湘教版七年级数学平行线的性质课件(5篇范例)

时间:2019-05-11 21:36:05下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《湘教版七年级数学平行线的性质课件》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《湘教版七年级数学平行线的性质课件》。

第一篇:湘教版七年级数学平行线的性质课件

一、教学目标

1、知识与技能目标:经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。

2、能力目标:经历探索平行线性质的过程,掌握平行线的性质,并能解决一些实际问题。

3、情感态度目标:在自己独立思考的基础上,积极参与小组活动对平行线的性质的讨论,敢于发表自己的看法,并从中获益。

4、品质素养目标:培养学生勤于思考、勇于探索、钻研的品质。

为实现以上教学目标,突出重点,解决难点,充分发挥现代教育技术的作用,我制作了多媒体课件,运用多媒体辅助教学,变静为动,融声、形、色为一体为学生提供生动、形象、直观的观察材料,激发学生学习的积极性和主动性。

二、教学重点和难点

重点:平行线的三个性质以及综合运用平行线性质、判定等知识解题。

难点:区分性质和判定以及怎样综合运用同位角、内错角、同旁内角的关系解题。

三、教材分析

平行线是最简单、最基本的几何图形,在生活中随处可见,它不仅是研究其他图形的基础,而且在实际中也有着广泛的应用。因此,探索和掌握好它的有关知识,对学生更好的认识世界、发展空间观念和推理能力都是非常重要的。

教材设置了一个通过探索平行线性质的活动,在活动中,鼓励学生充分交流,运用多种方法进行探索,尽可能地发现有关事实,并能应用平行线性质解决一些问题,运用自己的语言说明理由,使学生的推理能力和语言表达能力得到提高。为学生今后的学习打下了基础。

因此,无论在知识技能上,还是在学生能力的培养及感情教育等方面,这节课都起着十分重要的作用。

四、学生情况分析

考虑本校处在城乡结合部,大部分学生的基础比较差,缺乏自学能力,动手能力比较差,所以,这个学期应该重视学生学习兴趣和态度的培养、重视学生的自主探索和合作交流以及新意识的培养。利用七年级学生都有好胜、好强的特点,扭转学数学难、数学枯燥的这种局面。形成一种勤动手、勤动脑,勤探索和肯合作交流的良好气氛

五、课前准备

课前准备:

多媒体课件、三角尺、直尺。

六、教学过程

问题与情境

师生互动

设计意图

活动

1你身边的问题

问题:

如图,工人在修一条高速公路时在前方遇到一座高山,为了降低施工难度,工程师决定绕过这座山,如果第一个弯是左拐300,那么第二个弯应朝什么方向。才能不改变原来的方向。

学生观察,小组讨论,交流问题并发表见解,教师进一步引导学生分析,引导学生将这个问题如何转化成数学问题。

本次活动应关注的问题是:

1、不改变方向,在数学中理解应是什么,2、在这个问题中包含了什么问题

3、如何将它转化为数学问题。

通过实例,让学生从具体的实例中发现数学问题,进而寻求解决问题的方法,使学生懂得数学来源于现实,服务于现实生活,同时也调动了学生的积极性,提高了学生的兴起,活动2:

探究平行线的性质

问题:

1、上节课学习了用一把直尺和一块三角板可以画两条平行线,想一想在这个过程中三角尺取到什么作用,你能不能用两把直尺画出两条平行线,如果不能,为什么?

2、自己阅读课本的21页“探究”部分,并把空填好。

用电脑展示在画平行线时三角尺在其中取到的作用。

学生通过学习测量比较得到这些角中上下两个角的关系,关注的问题是:

1、注意性质具有一般性。不能简单从几个特殊的例子,就断定它就具有某种性质,而需要一个从特殊到一般的推导过程。

2、理清两条直线平行,同位角相等,内错角也相等,同旁内角互补之间的关系。

通过动手测量提高学生的动手操作能力,并培养学生从特殊需要到一般的推理能力,使其从感性上升到理性认识。

小结:

布置作业

课本25页的第1、2、3题

由学生独立完成,老师指导,引导学生注意这些之间的关系。

应关注的问题是:

1、平行线的性质和判定的不同。

2、几何推理证明的要领。

3、正确分清推理中因为和所以所表达的意义

通过具体问题,使学生更进一步理解和认识平行线的性质和判定的区别和联系。进一步认识角与角之间的关系,进一步锻炼学生几何证明题的逻辑推理能力。

第二篇:平行线的性质学教稿

七年级数学(上)学教稿

课题平行线的性质

制作人:高润平审核人:时间:2013.12 教师寄语;不为失败找借口,只为成功找方法。学习目标:(知道学什么!)

