第一篇:人教课标版七年级数学下册教案平行线的性质
教学目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力;
2.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.
重点、难点
重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.
难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用.
教学过程
一、引导学生逆向思维
现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补,判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?
二、实践探究
1.学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角.
2.学生测量这些角的度数,把结果填入表内.
3.学生根据测量所得数据作出猜想.
图中哪些角是同位角?它们具有怎样的数量关系?
图中哪些角是内错角?它们具有怎样的数量关系?
图中哪些角是同旁内角?它们具有怎样的数量关系?
在详尽分析后,让学生写出猜想.
4.学生验证猜测.
学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?
5.师生归纳平行线的性质,教师板书.
平行线具有性质:
性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行,同位角相等.
性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行,内错相等.
性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行,同旁内角互补.
教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定.
平行线的性质平行线的判定
因为a∥b,因为∠1=∠2,所以∠1=∠2 所以a∥b.
因为a∥b,因为∠2=∠3,所以∠2=∠3,所以a∥b.
因为a∥b,因为∠2+∠4=180°,所以∠2+∠4=180°,所以a∥b.
6.教师引导学生理清平行线的性质与平行线判定的区别.
学生交流后,师生归纳:两者的条件和结论正好相反
由角的数量关系(指同位角相等,内错角相等,同旁内角互补),得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论.
由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等,同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论.
7.进一步研究平行线三条性质之间的关系.
教师:大家能根据性质1,推出性质2成立的道理吗?
结合上图,教师启发分析:考察性质
1、性质2的结论发生了什么变化? 学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程.
因为a∥b,所以∠1=∠2(两直线平行,同位角相等);
又∠3=∠1(对顶角相等),所以∠2=∠3.
教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1.∠2=∠3是根据等式性质.根据等式性质得到的结论可以不写理由.
学生仿照以下说理,说出如何根据性质1得到性质3的道理.
8.平行线性质应用.
三、了解命题和它的构成
(1)教师给出下列语句,学生分析语句的特点.
①如果两条直线都与第三条直线平行,那么这条直线也互相平行;
②等式两边都加同一个数,结果仍是等式;
③对顶角相等;
④如果两条直线不平行,那么同位角不相等.
这些语句都是对某一件事情作出“是”或“不是”的判断.
(2)给出命题的定义.
判断一件事情的语句,叫做命题.
教师指出上述四个语句都是命题,而语句“画AB∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句.
(3)命题的组成.
①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.
②命题的形成:命题通常写成“如果„„,那么„„”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.
有的命题没有写成“如果„„,那么„„”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果„„,那么„„”形式.
师生共同分析上述四个命题的题设和结论,重点分析第②、③语句.
第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设,“结果仍是等式”是结论.
第③命题中,“两个角是对顶角”是题设,“这两角相等”是结论.
(4)命题的真、假
真命题:如果题设成立,那么结论一定成立,这样的命题,叫做真命题.
假命题:如果题设成立,结论不成立,这样的命题都是错误的命题,叫做假命题.
在前面几节,我们学过一些图形的性质,都是真命题,它们的正确性是我们经过推理证实的,这样得到的真命题叫做定理.
第二篇:七年级数学下册平行线的性质教案好
课题:10.3《平行线的性质》第一课时
教学目的
1.使学生掌握平行线的三个性质,并能运用它们作简单的推理. 2.使学生了解平行线的性质和判定的区别.
重点难点
1.平行的三个性质,是本节的重点,也是本章的重点之一. 2.怎样区分性质和判定,是教学中的一个难点.
教学过程
一、复习导入
问:我们已经学习过平行线的哪些判定公理和定理? 学生齐答:
1.同位角相等,两直线平行.2.内错角相等,两直线平行. 3.同旁内角互补,两直线平行.
问:把这三句话颠倒每句话中的前后次序,能得怎样的三句话?新的三句话还正确吗?
学生答:
1.两直线平行,同位角相等.2.两直线平行,内错角相等. 3.两直线平行,同旁内角互补.
教师指出:把一句原本正确的话,颠倒前后顺序,得到新的一句话,不能保证一定正确.例如,“对顶角相等”是正确的,倒过来说“相等的角是对顶角”就不正确了.因此,上述新的三句话的正确性,需要进一步证明.
二、讲授新课
平行线的性质一:两条平行线被第三条直线所截,同位角相等。简单地说:两直线平行,同位角相等. 怎样说明它的正确性呢?
方法一 通过测量实践,作出两条平行线a∥b,再任意作第三条直线c,量量所得的同位角是否相等.
