七年级数学下册《5.3平行线的性质》的教学反思

时间:2019-05-15 12:27:15下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《七年级数学下册《5.3平行线的性质》的教学反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《七年级数学下册《5.3平行线的性质》的教学反思》。

第一篇:七年级数学下册《5.3平行线的性质》的教学反思

第五章平行线的性质内容,是在学生学习习近平行线的条件之后来进行学习的。因此,在引入环节,就充分考虑到学生已经具备的这一知识基础,从回忆平行线的判定入手,创设一个疑问来激发学生的思考,进而引导学生进行平行线性质的探索。

本节课最突出的是平行线性质的得到过程,不是教师将学生听得到的,而是学生通过自主探索、实验、验证发现的,即在学生充分活动的基础上,由学生自己发现的,并用自己的语言来归纳的,这对学生增强学习的兴趣和学习的自信心都很有好处,而两次探索情景的引导又不尽相同,第一次探究“两直线平行,同位角相等”着重面向全体学生,让全体学生都能参与的到探究活动中来,因此先安排了一个“探究步骤的”探索,而第二次探究“两直线平行,内错角相等”“两直线平行,同旁内角互补”,则更是强调学生的自主学习,强调学生在学习过程的自主、自控学习过程。

知识的拓展部分又助于学生加深对平行线性质的理解,区分性质与判定方法的区别与联系,以及对三个性质之间内在的联系的理解,同时也是为平行线性质的运用大好基础。

第二篇:七年级数学下册5.3平行线的性质教案4人教版

亿库教育网http://www.xiexiebang.com

§5.3平行线的性质

(一)教学目标1.使学生理解平行线的性质和判定的区别. 2.使学生掌握平行线的三个性质,并能运用它们作简单的推理.

重点:平行线的三个性质.难点:平行线的三个性质和怎样区分性质和判定.

关键:能结合图形用符号语言表示平行线的三条性质.

教学过程

一、复习

1.如何用同位角、内错角、同旁内角来判定两条直线是否平行?

2.把它们已知和结论颠倒一下,可得到怎样的语句?它们正确吗?

二、新授

1.实验观察,发现平行线第一个性质

请学生画出下图1进行实验观察.设l1∥l2,l3与它们相交,请度量∠1和∠2的大小,图1图2图

3你能发现什么关系?请同学们再作出直线l4,再度量一下∠3和∠4的大小,你还能发现它们有什么关系?

平行线性质1(公理):两直线平行,同位角相等.

2.演绎推理,发现平行线的其它性质

(1)已知:如图2,直线AB,CD被直线EF所截,AB∥CD.求证:∠1= ∠2.

(2)已知:如图3,直线AB,CD被直线EF所截,AB∥CD.求证:∠1+∠2=180°. 在此基础上指出:“平行线的性质2(定理)”和“平行线的性质3(定理)”.

3.平行线判定与性质的区别与联系(将判定与性质各三条全部用多媒体显示.)

(1)性质:根据两条直线平行,去证角的相等或互补.

(2)判定:根据两角相等或互补,去证两条直线平行.

联系是:它们的条件和结论是互逆的,性质与判定要证明的问题是不同的.

三、例题

A

EF

BC

5例2如图4所示,AB∥CD,AC∥BD.找出图中相等的角与互补的角.

此题一定要强调,哪两条直线被哪一条直线所截.

答:相等的角为:∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8.互补的角为:∠BAC+∠ACD=180°,∠ABD+∠CDB=180°,∠CAB+∠DBA=180°,∠ACD+∠BDC=180°.

相等的角还有:∠ACD=∠ABD,∠BAC=∠BDC.(同角的补角相等)

例3如图5所示.已知:AD∥BC,∠AEF=∠B,求证:AD∥EF.