(1)掌握平行线的三个性质,能够进行简单的推理.(2)能区分平行线的性质和判定.温馨提示:(知道怎么学!)

从平行线的判定我们知道,想判定两条线是否平行,只要清楚“同位角、内错角、同旁内角”是否存在相等或互补,就可以准确得出结果。如果知道两直线平行,那么“同位角、内错角、同旁内角” 是否存在相等或互补?同学们大家动手量一量,算一算,结果和你想的一样吗?

课前热身:(温故而知新,大家都知道吧。加油!)

回顾平行线的判断,结合图形说明。即图形语言、符号语言、文字语言之间的相互转化。

课堂探究:(我自信,我参与,我快乐)

一. 自主学习

聚焦目标一

猜想:如果两条直线平行,那么这两条平行线被第三条直线所截而成的同位角有什么数量关系?

聚焦目标二

猜想:如图: 已知:a// b,那么2与3有什么关系?

聚焦目标三

猜想:如图:已知a//b,那么4与 3有什么关系呢?

合作探究:(组长组织组员对自主学习解决不了的问题展开讨论)

二. 展示讲解:(组内解决不了的,由已经掌握的学生展示,学生都不会的教师讲)

三. 分层训练:(一份耕耘,一份收获,仔细梳理,收获一

定不小)

巩固提升:(这里是你展示成果的舞台!)

必做题:(比一比,赛一赛,看看谁最棒)

1.找出图中的同位角,内错角,同旁内角

2.如图,直线a∥b,∠1=54°∠2, ∠3, ∠4各是多少度

?

4.如图是一块梯形铁片的线全部分,量得∠A=100°,∠B=115°,梯形另外两个角分别是多少度?

3.∠1和∠2是直线AB、CD被直线EF所截而成的内错角,那么∠1和∠2 的大小关系是()

A.∠1=∠2B.∠1>∠2;

C.∠1<∠2D.无法确定

选做题:(拼一拼,你一定赢)

1.若两个角的两边互相平行, 那么这两个角的关系是().

A.相等B.互补C.相等且互补D.相等或互补

2.如图,D是AB上一点,E是AC上一点.∠ADE=60 °∠B=60 °

∠AED=40°

(1)DE和BC平行吗?为什么?

(2)∠C是多少度,为什么?

B

学后记:(学习也需要不断反思哦!)

第三篇:平行线性质

平行线性质

平行线的性质

1.两直线平行,同位角相等。

2.两直线平行,内错角相等。

3.两直线平行,同旁内角互补。

4.在同一平面内的两线平行并且不在一条直线上的直线。

有关平行线:

1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线。

如:AB平行于CD,写作AB∥CD

2.平行公理:过直线外一点有且只有一条直线与已知直线平行。

3.平行公理的推论(平行的传递性):

平行同一直线的两直线平行。

∵a∥c,c∥b

∴a∥b

平行线的判定:

1.两条直线被第三条所截,如果同位角相等,那么这两条直线平行。

简单说成:同位角相等,两直线平行。

2.两条直线被第三条所截,如果内错角相等,那么这两条直线平行。

简单说成:内错角相等,两直线平行。

3.两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。

简单说成:同旁内角互补,两直线平行。

平行线的性质:1.两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等。

2.两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补。

3.两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等。

两个角的数量关系两直线的位置关系:

垂直于同一直线的两条直线互相平行。

平行线间的距离,处处相等。

如果两个角的两边分别平行,那么这两个角相等或互补。

基本规律

1.平行线的性质和判定中的条件和结论恰好相反。

2.两条平行线的距离是指垂直线段的长度,两条平行线间的距离处处相等。

3.命题必须是一个完整的句子,而且这个句子必须对某件事作出判断。

平行线的性质

1.两直线平行,同位角相等。

2.两直线平行,内错角相等。

3.两直线平行,同旁内角互补。

4.在同一平面内的两线平行并且不在一条直线上的直线。

有关平行线:

1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线。

如:AB平行于CD,写作AB∥CD

2.平行公理:过直线外一点有且只有一条直线与已知直线平行。

3.平行公理的推论(平行的传递性):

平行同一直线的两直线平行。

∵a∥c,c∥b

∴a∥b

平行线的判定:

