,则切线的斜率l也可求出,由点斜式可得到切线的方程. 解: 设切线l的斜率为K,切线l:y-y0=K(x-x0),∴切线l的方程是 这个公式很重要,要熟记其特征与各个字母的含义. (2)已知切线的斜率,求切线的方程.(三)小结.圆的切线的求法. (1)已知切点求切线,把切点(x2 0,y0)坐标代入公式x0x+y0y=r即得到切线方程.但这种代法对同学们来讲,目前只适用于圆心在原点的圆. (2)已知斜率求切线,可设切线的斜截式y=kx+b,代入圆的方程,由△=0,求出截距b.这种求法适用于圆心在原点的圆,计算量较小. (3)过圆外一点作圆的切线,把切线高为点斜式,根据圆心到切线的距离等于半径这一基本性质,确定斜率,得到切线.这一求法较有普遍性,同学们要牢牢掌握,圆心不在原点时,用起来方便.(四)课时小结 1.圆的标准方程 2.点与圆的位置关系 3.求圆的标准方程的方法: ①待定系数法 ②几何法 (五)作业. 习题7.6 1、2、4、5 各位老师,大家好! 我叫韩杨,今天我说课的课题是《曲线和方程》的第一课时。下面我将从教材分析、教学目标、教学重难点、教法和学法、教学过程和教学效果等六个方面加以分析和说明。 一、教材分析 《曲线和方程》是人教版高中数学第二册上册第七章第五小节的内容。本节课的主要内容是了解曲线上的点与方程的解之间的一一对应关系,学会求解曲线的方程,因为学生已有了用方程表示曲线的感性认识,特别是二元一次方程表示直线,现在要进一步研究平面内的曲线和含有两个变量的方程之间的关系,是由直观表象上升到抽象概念的过程。它既是对前一节线性规划知识的延伸和发展,也为下一节圆的方程打下了基础,起到了承上启下的作用。 二、教学目标 根据教学大纲的要求和高中学生的认知规律,以及新课标对教育目标的定位,我将本节课的教育目标确定为以下三点: ►知识与技能目标:初步领会“曲线的方程”与“方程的曲线”的概念;学会根据已有的情景资料找规律,培养学生分析、判断、归纳的逻辑思维能力与抽象思维能力,同时强化“形”与“数”一致并相互转化的思想方法。►过程与方法目标 (1)通过直线方程的复习引入,加强学生对方程的解和曲线上的点的一一对应关系的直观认识; (2)在形成曲线和方程概念的过程中,学生经历观察,分析,讨论等数学活动过程,探索出结论并能有条理的阐述自己的观点; (3)能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识。 ►情感态度与价值观目标;课堂中,通过对问题的自主探究,培养学生的独立意识和独立思考能力;在问题逐步深入的研究中唤起学生追求真理,乐于创新的情感需求,引发学生强烈的求知欲。 三、教学的重难点 根据数学新课标标准,我确定本节课的重点是“曲线的方程”与“方程的曲线”的概念。为强化其认识,决定用集合相等的概念来解释曲线和方程的对应关系,并以此为工具来分析实例,这将有助于学生的理解,有助于学生通其法、知其理。 教学难点是怎样利用定义验证曲线是方程的曲线、方程是曲线的方程。因为学生在作 业中容易犯想当然的错误,通常在已知曲线建立方程的时候,不验证方程的解为坐标的点在曲线上,就断然得出所求的是曲线的方程。为了突破难点,本节课将通过例题让学生体会“二者”缺一不可的性质。四:教法和学法分析 数学是一门培养和发展人的思维的重要学科。因此,在教学中,不仅要让学生“知其然”,还要“知其所以然”,这也是我小学数学老师经常给我们说的一句话。新课标指出,学生是教学的主体,教师的教应从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,构建新的知识体系。学是中心,会学是目的。本节课主要板书的形式,教给学生“动手画、动脑想、善分析、善总结”的研讨式学习方法,教给学生主动思考问题、主动解决问题的方法,这样才能使学生产生一种成就感,从而提高学习数学的兴趣。五:教学过程 对于45分钟的课堂,我做了以下时间安排: 课题引入约5分钟,讲授新课约20分钟,练习巩固约13分钟,课堂小结约5分钟,作业布置约2分钟。 因为还没有正式的成为老师,没有教学经验,对课堂的时间把握不是很准确,所以拟定了时间安排,希望对教学过程有所帮助,做到合理安排时间,下面我从六个方面介绍一下我的教学过程。 1、设置情境——提出课题 在本节课之前,学生已经学习过直线的各种方程,建立了二元一次方程与直线的对应关系。所以这节课首先让学生先画出方程xy0表示的直线,借助图形让学生再一次从直观上深刻体会方程的解与直线上的点一一对应关系。在巩固已有知识的前提下再提出:对任意曲线和二元方程是否都能建立这种等价关系呢?从而引出本节课的内容:曲线和方程。通过提问的方式有助于吸引学生的注意力,激发他们强烈的好奇心和求知欲,给学生搭建起一个探究和实践的平台. 2.讲授新课 通过前面已经学过的圆、抛物线、再推广到任意曲线,借助图形让学生体会到对任意曲线的解和方程的解都能建立一一对应关系,从而得出“曲线的方程”和“方程的曲线”的定义。 