分析:(执果索因)从图直观分析,欲证AD∥EF,只需

亿库教育网http://www.xiexiebang.com

亿库教育网http://www.xiexiebang.com

∠A+∠AEF=180°,(由因求果)因为AD∥BC,所以∠A+∠B=180°,又∠B=∠AEF,所以∠A+∠AEF=180°成立.于是得证.图6

证明:因为AD∥BC,(已知)

所以∠A+∠B=180°.(两直线平行,同旁内角互补)

因为∠AEF=∠B,(已知)图所以∠A+∠AEF=180°,(等量代换)

所以AD∥EF.(同旁内角互补,两条直线平行)

四、练习:

1.如图6所示,已知:AE平分∠BAC,CE平分∠ACD,且AB∥CD.求证:∠1+∠2=90°. 证明:因为AB∥CD,所以∠BAC+∠ACD=180°,又因为AE平分∠BAC,CE平分∠ACD,1

211故12(BACACD)1800900. 22所以1BAC,2ACD,即∠1+∠2=90°.(理由略)

2.如图7所示,已知:∠1=∠2,求证:∠3+∠4=180°.

分析:(让学生自己分析)

证明:(学生板书)

小结 我们是如何得到平行线的性质定理?通过度量,运用从特殊到一般的思维方式发现性质1(公理),然后由公理通过演绎证明得到后面两个性质定理.从因果关系和所起的作用来看性质定理和判定定理的区别与联系.

作业:

1.如图,AB∥CD,∠1

=102°,求∠

2、∠

3、∠

4、∠

5的度数,并说明根据?

2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果

∠B=40°,∠2=75°,那么∠

1、∠

3、∠C、∠BAC+∠B+∠C

各是多少度,为什么?

3.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得

到哪些角相等?并简述理由.

亿库教育网http://www.xiexiebang.com

第三篇:5.3平行线的性质

5.3平行线的性质

【教学过程】

一、创设实验情境,引发学生学习兴趣,引入本节课要研究的内容.

试验1:教师以窗格为例,已知窗户的横格是平行的,用三角尺进行检验,发现同位角相等.这个结论是否具有一般性呢?

试验2:学生试验(发印制好的平行线纸单).(1)要求学生任意画一条直线c与直线a、b相交;(2)选一对同位角来度量,看看这对同位角是否相等. 学生归纳:两条平行线被第三条直线所截,同位角相等.

二、主体探究,引导学生探索平行线的其他性质以及对命题有一个初步的认识. 活动1 问题讨论:

我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角.我们已经知道“两条平行线被第三条直线所截,同位角相等”.那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系?(分组讨论,每一小组推荐一位同学回答).

教师活动设计:引导学生讨论并回答.

学生口答,教师板书,并要求学生学习推理的书写格式.

活动

2总结平行线的性质.

性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.

性质3:两条平行直线被第三条直线所截,同旁内角互补. 简单说成:两直线平行,同旁内角互补. 活动

3如何理解并记忆性质2、3,谈谈你的看法!(1)性质2、3分别已知什么?得出什么?(2)它与前面学习的平行线的判定有什么区别?(3)性质2、3的应用格式. ∵a//b(已知)

∴∠3=∠2(两直线平行,内错角相等). ∵ a//b(已知)

∴∠2+∠4=180°(两直线平行,同旁内角互补).

三、拓展创新、应用提高,引导学生运用知识解决问题,培养学生思维的灵活性和深刻性

活动4 解决问题.

问题1:如图是举世闻名的三星堆考古中发掘出的一个梯形残缺玉片,工作人员从玉片上已经量得∠A=115°,∠D=100°.请你求出另外两个角的度数.(梯形的两底是互相平行的)

学生活动设计:

学生思考后请学生回答,注意启发学生回答为什么,进一步细化为较为详细的推理,并书写出.

〔解答〕因为ABCD是梯形. 所以AD//BC.

所以∠A+∠B=180°,∠D+∠C=180°.

B

C

A

D

2a

1b

c

又∠A=115°,∠D=100°. 所以∠B=65°,∠C=80°.

问题2:如图,一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角B等于142°,第二次拐的角C是多少度?为什么?

学生活动设计:

学生根据拐弯前后的两条路互相平行容易得到∠B和∠C相等,于是得到∠C=142° 问题3:如图,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4.

(1)∠

1、∠3的大小有什么关系?∠2与∠4呢?(2)反射光线BC与EF也平行吗?

学生活动设计:从图中可以看出:∠1与∠3是同位角,因为AB与DE是平行的,所以∠1=∠3.又因为∠1=∠2,∠3=∠4,所以可得出∠2=∠4.又因为∠2与∠4是同位角,所以BC∥EF.

教师活动设计:这个问题是平行线的特征与直线平行的条件的综合应用.由两直线平行,得到角的关系用到的是平行线的特征;反过来,由角的关系得到两直线平行,用到的是直线平行的条件.同学们要弄清这两者的区别.