方法二 从理论上给予严格推理论证.(以下证法,教师可视学生接受情况,灵活处理讲或者不讲)
已知:如图2-32,直线AB、CD、被EF所截,AB∥CD.
求证:∠1=∠2. 证明:(反证法)假定∠1≠∠2,则过∠1顶点O作直线A′B′使∠EOB′=∠2. ∴A′B′∥CD(同位角相等,两直线平行).
故过O点有两条直线AB、A′B′与已知直线CD平行,这与平行公
理矛盾.即假定是不正确的. ∴∠1=∠2. 另证:(同一法)
过∠1顶点O作直线A′B′使∠E0B′=∠2. ∴ A′B′∥CD(同位角相等,两直线平行).
∵ AB∥CD(已知),且O点在AB上,O点在A′B′上,∴ A′B′与AB重合(平行公理)∴∠1=∠2.
平行线的性质二:两条平线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
启发学生,把这句话“翻译”成已知、求证,并作出相应的图形. 已知:如图2-33,直线AB、CD被EF所截,AB∥CD,求证:∠3=∠2.
证明:∵ AB∥CD(已知)
∴∠1=∠2(两直线平行,同位角相等). ∵∠1=∠3(对顶角相等),∴∠3=∠2(等量代换).
说明:如果学生仿照性质一,用反证法或同一法去证,应该给以鼓明,并同时指出,既然性质一已证明正确,那么也可以直接利用性质一的结论,这样常常可以使证明过程简单些.然后介绍或引导学生得出上面的证法.
平行线的性质三:两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
要求学生仿照性质二,自己写出已知、求证、证明.教师请程度较好的学生上黑板板演,并巡视课堂,帮助有困难的学生克服困难,最后对黑板上学生的板书进行全班订正.
已知:如图2-34,直线AB、CD被EF所截,AB∥CD. 求证:∠2+∠4=180°. 证法一:
∵AB∥CD(已知),∴∠1=∠2(两直线平行,同位角相等),∵∠1+∠4=180°(邻补角),∴∠2+∠4=180°(等量代换). 证法二:
∵ AB∥CD(已知),∴∠2=∠3(两直线平行,内错角相等). ∵∠3+∠4=180°(邻补角),∴∠2+∠4=180°(等量代换).
例 已知某零件形如梯形ABCD,现已残破,只能量得∠A=115°,∠D=100°,你能知道下底的两个角∠B、∠C的度数吗?根据是什么?(如图2-35).
解:∠B=180°-∠A=65°,∠C=180°-∠D=80°.(根据平行线的性质三)
小结:平行线的性质与判定的区别: 1.从因果关系上看
性质:因为两条直线平行,所以„„; 判定:因为„„,所以两条直线平行.
2.从所起作用上看
性质:根据两条直线平行,去证两角相等或互补: 判定:根据两角相等或互补,去证两条直线平行.
三、作业
1.如图,AB∥CD,∠1=102°,求∠
2、∠
3、∠
4、∠5的度数,并说明根据?
2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果∠B=40°,∠2=75°,那么∠
1、∠
3、∠C、∠BAC+∠B+∠C各是多少度,为什么?
3.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由.
第三篇:【湘教版】七年级数学下册:4.3《平行线的性质》教案
百度文库
平行线的性质
知识与技能:
1、使学生理解平行线的性质,能初步运用平行线的性质进行有关计算。
2、学会平行线性质的简单应用。过程与方法:
通过本节课的教学,培养学生的概括能力和“观察-猜想-证明”的科学探索方法,培养学生的辩证思维能力和逻辑思维能力。情感态度与价值观:
培养学生的主体意识,向学生渗透讨论的数学思想,培养学生思维的灵活性和广阔性。教学重点:
平行线性质的研究和发现过程是本节课的重点. 教学难点:
正确区分平行线的性质和判定是本节课的难点. 教学过程:
一、预学:
通过预习教材P86—P88的内容,完成下面各题:
1、两条直线被第三条直线所截,形成了一些什么角?画图说明这些角的关系
2、如果两条平行的直线被第三条直线所截,那么得到的这些角又有什么关系呢?这就是我们这节课所要研究的问题。
二、探究:
1、“做一做”
(1)用量角器量出下面的两组角的大小。
(2)上面的两组角都是同位角。请同学们画两条平行线,然后画两条直线和平行线相交,用量角器测量一下,它们产生的几组同位角是否相等?
