人教课标版七年级数学下册教案平行线的性质(五篇)

时间:2019-05-12 17:39:17下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《人教课标版七年级数学下册教案平行线的性质》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《人教课标版七年级数学下册教案平行线的性质》。

第一篇:人教课标版七年级数学下册教案平行线的性质

教学目标

1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力;

2.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.

重点、难点

重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.

难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用.

教学过程

一、引导学生逆向思维

现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补,判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?

二、实践探究

1.学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角.

2.学生测量这些角的度数,把结果填入表内.

3.学生根据测量所得数据作出猜想.

图中哪些角是同位角?它们具有怎样的数量关系?

图中哪些角是内错角?它们具有怎样的数量关系?

图中哪些角是同旁内角?它们具有怎样的数量关系?

在详尽分析后,让学生写出猜想.

4.学生验证猜测.

学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?

5.师生归纳平行线的性质,教师板书.

平行线具有性质:

性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行,同位角相等.

性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行,内错相等.

性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行,同旁内角互补.

教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定.

平行线的性质平行线的判定

因为a∥b,因为∠1=∠2,所以∠1=∠2 所以a∥b.

因为a∥b,因为∠2=∠3,所以∠2=∠3,所以a∥b.

因为a∥b,因为∠2+∠4=180°,所以∠2+∠4=180°,所以a∥b.

6.教师引导学生理清平行线的性质与平行线判定的区别.

学生交流后,师生归纳:两者的条件和结论正好相反

由角的数量关系(指同位角相等,内错角相等,同旁内角互补),得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论.

由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等,同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论.

7.进一步研究平行线三条性质之间的关系.

教师:大家能根据性质1,推出性质2成立的道理吗?

结合上图,教师启发分析:考察性质

1、性质2的结论发生了什么变化? 学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程.

因为a∥b,所以∠1=∠2(两直线平行,同位角相等);

又∠3=∠1(对顶角相等),所以∠2=∠3.

教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1.∠2=∠3是根据等式性质.根据等式性质得到的结论可以不写理由.

学生仿照以下说理,说出如何根据性质1得到性质3的道理.

8.平行线性质应用.

三、了解命题和它的构成

(1)教师给出下列语句,学生分析语句的特点.

①如果两条直线都与第三条直线平行,那么这条直线也互相平行;

②等式两边都加同一个数,结果仍是等式;

③对顶角相等;

④如果两条直线不平行,那么同位角不相等.

这些语句都是对某一件事情作出“是”或“不是”的判断.

(2)给出命题的定义.

判断一件事情的语句,叫做命题.

教师指出上述四个语句都是命题,而语句“画AB∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句.

(3)命题的组成.

①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.

②命题的形成:命题通常写成“如果„„,那么„„”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.

有的命题没有写成“如果„„,那么„„”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果„„,那么„„”形式.

师生共同分析上述四个命题的题设和结论,重点分析第②、③语句.

第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设,“结果仍是等式”是结论.

第③命题中,“两个角是对顶角”是题设,“这两角相等”是结论.

(4)命题的真、假

真命题:如果题设成立,那么结论一定成立,这样的命题,叫做真命题.

假命题:如果题设成立,结论不成立,这样的命题都是错误的命题,叫做假命题.

在前面几节,我们学过一些图形的性质,都是真命题,它们的正确性是我们经过推理证实的,这样得到的真命题叫做定理.

第二篇:七年级数学下册平行线的性质教案好

课题:10.3《平行线的性质》第一课时

教学目的

1.使学生掌握平行线的三个性质,并能运用它们作简单的推理. 2.使学生了解平行线的性质和判定的区别.

重点难点

1.平行的三个性质,是本节的重点,也是本章的重点之一. 2.怎样区分性质和判定,是教学中的一个难点.

教学过程

一、复习导入

问:我们已经学习过平行线的哪些判定公理和定理? 学生齐答:

1.同位角相等,两直线平行.2.内错角相等,两直线平行. 3.同旁内角互补,两直线平行.

问:把这三句话颠倒每句话中的前后次序,能得怎样的三句话?新的三句话还正确吗?