〔解答〕略.

问题4:如图,若AB//CD,你能确定∠B、∠D与∠BED的大小关系吗?说说你的看法.

B

A

E

F

C

D

学生活动设计:

由于有平行线,所以要用平行的知识,而∠B、∠D与∠DEB这三个角不是三类角中的任何一类,因此要考虑构造图形,若过点E作EF//AB,则由AB//CD得到EF//CD,于是图中出现三条平行线,同时出现了三类角,根据平行线的性质可以得到:∠B=∠BEF、∠D =∠DEF,因此∠B+∠D=∠BEF+∠DEF=∠DEB.

教师活动设计:

在学生探索的过程中,特别是构造图形这个环节,适当引导,让学生养成“缺什么补什么”的意识,培养学生的逻辑推理能力.

〔解答〕过点E作EF//AB. 所以∠B=∠BEF. 因为AB//CD. 所以EF//CD. 所以∠D=∠DEF.

所以∠B+∠D=∠BEF+∠DEF=∠DEB.

即∠B+∠D=∠DEB. 变式思考:

如图,AB//CD,探索∠B、∠D与∠BED的大小关系(∠B+∠D+∠DEB=360°).

A

B

E

C

D

四、小结与作业. 小结:

1.平行线的三个性质: 两直线平行,同位角相等. 两直线平行,内错角相等. 两直线平行,同旁内角互补.

2.平行线的性质与平行线的判定有什么区别? 判定:已知角的关系得平行的关系.证平行,用判定. 性质:已知平行的关系得角的关系.知平行,用性质. 作业:习题5.3.

第四篇:七年级下数学教案:5.3平行线的性质

5.3平行线的性质(2)

教学目标

1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条件表达能力;

2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论;

3.能够综合运用平行线性质和判定解题。教学重点难点

1.平行线性质和判定综合应用,两条平行线的距离,命题等概念; 2.平行线性质和判定灵活运用。教学过程

一、复习引入:

1.平行线的判定方法有哪些? 2.平行线的性质有哪些? 3.完成下面填空:

已知:BE是AB的延长线,AD//BC,AB//CD,若DC,A,EBC100 则

4.ab,cb那么a,c的位置关系如何?

二、新课:

1.例1:已知a//c,ab,直线b与c垂直吗?为什么? 例2:如图是一块梯形铁片的残余部分,量得A100,B梯形另外两个角分别是多少度?

115,2.实践 与探究

(1)学生操作:用三角尺和直尺画平行线,做成一张55个格子的方格纸。观察并思考:做出的方格纸的一部分,线段B1C1,B2C2„B5C5都与两条平行线A1B5,A2C5垂直吗?它们的长度相等吗?

教师给出两条平行线的距离定义:同时垂直于两条平行线,并且夹在这两条平行线间的线段长度叫做两条平行线的距离。

问题:AB//CD,在CD上任取一点E,作EFAB,垂足

F,问EF是否垂直DC?垂线段EF是平行线AB、CD的距离吗?

结论:两条平行线的距离处处相等,而不随垂线段的位置而改变。3.命题和它的构成: 下列语句,分析语句的特点:

(1)如果两条直线都与第三条直线平行,那么这两条直线也平行

(2)对顶角相等

(3)等式两边同加上同一个数,结果仍是等式(4)如果两条直线不平行,那么同位角不相等

这些句子都是对某一件事情作出“是”或“不是”的判断。命题:判断一件事情的句子,叫做命题:

(1)命题的组成:命题由题设和结论两部分组成,题设是已知项,结论是由已知项推出的事项;

(2)形式:通常写成“如果...,那么...”的形式。

三、巩固练习:

1.“等式两边乘以同一个数,结果仍是等式”是命题吗?如果是,它的题设和结论分别是什么?

2.举出一些命题的例子。

四、作业课本P25(5 7 8 11 12)

第五篇:七年级数学下册 5.3平行线的性质(第二课时)教案 (新版)新人教版

5.3平行线的性质(第二课时)

【教学目标】

掌握两条平行线的距离的概念,并能灵活运用.【对话设计】 〖探索1〗

一块梯形铁片的残余部分如图,量得∠A=75º,∠B=72º,梯形的另外两个角分别是多少度?

