最新高中数学圆的方程(含圆系)典型题型归纳总结总复习

2021-05-26 10:20:07下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《最新高中数学圆的方程(含圆系)典型题型归纳总结总复习》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《最新高中数学圆的方程(含圆系)典型题型归纳总结总复习》。

高中数学圆的方程典型题型归纳总结

类型一:巧用圆系求圆的过程

在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。常用的圆系方程有如下几种:

⑴以为圆心的同心圆系方程

⑵过直线与圆的交点的圆系方程

⑶过两圆和圆的交点的圆系方程

此圆系方程中不包含圆,直接应用该圆系方程,必须检验圆是否满足题意,谨防漏解。

当时,得到两圆公共弦所在直线方程

例1:已知圆与直线相交于两点,为坐标原点,若,求实数的值。

分析:此题最易想到设出,由得到,利用设而不求的思想,联立方程,由根与系数关系得出关于的方程,最后验证得解。倘若充分挖掘本题的几何关系,不难得出在以为直径的圆上。而刚好为直线与圆的交点,选取过直线与圆交点的圆系方程,可极大地简化运算过程。

解:过直线与圆的交点的圆系方程为:,即

………………….①

依题意,在以为直径的圆上,则圆心()显然在直线上,则,解之可得

又满足方程①,则

例2:求过两圆和的交点且面积最小的圆的方程。

解:圆和的公共弦方程为,即

过直线与圆的交点的圆系方程为,即

依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心必在公共弦所在直线上。即,则代回圆系方程得所求圆方程

例3:求证:m为任意实数时,直线(m-1)x+(2m-1)y=m-5恒过一定点P,并求P点坐标。

分析:不论m为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。

解:由原方程得

m(x+2y-1)-(x+y-5)=0,①

即,∴直线过定点P(9,-4)

注:方程①可看作经过两直线交点的直线系。

例4已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).(1)证明:不论m取什么实数,直线l与圆恒交于两点;

(2)求直线被圆C截得的弦长最小时l的方程.剖析:直线过定点,而该定点在圆内,此题便可解得.(1)证明:l的方程(x+y-4)+m(2x+y-7)=0.得

∵m∈R,∴

2x+y-7=0,x=3,x+y-4=0,y=1,即l恒过定点A(3,1).∵圆心C(1,2),|AC|=<5(半径),∴点A在圆C内,从而直线l恒与圆C相交于两点.(2)解:弦长最小时,l⊥AC,由kAC=-,∴l的方程为2x-y-5=0.评述:若定点A在圆外,要使直线与圆相交则需要什么条件呢?

思考讨论

类型二:直线与圆的位置关系

例5、若直线与曲线有且只有一个公共点,求实数的取值范围.解:∵曲线表示半圆,∴利用数形结合法,可得实数的取值范围是或.变式练习:1.若直线y=x+k与曲线x=恰有一个公共点,则k的取值范围是___________.解析:利用数形结合.答案:-1<k≤1或k=-

例6

圆上到直线的距离为1的点有几个?

分析:借助图形直观求解.或先求出直线、的方程,从代数计算中寻找解答.

解法一:圆的圆心为,半径.

设圆心到直线的距离为,则.

如图,在圆心同侧,与直线平行且距离为1的直线与圆有两个交点,这两个交点符合题意.

又.

∴与直线平行的圆的切线的两个切点中有一个切点也符合题意.

∴符合题意的点共有3个.

解法二:符合题意的点是平行于直线,且与之距离为1的直线和圆的交点.设所求直线为,则,∴,即,或,也即,或.

设圆的圆心到直线、的距离为、,则,.

∴与相切,与圆有一个公共点;与圆相交,与圆有两个公共点.即符合题意的点共3个.

说明:对于本题,若不留心,则易发生以下误解:

设圆心到直线的距离为,则.

∴圆到距离为1的点有两个.

显然,上述误解中的是圆心到直线的距离,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1.