学生答:

1.两直线平行,同位角相等.2.两直线平行,内错角相等. 3.两直线平行,同旁内角互补.

教师指出:把一句原本正确的话,颠倒前后顺序,得到新的一句话,不能保证一定正确.例如,“对顶角相等”是正确的,倒过来说“相等的角是对顶角”就不正确了.因此,上述新的三句话的正确性,需要进一步证明.

二、讲授新课

平行线的性质一:两条平行线被第三条直线所截,同位角相等。简单地说:两直线平行,同位角相等. 怎样说明它的正确性呢?

方法一 通过测量实践,作出两条平行线a∥b,再任意作第三条直线c,量量所得的同位角是否相等.

方法二 从理论上给予严格推理论证.(以下证法,教师可视学生接受情况,灵活处理讲或者不讲)

已知:如图2-32,直线AB、CD、被EF所截,AB∥CD.

求证:∠1=∠2. 证明:(反证法)假定∠1≠∠2,则过∠1顶点O作直线A′B′使∠EOB′=∠2. ∴A′B′∥CD(同位角相等,两直线平行).

故过O点有两条直线AB、A′B′与已知直线CD平行,这与平行公

理矛盾.即假定是不正确的. ∴∠1=∠2. 另证:(同一法)

过∠1顶点O作直线A′B′使∠E0B′=∠2. ∴ A′B′∥CD(同位角相等,两直线平行).

∵ AB∥CD(已知),且O点在AB上,O点在A′B′上,∴ A′B′与AB重合(平行公理)∴∠1=∠2.

平行线的性质二:两条平线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.

启发学生,把这句话“翻译”成已知、求证,并作出相应的图形. 已知:如图2-33,直线AB、CD被EF所截,AB∥CD,求证:∠3=∠2.

证明:∵ AB∥CD(已知)

∴∠1=∠2(两直线平行,同位角相等). ∵∠1=∠3(对顶角相等),∴∠3=∠2(等量代换).

说明:如果学生仿照性质一,用反证法或同一法去证,应该给以鼓明,并同时指出,既然性质一已证明正确,那么也可以直接利用性质一的结论,这样常常可以使证明过程简单些.然后介绍或引导学生得出上面的证法.

平行线的性质三:两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。

要求学生仿照性质二,自己写出已知、求证、证明.教师请程度较好的学生上黑板板演,并巡视课堂,帮助有困难的学生克服困难,最后对黑板上学生的板书进行全班订正.

已知:如图2-34,直线AB、CD被EF所截,AB∥CD. 求证:∠2+∠4=180°. 证法一:

∵AB∥CD(已知),∴∠1=∠2(两直线平行,同位角相等),∵∠1+∠4=180°(邻补角),∴∠2+∠4=180°(等量代换). 证法二:

∵ AB∥CD(已知),∴∠2=∠3(两直线平行,内错角相等). ∵∠3+∠4=180°(邻补角),∴∠2+∠4=180°(等量代换).

例 已知某零件形如梯形ABCD,现已残破,只能量得∠A=115°,∠D=100°,你能知道下底的两个角∠B、∠C的度数吗?根据是什么?(如图2-35).

解:∠B=180°-∠A=65°,∠C=180°-∠D=80°.(根据平行线的性质三)

小结:平行线的性质与判定的区别: 1.从因果关系上看

性质:因为两条直线平行,所以„„; 判定:因为„„,所以两条直线平行.

2.从所起作用上看

性质:根据两条直线平行,去证两角相等或互补: 判定:根据两角相等或互补,去证两条直线平行.

三、作业

1.如图,AB∥CD,∠1=102°,求∠

2、∠

3、∠

4、∠5的度数,并说明根据?

2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果∠B=40°,∠2=75°,那么∠

1、∠

3、∠C、∠BAC+∠B+∠C各是多少度,为什么?

3.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由.