1.两条直线被第三条所截,如果同位角相等,那么这两条直线平行。

简单说成:同位角相等,两直线平行。

2.两条直线被第三条所截,如果内错角相等,那么这两条直线平行。

简单说成:内错角相等,两直线平行。

3.两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。

简单说成:同旁内角互补,两直线平行。

平行线的性质:1.两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等。

2.两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补。

3.两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等。

两个角的数量关系两直线的位置关系:

垂直于同一直线的两条直线互相平行。

平行线间的距离,处处相等。

如果两个角的两边分别平行,那么这两个角相等或互补。

基本规律

1.平行线的性质和判定中的条件和结论恰好相反。

2.两条平行线的距离是指垂直线段的长度,两条平行线间的距离处处相等。

3.命题必须是一个完整的句子,而且这个句子必须对某件事作出判断。

第四篇:平行线性质

《平行线的性质》教学设计

 作者: 来源: 时间:2009-5-18 10:19:16 阅读47次 【大 中 小】

一、教学目标

1、知识与技能目标:经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。

2、能力目标:经历探索平行线性质的过程,掌握平行线的性质,并能解决一些实际问题。

3、情感态度目标:在自己独立思考的基础上,积极参与小组活动对平行线的性质的讨论,敢于发表自己的看法,并从中获益。

4、品质素养目标:培养学生勤于思考、勇于探索、钻研的品质。

为实现以上教学目标,突出重点,解决难点,充分发挥现代教育技术的作用,我制作了多媒体课件,运用多媒体辅助教学,变静为动,融声、形、色为一体为学生提供生动、形象、直观的观察材料,激发学生学习的积极性和主动性。

二、教学重点和难点

重点:平行线的三个性质以及综合运用平行线性质、判定等知识解题。

难点:区分性质和判定以及怎样综合运用同位角、内错角、同旁内角的关系解题。

三、教材分析

平行线是最简单、最基本的几何图形,在生活中随处可见,它不仅是研究其他图形的基础,而且在实际中也有着广泛的应用。因此,探索和掌握好它的有关知识,对学生更好的认识世界、发展空间观念和推理能力都是非常重要的。

教材设置了一个通过探索平行线性质的活动,在活动中,鼓励学生充分交流,运用多种方法进行探索,尽可能地发现有关事实,并能应用平行线性质解决一些问题,运用自己的语言说明理由,使学生的推理能力和语言表达能力得到提高。为学生今后的学习打下了基础。

因此,无论在知识技能上,还是在学生能力的培养及感情教育等方面,这节课都起着十分重要的作用。

四、学生情况分析

考虑本校处在城乡结合部,大部分学生的基础比较差,缺乏自学能力,动手能力比较差,所以,这个学期应该重视学生学习兴趣和态度的培养、重视学生的自主探索和合作交流以及新意识的培养。利用七年级学生都有好胜、好强的特点,扭转学数学难、数学枯燥的这种局面。形成一种勤动手、勤动脑,勤探索和肯合作交流的良好气氛

五、课前准备

课前准备:多媒体课件、三角尺、直尺。

六、教学过程

问题与情境

师生互动

设计意图

活动1 你身边的问题

问题: 如图,工人在修一条高速公路时在前方遇到一座高山,为了降低施工难度,工程师决定绕过这座山,如果第一个弯是左拐300,那么第二个弯应朝什么方向。才能不改变原来的方向。

学生观察,小组讨论,交流问题并发表见解, 教师进一步引导学生分析,引导学生将这个问题如何转化成数学问题。

本次活动应关注的问题是:

1、不改变方向,在数学中理解应是什么,2、在这个问题中包含了什么问题

3、如何将它转化为数学问题。

通过实例,让学生从具体的实例中发现数学问题,进而寻求解决问题的方法,使学生懂得数学来源于现实,服务于现实生活,同时也调动了学生的积极性,提高了学生的兴起, 活动2: 探究平行线的性质

问题:

1、上节课学习了用一把直尺和一块三角板可以画两条平行线,想一想在这个过程中三角尺取到什么作用,你能不能用两把直尺画出两条平行线,如果不能,为什么?

