第一篇:七年级数学下册 5.3 平行线的性质(三)作业精编 新人教版
5.3平行线的性质
(三)作业
一、选择题:
1.如图1所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为(C)A.35°B.30°C.25°D.20° 2.如图2所示,AB∥CD,则∠A+∠E+∠F+∠C等于(C)
A.180°B.360°C.540°D.720°
A
CA
EO
DFB
EF
B
DE
F
FB
D
E
G(1)(2)(3)(4)3.如图3所示,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(∠1除外)共有(B)•A.6个B.5个C.4个D.3个
3.如图,已知AB∥DE,∠A=135°,∠C=105°,则∠D的度数为(D)A.60°B.80°C.100°D.120°
B
AC
E
二、填空题:(每小题3分,共9分)
1.如图4所示,如果DE∥AB,那么∠A+______=180°,或∠B+_____=180°,根据是______;
如果∠CED=∠FDE,那么________∥_________.根据是________.2.如图5所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、•后的两条路平行,若第一次拐角是150°,则第二次拐角为
________.B
D
(5)(6)
3.如图6所示,AB∥CD,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=_______,∠ACD=•_______.4.如图所示,AB∥CD,AD∥BC,∠A的2倍与∠C的3倍互补,∠A=和∠D=•
DC
三,解答题
1.如图所示,已知AB∥CD,∠ABE=130°,∠CDE=152°,求∠BED的度数.AB
E
C
2.如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.b
3.如图,已知EAB是直线,AD∥BC,AD平分∠EAC,试判定∠B与∠C的大小关系,并说明理由.E
A
B
D
拓展延伸4.如图所示,把一张长方形纸片ABCD沿EF折叠,若∠EFG=50°,求∠DEG的度数.AED
BGC
MN
答案:
二、1.∠AED∠BDE两直线平行,同旁内角互补DFAC
2.150°3.60° 40°4..∠A=36°,∠D=144°
解答题1.∠BED=78°2.∠4=120°
3.∠B=∠C 因为AD∥BC
所以∠B=∠EAD(两直线平行, 同位角相等),∠C=∠CAD(两直线平行,内错角相等)
又∠EAD=∠CAD(角平分线定义)
所以∠B=∠C
4.∠DEG=100°
内错角相等,两直线平行3
第二篇:七年级数学下册《5.3平行线的性质》的教学反思
第五章平行线的性质内容,是在学生学习习近平行线的条件之后来进行学习的。因此,在引入环节,就充分考虑到学生已经具备的这一知识基础,从回忆平行线的判定入手,创设一个疑问来激发学生的思考,进而引导学生进行平行线性质的探索。
本节课最突出的是平行线性质的得到过程,不是教师将学生听得到的,而是学生通过自主探索、实验、验证发现的,即在学生充分活动的基础上,由学生自己发现的,并用自己的语言来归纳的,这对学生增强学习的兴趣和学习的自信心都很有好处,而两次探索情景的引导又不尽相同,第一次探究“两直线平行,同位角相等”着重面向全体学生,让全体学生都能参与的到探究活动中来,因此先安排了一个“探究步骤的”探索,而第二次探究“两直线平行,内错角相等”“两直线平行,同旁内角互补”,则更是强调学生的自主学习,强调学生在学习过程的自主、自控学习过程。
知识的拓展部分又助于学生加深对平行线性质的理解,区分性质与判定方法的区别与联系,以及对三个性质之间内在的联系的理解,同时也是为平行线性质的运用大好基础。
第三篇:七年级数学下册5.3平行线的性质教案4人教版
亿库教育网http://www.xiexiebang.com
§5.3平行线的性质
(一)教学目标1.使学生理解平行线的性质和判定的区别. 2.使学生掌握平行线的三个性质,并能运用它们作简单的推理.
重点:平行线的三个性质.难点:平行线的三个性质和怎样区分性质和判定.
关键:能结合图形用符号语言表示平行线的三条性质.
教学过程
一、复习
1.如何用同位角、内错角、同旁内角来判定两条直线是否平行?