2、猜想与探索
(1)根据上述的测量,你能猜想得出什么结论吗?
百度文库
百度文库
(2)上图1,将∠1沿着FE方向作平移,使M点移动到N点重合,则有CD∥AB,这时∠1变成了∠2,因些∠1=∠2。
归纳:平行线性质1 两条平行线被第三条线所截,同位角相等。简单说成:两直线平行,同位角相等。
(3)因为∠1=∠2,又因为∠2=∠3(对顶角相等),所以∠1=∠3。
归纳得到平行线性质2 两条平行线被第三条线所截,内错角相等。简单地说成:两直线平行,内错角相等。
(4)因为∠1=∠2,又因为∠2+∠4=180°(平角定义),所以∠1+∠4=180°。
归纳得到平行线性质3 两条平行线被第三条线所截,内旁内角互补。简单地说成:两直线平行,同旁内角互补。
3、完成 “做一做”的填空。
三、精导:
例1 如图,直线AB,CD被直线EF所截,AB∥CD,∠1=100°,试求∠3的度数.解 ∵AB∥CD,∴∠1=∠2= 100°(两直线平行,同位角相等)又∵∠2 +∠3 = 180°,∴∠3 = 180°-∠2 = 180°-100°= 80°.例2 如图,AD∥BC,∠B = ∠D,试问∠A与∠C相等吗?为什么?
四:提升
1、练习题
2、课堂小结 教学反思:
百度文库
第四篇:人教课标版七年级语文下册教案30 狼
教学目标:
1.了解蒲松龄及其《聊斋志异》。
2.积累文言词汇:止、敌、顾、前、去、犬、意、洞、隧等。3.理清情节结构,体会其中蕴含的道理。
4.揣摩动作描写和心理描写,学习在叙事基础上发表议论的写法。5.体会屠户内心世界的变化过程。6.学会勇敢机智地与邪恶势力作斗争。
教学重点:
积累词汇,理解文意,体会道理。
教学难点:
怎样理解文章的主旨。
教学课时:
一课时。
教学过程:
一、设置情境,导入新课:
由学生说带“狼”字的成语。然后谈起狼的本性顺势导入。
二、回忆巩固作者:
蒲松龄(1640~1715)字留仙,一字剑臣,别号柳泉居士。山东淄川(今山东省淄博市)人。清代著名文学家。代表作《聊斋志异》“聊斋”是他的书屋名称,“志”是记述的意思,“异”指奇异的故事。
三、检查预习:
1.检查朗读情况:学生齐读课文。(读准字音,读准句读)2.检查字词句疏通情况。(以考查的形式进行)
3.让学生口译进一步发现疑难问题。(小组解决或向老师提出)
四、自由朗读,整体感知:
1.用一句话概括本文叙述怎样的一个故事,并能说出故事发生的时间、地点、矛盾双方、故事的开端。
2.理清情节。
(屠户)遇狼--惧狼--御狼--毙狼
五、变换角度,读评故事:
1.揣摩屠夫当时的心理和狼当时的心态。
屠夫天晚回家,从遇狼到最后把狼杀掉,他当时心理是如何变化的,而狼当时的心态又是如何?请同学们展开丰富想象,用生动的语言加以描述,然后自选角色(四人小组,其中一人用客观叙述的语气旁白屠夫的行动)作形象表演。
提示:要扣住几个主要情节: 屠夫:遇狼--惧狼--御狼--毙狼
狼:缀行甚远--并驱如故--眈眈相向--假寐诱敌,挖掘出狼的性格。(教师点评,师生共同分析屠夫和狼的形象)屠夫:机智、勇敢、警觉、善于斗争。狼:贪婪、凶狠、狡诈。2.悟读:明主旨,谈感受。
思考:你读了这个故事有什么感悟?(引导学生从不同角度、不同侧面去谈。学生畅谈之后,教师点评、小结。)
六、布置作业:
请结合图片适当想象,将此文改写成一篇白话故事。注意环境、神态、动作、心理描写。
第五篇:数学七年级下册平行线的判定和性质练习题
数学七年级下册平行线的判定和性质练习题
一、填空
1.如图1,若A=3,则∥;若2=E,则∥;
若+= 180°,则∥.c A d a E 5 a2 2B 3 b b C A B图4 图1 图2 图3
2.若a⊥c,b⊥c,则ab.
3.如图2,写出一个能判定直线l1∥l2的条件:.
4.在四边形ABCD中,∠A +∠B = 180°,则∥().