2、自己阅读课本的21页“探究”部分,并把空填好。

用电脑展示在画平行线时三角尺在其中取到的作用。

学生通过学习测量比较得到这些角中上下两个角的关系, 关注的问题是:

1、注意性质具有一般性。不能简单从几个特殊的例子,就断定它就具有某种性质,而需要一个从特殊到一般的推导过程。

2、理清两条直线平行,同位角相等,内错角也相等,同旁内角互补之间的关系。

通过动手测量提高学生的动手操作能力,并培养学生从特殊需要到一般的推理能力,使其从感性上升到理性认识。

活动3: 运用与推理

问题: 你能根据性质1,说出性质2,性质3成立的理由吗?如图, 因为a∥b.所以∠1=∠2(_______)又∠3=∠_____,(对顶角相等)所以∠2=∠3, 类似地,对于性质3,你能说出道理吗? 想一想:这节课开始的那个问题应该如何解决? 学生回答,再由同学补充。老师纠正。

教师引导学生观察因为所以之间的关系。

能过学生做和说,培养学生的一定的表达能力和逻辑推理能力。

活动4 巩固与提高

问题1:如图直线a,b被直线c所截 ,1、如果a∥b ,∠1=60?那么∠2,∠3,∠4为多少度。为什么?

2、如果∠1=60?∠3=120?直线a、b有什么关系?为什么? 问题2:∠1=100?∠5=100?∠2=60?那么∠

4、∠3为多少度? 解:因为∠1=100?∠5=100?BR> 所以∠1=∠____()所以 _____∥_______(), 又因为 ∠2 =60?()所以 ∠4=∠______=______()又因为 ∠4与∠3________()所以 ∠3=180?_____=______?BR> 问题3:填一填

如图,已知:∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC ∠BCD=180?(1)因为∠1=∠ABC, 所以 AD∥_____()(2)因为 ∠3=∠5 所以 AB∥_____()(3)因为∠2=∠4 所以 ______∥______()(4)因为∠1=∠ADC 所以______∥______()(5)因为∠ABC ∠BCD=180 所以 _______∥______()问题4,学与用: 某市为建设社会主义新农村,村村通煤气,市政工作人员已经在道路的两侧铺设了两条平行的燃气管道,如果公路一侧铺设的角度为100?为了便于连接,那么另一侧应以什么角度铺设?为什么? 小结: 布置作业

课本25页的第1、2、3题

由学生独立完成,老师指导,引导学生注意这些之间的关系。

应关注的问题是:

1、平行线的性质和判定的不同。

2、几何推理证明的要领。

3、正确分清推理中因为和所以所表达的意义

通过具体问题,使学生更进一步理解和认识平行线的性质和判定的区别和联系。进一步认识角与角之间的关系,进一步锻炼学生几何证明题的逻辑推理能力

第五篇:平行线性质

孔子教育文化辅导学校

5.3平行线的性质

【知识点】

平行线具有性质:

性质1 两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。

性质2 两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。

性质3 两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。

同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。

判断一件事情的语句叫做命题。

【典型例题】

1、如图,已知a∥b,c、d都是a、b的截线,∠1=80°,∠5=70°,∠

2、∠

3、∠4各是多少度?为什么? c

a

b12345d

(2)已知:AB∥EF,∠F=78°时,∠

3、∠4各等于多少度?为什么?

A

E12BCD34F3、如图,一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行,第一次拐的角

∠B是142°,第二次拐的角∠C是多少度?为什么?

C4、如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,你能算出

∠EAD、∠DAC、∠C的度数吗?

EB

AD

BC

5、如图,AB∥A′B′,BC∥B′C′,BC交A′B′于点D,∠B与∠B′有什么关系?为什么?

A

A′

BD C

C′B′

【模拟试题】

一、选择题

(1)两直线被第三条直线所截,则()

A、同位角相等B、内错角相等 C、同旁内角互补D、以上都不对

(2)如果一个角的两边分别平行于另一个角的两边,则这两个角()

(第1页,共4页)

A、相等B、互补C、相等或互补D、这两个角无数量关系(3)如图,下列判断不正确的是()A、∵∠1=∠2∴ ∠ 3= ∠ 4B、∵∠2=∠5 ∴ ∠ 6= ∠ 7

C、∵∠ 5+ ∠ 8=1800 ∴ ∠1=∠2D、∵∠ 3+ ∠ 4=1800 ∴ ∠1=∠2

4.如图a所示,AB∥CD,则与∠1相等的角(∠1除外)共有()

A.5个B.4个C.3个D.2个

AC

B

D

A

ACEDFB

D

(a)(b)(c)