问题2:如果概念中的两点少一点,是否也满足曲线上的点与方程的解的一一对应关系呢? 通过提问,引导学生对得到的结论要给予更多的思考,帮助他们提高认识,这也是概念 教学中学生理解概念的要点,给学生较多的时间互相探究问题和讨论解决问题。 找一下不同时满足两个条件的反例,通过反例的讲解,让学生自己总结得出: 要想满足曲线上的点与方程的解的一一对应关系,概念中的两点缺一不可。在概念教学中,通过反例的反衬,常常起着帮助学生理解概念的作用。 3、练习巩固 找一些典型例题让学生进行练习,做题过程中,要求学生独立思考,抽点几位学生到黑板上写出自己的答题过程,其他学生也独立完成,完成后,再抽点几个同学上台进行检查,错误的地方加以修改。这样既能让学生积极参与,增强学生的注意力,也能对解答中容易出错的地方加深印象。 4、课堂小结 本节课通过对实例的研究,掌握了“曲线的方程”、“方程的曲线”的定义,在领会定义时,要牢记定义中(1)、(2)两点缺一不可,它们都是“曲线的方程”和“方程的曲线”的必要条件,两者都满足了,“曲线的方程”和“方程的曲线”才具备充分性。小结时才提出“必要性”与“充分性”的问题,使学生的认识再上一个台阶,另一点意在建立“解析几何”的基本思想,使之逐步转变为学生的思想。5.布置作业 书本习题7.5第2题、第3题、第5题、第6题。 作业要求:允许学生对不会做的题目可以不做,但要分析出不会做的症结所在,这样做的目的在于既可以避免抄袭现象的产生,也可以让学生自己分析出知识的薄弱点,由被动学习变成主动学习,增强学习兴趣。 6、板书设计 力求简明清楚,重点突出,加深学生对重点知识的理解和掌握,有利于提高教学效果。 曲线与方程 公式推导 例题 练习六.教学效果分析 本节课在引导学生探究的过程中,关注学生的认知心理过程,重视学生学习过程中的参与度、自信心以及独立思考能力。教学过程中注重层次性,对基础薄弱的学生多给他们创造机会,力争每一个层次的学生都能有机会得到积极的评价,因为这是让他们保持自信,爱好数学的最佳培养时机。 以上是我的教学设计,肯定存在很多不足的地方,但是我一定会积极改进,请各位老师批评指正!谢谢! 圆的标准方程教案 .教学目标 知识目标:1.在平面直角坐标系中,探索并掌握圆的标准方程; 2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.能力目标:1.进一步培养学生用解析法研究几何问题的能力; 2.使学生加深对数形结合思想和待定系数法的理解; 3.增强学生用数学的意识.情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.2.教学重点.难点 教学重点:圆的标准方程的求法及其应用.教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰 当的坐标系解决与圆有关的实际问题.3.教学过程 创设情境 问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道? [引导]画图建系 [学生活动]:尝试写出曲线的方程 解:以某一截面半圆的圆心为坐标原点,半圆的直径AB所在直线为x轴,建立直角坐标系,则半圆的方程为x2y2=16 将x=2.7代入,得.即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。 深入探究 问题二:1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程? 答:x2y2=r2 2.如果圆心在,半径为时又如何呢? [学生活动]探究圆的方程。 [教师预设]方法一:坐标法 如图,设m是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合P={m||mc|=r} 由两点间的距离公式,点m适合的条件可表示为① 把①式两边平方,得22=r2 方法二:图形变换法 方法三:向量平移法 应用举例 I.直接应用 问题三:1.写出下列各圆的方程 圆心在原点,半径为3; 圆心在,半径为; 经过点,圆心在点.2.根据圆的方程写出圆心和半径 ;.II.灵活应用 问题四:1.求以为圆心,并且和直线相切的圆的方程.[教师引导]由问题三知:圆心与半径可以确定圆.2.已知圆的方程为,求过圆上一点的切线方程.[学生活动]探究方法 [教师预设] 方法一:待定系数法 方法二:待定系数法 方法三:轨迹法[多媒体演示] 方法四:轨迹法 3.你能归纳出具有一般性的结论吗? 已知圆的方程是,经过圆上一点的切线的方程是:.III.实际应用 问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高oP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度.