5.如图3,若∠1 +∠2 = 180°,则∥。
6.如图4,∠
1、∠
2、∠
3、∠
4、∠5中,同位角有;内错角有;同旁内角有.
7.如图5,填空并在括号中填理由:
(1)由∠ABD =∠CDB得∥();
(2)由∠CAD =∠ACB得∥();
(3)由∠CBA +∠BAD = 180°得∥()AD Dl1 2 14 5 3 B D C l2 C B C图8 图7 图5 图6
8.如图6,尽可能多地写出直线l1∥l2的条件:.
9.如图7,尽可能地写出能判定AB∥CD的条件来:.
10.如图8,推理填空:
(1)∵∠A =∠(已知),∴AC∥ED();(2)∵∠2 =∠(已知),D∴AC∥ED(); F(3)∵∠A +∠= 180°(已知),∴AB∥FD(); B(4)∵∠2 +∠= 180°(已知),B D C 图9∴AC∥ED()图10
二、解答下列各题
11.如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF.
12.如图10,∠1∶∠2∶∠3 = 2∶3∶4,∠AFE =60°,∠BDE =120°,写出图中平行的直线,并说明理由.
13.如图11,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ.EB
P
DQ F图1
1[二]、平行线的性质
1.如图1,已知∠1 = 100°,AB∥CD,则∠2 =,∠3 =,∠4 =. 2.如图2,直线AB、CD被EF所截,若∠1 =∠2,则∠AEF +∠CFE =.F 1 BB ED DF
B C A B D
图1 图2 图4 图
33.如图3所示
(1)若EF∥AC,则∠A +∠= 180°,∠F + ∠= 180°().(2)若∠2 =∠,则AE∥BF.
(3)若∠A +∠= 180°,则AE∥BF.
4.如图4,AB∥CD,∠2 = 2∠1,则∠2 =.
5.如图5,AB∥CD,EG⊥AB于G,∠1 = 50°,则∠E =.
E C
l
1AF 2 B F G
l2D F D C C A G
图7 图8 图6图
56.如图6,直线l1∥l2,AB⊥l1于O,BC与l2交于E,∠1 = 43°,则∠2 =. 7.如图7,AB∥CD,AC⊥BC,图中与∠CAB互余的角有. 8.如图8,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(不包括∠1)共有个.
二、解答下列各题
9.如图9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.
AD
图9
10.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB的度数.
B
图10
C F E
E
C
12.如图12,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1 +∠2 = 90°.
求证:(1)AB∥CD;(2)∠2 +∠3 = 90°.
A
C
B 1
F
D
图
二.填空题:
1.如图③ ∵∠1=∠2,∴_______∥________()。∵∠2=∠3,∴_______∥________()。
2.如图④ ∵∠1=∠2,∴_______∥________()。∵∠3=∠4,∴_______∥________()。
3.如图⑤ ∠B=∠D=∠E,那么图形中的平行线有________________________________。4.如图⑥ ∵ AB⊥BD,CD⊥BD(已知)
∴ AB∥CD()又∵∠1+∠2 =180(已知)
∴ AB∥EF()∴ CD∥EF()
三.选择题:
1.如图⑦,∠D=∠EFC,那么()A.AD∥BCB.AB∥CDC.EF∥BCD.AD∥EF
2.如图⑧,判定AB∥CE的理由是()A.∠B=∠ACEB.∠A=∠ECDC.∠B=∠ACBD.∠A=∠ACE 3.如图⑨,下列推理正确的是()
A.∵∠1=∠3,∴a∥bB.∵∠1=∠2,∴a∥bC.∵∠1=∠2,∴c∥dD.∵∠1=∠2,∴c∥d1.如图⑩
∵∠B=∠_______,∴ AB∥CD()∵∠BGC=∠_______,∴ CD∥EF()∵AB∥CD,CD∥EF,∴ AB∥_______()
2.如图⑾ 填空:
(1)∵∠2=∠B(已知)
∴ AB__________()(2)∵∠1=∠A(已知)
∴__________()(3)∵∠1=∠D(已知)
∴__________()(4)∵_______=∠F(已知)
∴AC∥DF()
3.已知,如图∠1+∠2=180°,填空。
∵∠1+∠2=180°()又∠2=∠3(∴∠1+∠3=180°
∴_________()
五.证明题
1.已知:如图⑿,CE平分∠ACD,∠1=∠B,求证:AB∥CE
2.如图:∠1=53,∠2=127,∠3=53,试说明直线AB与CD,BC与DE的位置关系。)