第三篇:【湘教版】七年级数学下册:4.3《平行线的性质》教案

百度文库

平行线的性质

知识与技能:

1、使学生理解平行线的性质,能初步运用平行线的性质进行有关计算。

2、学会平行线性质的简单应用。过程与方法:

通过本节课的教学,培养学生的概括能力和“观察-猜想-证明”的科学探索方法,培养学生的辩证思维能力和逻辑思维能力。情感态度与价值观:

培养学生的主体意识,向学生渗透讨论的数学思想,培养学生思维的灵活性和广阔性。教学重点:

平行线性质的研究和发现过程是本节课的重点. 教学难点:

正确区分平行线的性质和判定是本节课的难点. 教学过程:

一、预学:

通过预习教材P86—P88的内容,完成下面各题:

1、两条直线被第三条直线所截,形成了一些什么角?画图说明这些角的关系

2、如果两条平行的直线被第三条直线所截,那么得到的这些角又有什么关系呢?这就是我们这节课所要研究的问题。

二、探究:

1、“做一做”

(1)用量角器量出下面的两组角的大小。

(2)上面的两组角都是同位角。请同学们画两条平行线,然后画两条直线和平行线相交,用量角器测量一下,它们产生的几组同位角是否相等?

2、猜想与探索

(1)根据上述的测量,你能猜想得出什么结论吗?

百度文库

百度文库

(2)上图1,将∠1沿着FE方向作平移,使M点移动到N点重合,则有CD∥AB,这时∠1变成了∠2,因些∠1=∠2。

归纳:平行线性质1 两条平行线被第三条线所截,同位角相等。简单说成:两直线平行,同位角相等。

(3)因为∠1=∠2,又因为∠2=∠3(对顶角相等),所以∠1=∠3。

归纳得到平行线性质2 两条平行线被第三条线所截,内错角相等。简单地说成:两直线平行,内错角相等。

(4)因为∠1=∠2,又因为∠2+∠4=180°(平角定义),所以∠1+∠4=180°。

归纳得到平行线性质3 两条平行线被第三条线所截,内旁内角互补。简单地说成:两直线平行,同旁内角互补。

3、完成 “做一做”的填空。

三、精导:

例1 如图,直线AB,CD被直线EF所截,AB∥CD,∠1=100°,试求∠3的度数.解 ∵AB∥CD,∴∠1=∠2= 100°(两直线平行,同位角相等)又∵∠2 +∠3 = 180°,∴∠3 = 180°-∠2 = 180°-100°= 80°.例2 如图,AD∥BC,∠B = ∠D,试问∠A与∠C相等吗?为什么?

四:提升

1、练习题

2、课堂小结 教学反思:

百度文库

第四篇:人教课标版七年级语文下册教案30 狼

教学目标:

1.了解蒲松龄及其《聊斋志异》。

2.积累文言词汇:止、敌、顾、前、去、犬、意、洞、隧等。3.理清情节结构,体会其中蕴含的道理。

4.揣摩动作描写和心理描写,学习在叙事基础上发表议论的写法。5.体会屠户内心世界的变化过程。6.学会勇敢机智地与邪恶势力作斗争。

教学重点:

积累词汇,理解文意,体会道理。

教学难点:

怎样理解文章的主旨。

教学课时:

一课时。

教学过程:

一、设置情境,导入新课:

由学生说带“狼”字的成语。然后谈起狼的本性顺势导入。

二、回忆巩固作者:

蒲松龄(1640~1715)字留仙,一字剑臣,别号柳泉居士。山东淄川(今山东省淄博市)人。清代著名文学家。代表作《聊斋志异》“聊斋”是他的书屋名称,“志”是记述的意思,“异”指奇异的故事。

三、检查预习:

1.检查朗读情况:学生齐读课文。(读准字音,读准句读)2.检查字词句疏通情况。(以考查的形式进行)

3.让学生口译进一步发现疑难问题。(小组解决或向老师提出)

四、自由朗读,整体感知:

1.用一句话概括本文叙述怎样的一个故事,并能说出故事发生的时间、地点、矛盾双方、故事的开端。

2.理清情节。

(屠户)遇狼--惧狼--御狼--毙狼

五、变换角度,读评故事:

1.揣摩屠夫当时的心理和狼当时的心态。

屠夫天晚回家,从遇狼到最后把狼杀掉,他当时心理是如何变化的,而狼当时的心态又是如何?请同学们展开丰富想象,用生动的语言加以描述,然后自选角色(四人小组,其中一人用客观叙述的语气旁白屠夫的行动)作形象表演。