〖阅读模仿〗请模仿P23例作答.〖探索2〗 如图,AB∥CD,(1)在AB上任取一点E,向CD画垂线段EF;

C D(2)EF是否也垂直于AB呢?(3)在AB上另取一点G,向CD画垂线段GH;(4)在CD上,点F、H外,任取一点I,向AB画垂线段IJ;B A(5)量出EF、GH、IJ的长,说说你的发现.〖探索3〗

同时垂直于两条平行线,并且夹在这两条平行间的线段之间有什么性质?你能举出实际的例....子吗? 〖概念学习〗

同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线间的距离.〖概念应用〗 C(1)探索2的图中,两条平行线的距离是多少?(2)如图,若AB∥CD,求AB、CD的距离.D B 〖作业〗

P25.5、6、7.A 【教学目标】

掌握两条平行线的距离的概念,并能灵活运用.【对话设计】 〖探索1〗

一块梯形铁片的残余部分如图,量得∠A=75º,∠B=72º,梯形的另外两个角分别是多少度?

〖阅读模仿〗请模仿P23例作答.〖探索2〗 如图,AB∥CD,(1)在AB上任取一点E,向CD画垂线段EF;

C D(2)EF是否也垂直于AB呢?(3)在AB上另取一点G,向CD画垂线段GH;

A B(4)在CD上,点F、H外,任取一点I,向AB画垂线段IJ;(5)量出EF、GH、IJ的长,说说你的发现.〖探索3〗

同时垂直于两条平行线,并且夹在这两条平行间的线段之间有什么性质?你能举出实际的例....子吗? 〖概念学习〗

同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线间的距离.〖概念应用〗(1)探索2的图中,两条平行线的距离是多少?(2)如图,若AB∥CD,求AB、CD的距离.〖作业〗

P25.5、6、7.C D B A

下载七年级数学下册《5.3平行线的性质》的教学反思word格式文档
下载七年级数学下册《5.3平行线的性质》的教学反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    七年级数学下册 5.3平行线的性质(三)作业精编 新人教版

    5.3平行线的性质(三)作业一、选择题:1.如图1所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为( C)A.35°B.30°C.25°D.20° 2.如图2所示,AB∥CD,则∠A+∠E+∠F+∠C等于( C......

    平行线性质教学反思

    平行线性质评课材料 内乡初中数学组:靳小燕 本节课首先提出问题: 1.请同学们回顾前面学过的平行线的判定方法,并说出它们的已知和结论分别是什么? 2、把这三句话的已知和结论颠......

    《平行线性质》教学反思

    《平行线性质》教学反思本节课首先提出问题:1.请同学们回顾前面学过的平行线的判定方法,并说出它们的已知和结论分别是什么?2、把这三句话的已知和结论颠倒一下,可得到怎样的语......

    平行线性质教学反思

    平行线性质教学反思平行线性质教学反思1 4月6日在我校召开了一场有关于高效课堂的研讨会,应区教研室要求,我上了一节示范课。本节课我选择了一节有关于平行线性质和判定的综......

    七年级数学下册平行线的性质教案好

    课题:10.3《平行线的性质》第一课时 教学目的 1.使学生掌握平行线的三个性质,并能运用它们作简单的推理. 2.使学生了解平行线的性质和判定的区别. 重点难点 1.平行的三个性质,是本节......

    七年级下册《平行线的性质》说课稿

    七年级下册《平行线的性质》说课稿 七年级下册《平行线的性质》说课稿 尊敬的评委老师: 大家好,我是#号选手,很高兴能有这次机会与大家交流。今天我要说课的内容是义务教育......

    【湘教版】七年级数学下册:4.3《平行线的性质》教案

    平行线的性质 知识与技能: 1、使学生理解平行线的性质,能初步运用平行线的性质进行有关计算。 2、学会平行线性质的简单应用。 过程与方法: 通过本节课的教学,培养学生......

    数学七年级下册平行线的判定和性质练习题

    数学七年级下册平行线的判定和性质练习题一、填空1.如图1,若A=3,则∥;若2=E,则∥;若+= 180°,则∥.c A d a E 5 a2 2B 3 b b C A B图4 图1 图2 图32.若a⊥c,b⊥c,则ab.3.如图2,写出一个能判定直......