类型三:圆中的最值问题

例7:圆上的点到直线的最大距离与最小距离的差是

解:∵圆的圆心为(2,2),半径,∴圆心到直线的距离,∴直线与圆相离,∴圆上的点到直线的最大距离与最小距离的差是.例8(1)已知圆,为圆上的动点,求的最大、最小值.

(2)已知圆,为圆上任一点.求的最大、最小值,求的最大、最小值.

分析:(1)、(2)两小题都涉及到圆上点的坐标,可考虑用圆的参数方程或数形结合解决.

解:(1)(法1)由圆的标准方程.

可设圆的参数方程为(是参数).

(其中).

所以,.

(法2)圆上点到原点距离的最大值等于圆心到原点的距离加上半径1,圆上点到原点距离的最小值等于圆心到原点的距离减去半径1.

所以.

所以..

(2)

(法1)由得圆的参数方程:是参数.

则.令,得,.

所以,.

即的最大值为,最小值为.

此时.

所以的最大值为,最小值为.

(法2)设,则.由于是圆上点,当直线与圆有交点时,如图所示,两条切线的斜率分别是最大、最小值.

由,得.

所以的最大值为,最小值为.

令,同理两条切线在轴上的截距分别是最大、最小值.

由,得.

所以的最大值为,最小值为.

例9、已知对于圆上任一点,不等式恒成立,求实数的取值范围.

设圆上任一点

∴,∵恒成立

即恒成立.

∴只须不小于的最大值.

∴即.

说明:在这种解法中,运用了圆上的点的参数设法.一般地,把圆上的点设为().采用这种设法一方面可减少参数的个数,另一方面可以灵活地运用三角公式.从代数观点来看,这种做法的实质就是三角代换.

下载最新高中数学圆的方程(含圆系)典型题型归纳总结总复习word格式文档
下载最新高中数学圆的方程(含圆系)典型题型归纳总结总复习.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中数学 《圆与方程》教案

    圆的一般方程 一、教学目标 (一)知识教学点 使学生掌握圆的一般方程的特点;能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方......

    《圆》总复习(教案)

    第六章 《圆》总复习 第一部分圆的有关性质 一、考试要求: 1、 准确理解与圆有关的概念及性质,能正确辨别一类与圆有关的概念型试题; 2、 点与圆和数量关系的转化; 3、 利用圆心......

    高中数学知识点总结-第七章直线和圆的方程

    高中数学第七章-直线和圆的方程 考试内容: 直线的倾斜角和斜率,直线方程的点斜式和两点式.直线方程的一般式. 两条直线平行与垂直的条件.两条直线的交角.点到直线的距离. 用二元一......

    高中数学第四章圆与方程4.1.1圆的标准方程教案

    圆的标准方程 教学目标 在理解推导过程的基础上,掌握圆的标准方程的形式特点,理解方程中各个字母的含义,能合理应用平面几何中圆的有关性质,结合方程解决圆的有关问题.......

    圆复习教案

    第二十四章圆(复习) --圆、与圆有关的位置关系(1) 圆的相关概念 教学目标: 知识与技能:了解点和圆、直线和圆的位置关系。 过程与方法:通过复习点和圆、直线和圆的位置关系,进一步发展......

    圆的标准方程教案

    圆的标准方程教案 .教学目标 知识目标:1.在平面直角坐标系中,探索并掌握圆的标准方程; 2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程. 能力目标:1.进一步培养......

    《圆的标准方程》_教案

    错误!未找到引用源。 圆的标准方程 三维目标: 知识与技能:1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。 2、会用待定系数法求圆的标准方程。 过程与方法:进一步培养......

    《圆的标准方程》说课稿

    《圆的标准方程》说课稿 《圆的标准方程》说课稿1 (一)说教材1、教材结构编排:本节课位于直线方程之后和圆的一般方程之前,学习直线方程为后边学习圆的方程奠定了基础,而学好圆的......