提示:要扣住几个主要情节: 屠夫:遇狼--惧狼--御狼--毙狼

狼:缀行甚远--并驱如故--眈眈相向--假寐诱敌,挖掘出狼的性格。(教师点评,师生共同分析屠夫和狼的形象)屠夫:机智、勇敢、警觉、善于斗争。狼:贪婪、凶狠、狡诈。2.悟读:明主旨,谈感受。

思考:你读了这个故事有什么感悟?(引导学生从不同角度、不同侧面去谈。学生畅谈之后,教师点评、小结。)

六、布置作业:

请结合图片适当想象,将此文改写成一篇白话故事。注意环境、神态、动作、心理描写。

第五篇:数学七年级下册平行线的判定和性质练习题

数学七年级下册平行线的判定和性质练习题

一、填空

1.如图1,若A=3,则∥;若2=E,则∥;

若+= 180°,则∥.c A d a E 5 a2 2B 3 b b C A B图4 图1 图2 图3

2.若a⊥c,b⊥c,则ab.

3.如图2,写出一个能判定直线l1∥l2的条件:.

4.在四边形ABCD中,∠A +∠B = 180°,则∥().

5.如图3,若∠1 +∠2 = 180°,则∥。

6.如图4,∠

1、∠

2、∠

3、∠

4、∠5中,同位角有;内错角有;同旁内角有.

7.如图5,填空并在括号中填理由:

(1)由∠ABD =∠CDB得∥();

(2)由∠CAD =∠ACB得∥();

(3)由∠CBA +∠BAD = 180°得∥()AD Dl1 2 14 5 3 B D C l2 C B C图8 图7 图5 图6

8.如图6,尽可能多地写出直线l1∥l2的条件:.

9.如图7,尽可能地写出能判定AB∥CD的条件来:.

10.如图8,推理填空:

(1)∵∠A =∠(已知),∴AC∥ED();(2)∵∠2 =∠(已知),D∴AC∥ED(); F(3)∵∠A +∠= 180°(已知),∴AB∥FD(); B(4)∵∠2 +∠= 180°(已知),B D C 图9∴AC∥ED()图10

二、解答下列各题

11.如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF.

12.如图10,∠1∶∠2∶∠3 = 2∶3∶4,∠AFE =60°,∠BDE =120°,写出图中平行的直线,并说明理由.

13.如图11,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ.EB

P

DQ F图1

1[二]、平行线的性质

1.如图1,已知∠1 = 100°,AB∥CD,则∠2 =,∠3 =,∠4 =. 2.如图2,直线AB、CD被EF所截,若∠1 =∠2,则∠AEF +∠CFE =.F 1 BB ED DF

B C A B D

图1 图2 图4 图

33.如图3所示

(1)若EF∥AC,则∠A +∠= 180°,∠F + ∠= 180°().(2)若∠2 =∠,则AE∥BF.

(3)若∠A +∠= 180°,则AE∥BF.

4.如图4,AB∥CD,∠2 = 2∠1,则∠2 =.

5.如图5,AB∥CD,EG⊥AB于G,∠1 = 50°,则∠E =.

E C

l

1AF 2 B F G

l2D F D C C A G

图7 图8 图6图

56.如图6,直线l1∥l2,AB⊥l1于O,BC与l2交于E,∠1 = 43°,则∠2 =. 7.如图7,AB∥CD,AC⊥BC,图中与∠CAB互余的角有. 8.如图8,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(不包括∠1)共有个.

二、解答下列各题

9.如图9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.

AD

图9

10.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB的度数.

B

图10

C F E

E

C

12.如图12,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1 +∠2 = 90°.

求证:(1)AB∥CD;(2)∠2 +∠3 = 90°.