2.把它们已知和结论颠倒一下,可得到怎样的语句?它们正确吗?
二、新授
1.实验观察,发现平行线第一个性质
请学生画出下图1进行实验观察.设l1∥l2,l3与它们相交,请度量∠1和∠2的大小,图1图2图
3你能发现什么关系?请同学们再作出直线l4,再度量一下∠3和∠4的大小,你还能发现它们有什么关系?
平行线性质1(公理):两直线平行,同位角相等.
2.演绎推理,发现平行线的其它性质
(1)已知:如图2,直线AB,CD被直线EF所截,AB∥CD.求证:∠1= ∠2.
(2)已知:如图3,直线AB,CD被直线EF所截,AB∥CD.求证:∠1+∠2=180°. 在此基础上指出:“平行线的性质2(定理)”和“平行线的性质3(定理)”.
3.平行线判定与性质的区别与联系(将判定与性质各三条全部用多媒体显示.)
(1)性质:根据两条直线平行,去证角的相等或互补.
(2)判定:根据两角相等或互补,去证两条直线平行.
联系是:它们的条件和结论是互逆的,性质与判定要证明的问题是不同的.
三、例题
A
EF
BC
图
5例2如图4所示,AB∥CD,AC∥BD.找出图中相等的角与互补的角.
此题一定要强调,哪两条直线被哪一条直线所截.
答:相等的角为:∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8.互补的角为:∠BAC+∠ACD=180°,∠ABD+∠CDB=180°,∠CAB+∠DBA=180°,∠ACD+∠BDC=180°.
相等的角还有:∠ACD=∠ABD,∠BAC=∠BDC.(同角的补角相等)
例3如图5所示.已知:AD∥BC,∠AEF=∠B,求证:AD∥EF.
分析:(执果索因)从图直观分析,欲证AD∥EF,只需
亿库教育网http://www.xiexiebang.com
亿库教育网http://www.xiexiebang.com
∠A+∠AEF=180°,(由因求果)因为AD∥BC,所以∠A+∠B=180°,又∠B=∠AEF,所以∠A+∠AEF=180°成立.于是得证.图6
证明:因为AD∥BC,(已知)
所以∠A+∠B=180°.(两直线平行,同旁内角互补)
因为∠AEF=∠B,(已知)图所以∠A+∠AEF=180°,(等量代换)
所以AD∥EF.(同旁内角互补,两条直线平行)
四、练习:
1.如图6所示,已知:AE平分∠BAC,CE平分∠ACD,且AB∥CD.求证:∠1+∠2=90°. 证明:因为AB∥CD,所以∠BAC+∠ACD=180°,又因为AE平分∠BAC,CE平分∠ACD,1
211故12(BACACD)1800900. 22所以1BAC,2ACD,即∠1+∠2=90°.(理由略)
2.如图7所示,已知:∠1=∠2,求证:∠3+∠4=180°.
分析:(让学生自己分析)
证明:(学生板书)
小结 我们是如何得到平行线的性质定理?通过度量,运用从特殊到一般的思维方式发现性质1(公理),然后由公理通过演绎证明得到后面两个性质定理.从因果关系和所起的作用来看性质定理和判定定理的区别与联系.
作业:
1.如图,AB∥CD,∠1
=102°,求∠
2、∠
3、∠
4、∠
5的度数,并说明根据?
2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果
∠B=40°,∠2=75°,那么∠
1、∠
3、∠C、∠BAC+∠B+∠C
各是多少度,为什么?
3.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得
到哪些角相等?并简述理由.
亿库教育网http://www.xiexiebang.com
第四篇:七年级下数学教案:5.3平行线的性质
5.3平行线的性质(2)
教学目标
1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条件表达能力;
2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论;
3.能够综合运用平行线性质和判定解题。教学重点难点
1.平行线性质和判定综合应用,两条平行线的距离,命题等概念; 2.平行线性质和判定灵活运用。教学过程
一、复习引入:
1.平行线的判定方法有哪些? 2.平行线的性质有哪些? 3.完成下面填空:
已知:BE是AB的延长线,AD//BC,AB//CD,若DC,A,EBC100 则
4.ab,cb那么a,c的位置关系如何?