[多媒体演示创设实际问题情境] 反馈训练 问题六:1.求以c为圆心,并且和y轴相切的圆的方程.2.已知点A,B,求以AB为直径的圆的方程.3.求圆x2y2=13过点的切线方程.4.已知圆的方程为,求过点的切线方程.小结反思 .课堂小结: 圆心为c,半径为r的圆的标准方程为: 当圆心在原点时,圆的标准方程为: 求圆的方程的方法:①找出圆心和半径;②待定系数法 已知圆的方程是,经过圆上一点的切线的方程是: 求解应用问题的一般方法 2.分层作业:巩固型作业:课本P81-82:1.2.4 思维拓展型作业: 试推导过圆上一点的切线方程.3.激发新疑: 问题七:1.把圆的标准方程展开后是什么形式? 2.方程:的曲线是什么图形? 教学设计说明 圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。.首先,在已有圆的定义和求曲线方程的一般步骤的基础上,用实际问题引导学生探究获得圆的标准方程,然后,利用圆的标准方程由浅入深的解决问题,并通过圆的方程在实际问题中的应用,增强学生用数学的意识。另外,为了培养学生的理性思维,我分别在引例和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成.本节课的设计了五个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想。应用启发式的教学方法把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时锻炼了思维.提高了能力、培养了 自3edu教育网兴趣、增强了信心 错误!未找到引用源。 圆的标准方程 三维目标: 知识与技能: 1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。 2、会用待定系数法求圆的标准方程。 过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力。 情感态度与价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣。 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。教学过程: 1、情境设置: 在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究: 2、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件(xa)2(yb)2r ① 化简可得:(xa)(yb)r ② 62224A2M-55-2-4 引导学生自己证明(xa)(yb)r为圆的方程,得出结论。 222 方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。 3、知识应用与解题研究 例(1):写出圆心为A(2,3)半径长等于5的圆的方程,并判断点M1(5,7),M2(5,1)是否在这个圆上。 分析探求:可以从计算点到圆心的距离入手。 探究:点M(x0,y0)与圆(xa)2(yb)2r2的关系的判断方法:(1)(x0a)2(y0b)2>r,点在圆外(2)(x0a)2(y0b)2=r,点在圆上(3)(x0a)2(y0b)2 例(2): ABC的三个顶点的坐标是A(5,1),B(7,3),C(2,8),求它的外接圆的方程 师生共同分析:从圆的标准方程(xa)2(yb)2r2 可知,要确定圆的标准方 222程,可用待定系数法确定a、b、r三个参数.(学生自己运算解决))B(2,2),且圆心在例(3):已知圆心为C的圆l:xy10经过点A(1,1和l:xy10上,求圆心为C的圆的标准方程.师生共同分析: 如图确定一个圆只需确定圆心位置与半径大小.圆心为C的圆经过点A(1,1)和B(2,2),由于圆心C与A,B两点的距离相等,所以圆心C在险段AB的垂直平分线m上,又圆心C在直线l上,因此圆心C是直线l与直线m的交点,半径长等于CA或CB。(教师板书解题过程。) 4l2A-5m5-2CB-4-6 总结归纳:(教师启发,学生自己比较、归纳)比较例(2)、例(3)可得出ABC外接圆的标准方程的两种求法: ①、根据题设条件,列出关于a、b、r的方程组,解方程组得到a、b、r得值,写出圆的标准方程.根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程.练习:课本p127第1、3、4题 提炼小结: 1、圆的标准方程。 2、点与圆的位置关系的判断方法。 3、根据已知条件求圆的标准方程的方法。 作业:课本p130习题4.1第2、3、4题第三篇:高中数学曲线和方程教案(改)
第四篇:圆的标准方程教案
第五篇:《圆的标准方程》_教案