A

C

B 1

F

D

二.填空题:

1.如图③ ∵∠1=∠2,∴_______∥________()。∵∠2=∠3,∴_______∥________()。

2.如图④ ∵∠1=∠2,∴_______∥________()。∵∠3=∠4,∴_______∥________()。

3.如图⑤ ∠B=∠D=∠E,那么图形中的平行线有________________________________。4.如图⑥ ∵ AB⊥BD,CD⊥BD(已知)

∴ AB∥CD()又∵∠1+∠2 =180(已知)

∴ AB∥EF()∴ CD∥EF()

三.选择题:

1.如图⑦,∠D=∠EFC,那么()A.AD∥BCB.AB∥CDC.EF∥BCD.AD∥EF

2.如图⑧,判定AB∥CE的理由是()A.∠B=∠ACEB.∠A=∠ECDC.∠B=∠ACBD.∠A=∠ACE 3.如图⑨,下列推理正确的是()

A.∵∠1=∠3,∴a∥bB.∵∠1=∠2,∴a∥bC.∵∠1=∠2,∴c∥dD.∵∠1=∠2,∴c∥d1.如图⑩

∵∠B=∠_______,∴ AB∥CD()∵∠BGC=∠_______,∴ CD∥EF()∵AB∥CD,CD∥EF,∴ AB∥_______()

2.如图⑾ 填空:

(1)∵∠2=∠B(已知)

∴ AB__________()(2)∵∠1=∠A(已知)

∴__________()(3)∵∠1=∠D(已知)

∴__________()(4)∵_______=∠F(已知)

∴AC∥DF()

3.已知,如图∠1+∠2=180°,填空。

∵∠1+∠2=180°()又∠2=∠3(∴∠1+∠3=180°

∴_________()

五.证明题

1.已知:如图⑿,CE平分∠ACD,∠1=∠B,求证:AB∥CE

2.如图:∠1=53,∠2=127,∠3=53,试说明直线AB与CD,BC与DE的位置关系。)

下载人教课标版七年级数学下册教案平行线的性质(五篇)word格式文档
下载人教课标版七年级数学下册教案平行线的性质(五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    人教课标版五年级数学下册复习计划

    人教课标版五年级数学下册复习计划 一、复习大致情况分析 本学期是教学内容比较多而时间又有点比较紧张的一个学期,新授课的教学任务一般要 在第15周才能完成,实际只剩不到一......

    七年级下册《平行线的性质》说课稿

    七年级下册《平行线的性质》说课稿 七年级下册《平行线的性质》说课稿 尊敬的评委老师: 大家好,我是#号选手,很高兴能有这次机会与大家交流。今天我要说课的内容是义务教育......

    七年级数学下册5.3平行线的性质教案4人教版

    亿库教育网http://www.xiexiebang.com§5.3平行线的性质(一)教学目标1.使学生理解平行线的性质和判定的区别. 2.使学生掌握平行线的三个性质,并能运用它们作简单的推理.重点:平行线......

    苏科课标版七年级数学下册教案7.2探索平行线的性质

    教学目标 1.掌握平行线的性质; 2.运用平行线的性质及判定方法解决问题. 重点、难点 重点: 1.三条性质的推导. 2.运用平行线的性质及判定方法解决问题. 难点:运用平行线的性质及判定......

    人教课标版七年级上学期数学教学工作计划

    杨武中学七年级上学期数学教学工作计划 (2012--2013) 教师: 张 贤 七年级是初中的起始年级,打好基础至关重要。故此,特订出教学计划如下。 一、基本情况 杨武中学七年级(6)班现......

    人教课标版七年级语文下册教案20 口技(最终五篇)

    教学目标: 1.使学生了解我国口技艺人高度的聪明才智和艺术创造能力。 2.学习正面描写和侧面描写相结合的写作方法。 3.学习准确地运用表示时间的词语。 教学重点: 1.了解我国......

    人教课标版一年级数学左右教案(合集5篇)

    教学内容:新人教版一年级上册《左右》 教学目标: 1、创设情境,让学生体验左右的位置关系,理解其相对性。 2、通过活动培养学生用“左右”的数学知识解决实际问题的能力。 3、以......

    七年级数学下册《5.3平行线的性质》的教学反思

    第五章平行线的性质内容,是在学生学习习近平行线的条件之后来进行学习的。因此,在引入环节,就充分考虑到学生已经具备的这一知识基础,从回忆平行线的判定入手,创设一个疑问来激发学生......