二、新课:
1.例1:已知a//c,ab,直线b与c垂直吗?为什么? 例2:如图是一块梯形铁片的残余部分,量得A100,B梯形另外两个角分别是多少度?
115,2.实践 与探究
(1)学生操作:用三角尺和直尺画平行线,做成一张55个格子的方格纸。观察并思考:做出的方格纸的一部分,线段B1C1,B2C2„B5C5都与两条平行线A1B5,A2C5垂直吗?它们的长度相等吗?
教师给出两条平行线的距离定义:同时垂直于两条平行线,并且夹在这两条平行线间的线段长度叫做两条平行线的距离。
问题:AB//CD,在CD上任取一点E,作EFAB,垂足
F,问EF是否垂直DC?垂线段EF是平行线AB、CD的距离吗?
结论:两条平行线的距离处处相等,而不随垂线段的位置而改变。3.命题和它的构成: 下列语句,分析语句的特点:
(1)如果两条直线都与第三条直线平行,那么这两条直线也平行
(2)对顶角相等
(3)等式两边同加上同一个数,结果仍是等式(4)如果两条直线不平行,那么同位角不相等
这些句子都是对某一件事情作出“是”或“不是”的判断。命题:判断一件事情的句子,叫做命题:
(1)命题的组成:命题由题设和结论两部分组成,题设是已知项,结论是由已知项推出的事项;
(2)形式:通常写成“如果...,那么...”的形式。
三、巩固练习:
1.“等式两边乘以同一个数,结果仍是等式”是命题吗?如果是,它的题设和结论分别是什么?
2.举出一些命题的例子。
四、作业课本P25(5 7 8 11 12)
第五篇:七年级数学下册 5.3平行线的性质(第二课时)教案 (新版)新人教版
5.3平行线的性质(第二课时)
【教学目标】
掌握两条平行线的距离的概念,并能灵活运用.【对话设计】 〖探索1〗
一块梯形铁片的残余部分如图,量得∠A=75º,∠B=72º,梯形的另外两个角分别是多少度?
〖阅读模仿〗请模仿P23例作答.〖探索2〗 如图,AB∥CD,(1)在AB上任取一点E,向CD画垂线段EF;
C D(2)EF是否也垂直于AB呢?(3)在AB上另取一点G,向CD画垂线段GH;(4)在CD上,点F、H外,任取一点I,向AB画垂线段IJ;B A(5)量出EF、GH、IJ的长,说说你的发现.〖探索3〗
同时垂直于两条平行线,并且夹在这两条平行间的线段之间有什么性质?你能举出实际的例....子吗? 〖概念学习〗
同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线间的距离.〖概念应用〗 C(1)探索2的图中,两条平行线的距离是多少?(2)如图,若AB∥CD,求AB、CD的距离.D B 〖作业〗
P25.5、6、7.A 【教学目标】
掌握两条平行线的距离的概念,并能灵活运用.【对话设计】 〖探索1〗
一块梯形铁片的残余部分如图,量得∠A=75º,∠B=72º,梯形的另外两个角分别是多少度?
〖阅读模仿〗请模仿P23例作答.〖探索2〗 如图,AB∥CD,(1)在AB上任取一点E,向CD画垂线段EF;
C D(2)EF是否也垂直于AB呢?(3)在AB上另取一点G,向CD画垂线段GH;
A B(4)在CD上,点F、H外,任取一点I,向AB画垂线段IJ;(5)量出EF、GH、IJ的长,说说你的发现.〖探索3〗
同时垂直于两条平行线,并且夹在这两条平行间的线段之间有什么性质?你能举出实际的例....子吗? 〖概念学习〗
同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线间的距离.〖概念应用〗(1)探索2的图中,两条平行线的距离是多少?(2)如图,若AB∥CD,求AB、CD的距离.〖作业〗
P25.5、6、7.C D B A