5.如图b所示,已知DE∥BC,CD是∠ACB的平分线,∠B=72°,∠ACB=40°,•那么∠BDC等于()A.78°B.90°C.88°D.92°

6.下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;•③内错角相等,两直线平行;

④垂直于同一直线的两直线平行,其中是平行线的性质的是()A.①B.②和③C.④D.①和④

7.若两条平行线被第三条直线所截,则一组同位角的平分线互相()A.垂直B.平行C.重合D.相交

8.如图c所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为()A.35°B.30°C.25°D.20°9.如图d所示,AB∥CD,则∠A+∠E+∠F+∠C等于()

A.180°B.360°C.540°D.720°

D

EF

B

F

E

G

(d)(e)

10.如图e所示,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(∠1除外)共有()•A.6个B.5个C.4个D.3个

二、填空

1.如图1,已知∠1 = 100°,AB∥CD,则∠2 =,∠3 =,∠4 =. 2.如图2,直线AB、CD被EF所截,若∠1 =∠2,则∠AEF +∠CFE =.C F 1 BB ED DF

B C A B D

图1 图2(第2页,共4页)图图

33.如图3所示

(1)若EF∥AC,则∠A +∠= 180°,∠F + ∠= 180°().(2)若∠2 =∠,则AE∥BF.(3)若∠A +∠= 180°,则AE∥BF. 4.如图4,AB∥CD,∠2 = 2∠1,则∠2 =.

5.如图5,AB∥CD,EG⊥AB于G,∠1 = 50°,则∠E =.

E C

l

1AF 2 B F G

l2D

F D C C A G

图7 图8 图6图

56.如图6,直线l1∥l2,AB⊥l1于O,BC与l2交于E,∠1 = 43°,则∠2 =. 7.如图7,AB∥CD,AC⊥BC,图中与∠CAB互余的角有. 8.如图8,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(不包括∠1)共有个.

三、解答下列各题

9.如图9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.A CF

D

图9 10.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB的度数.

E

B C

图10

11.如图11,已知AB∥CD,试再添上一个条件,使∠1 =∠2成立.(要求给出两个以上答案,并选择其中一个加以证明)

BE

C D

12.如图12,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1 +∠2 = 90°.图 1

1求证:(1)AB∥CD;(2)∠2 +∠3 = 90°.

B A

D C F

四、探索发现:

(第3页,共4页)

图1

2如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,•请你从所得的四个关系中任选一个加以说明.AP

B

A

PC

D

B

AC

PBD

AC

P

BD

(1)(2)(3)(4)

五、中考题与竞赛题:

1.(2002.河南)如图a所示,已知AB∥CD,直线EF分别交AB,CD于E,F,EG•平分∠BEF,若∠1=72°,则∠2=_______.AC

E

B

A

D

E

BD

C

(a)(b)

2.(2002.哈尔滨)如图b所示,已知直线AB,CD被直线EF所截,若∠1=∠2,•则∠AEF+∠CFE=________.(第4页,共4页)

下载湘教版七年级数学平行线的性质课件(5篇范例)word格式文档
下载湘教版七年级数学平行线的性质课件(5篇范例).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    七年级数学平行线的性质同步练习题(一)

    七年级数学《平行线的性质》同步练习题(一)一、基础过关:1.如图1,a∥b,a、b被c所截,得到∠1=∠2的依据是A.两直线平行,同位角相等B.两直线平行,内错角相等C.同位角相等,两直线平行D.内错......

    七年级数学下册平行线的性质教案好

    课题:10.3《平行线的性质》第一课时 教学目的 1.使学生掌握平行线的三个性质,并能运用它们作简单的推理. 2.使学生了解平行线的性质和判定的区别. 重点难点 1.平行的三个性质,是本节......

    数学七年级下册平行线的判定和性质练习题

    数学七年级下册平行线的判定和性质练习题一、填空1.如图1,若A=3,则∥;若2=E,则∥;若+= 180°,则∥.c A d a E 5 a2 2B 3 b b C A B图4 图1 图2 图32.若a⊥c,b⊥c,则ab.3.如图2,写出一个能判定直......

    七年级数学平行线经典证明题

    经典平行线经典证明题一、选择题:1.如图,能与构成同旁内角的角有A. 5个 B.4个 C. 3个 D. 2个2.如图,AB∥CD,直线MN与AB、CD分别交于点E和点F,GE⊥MN,∠1=130°,则∠2等于A.50°B.40°C.3......

    七年级下册《平行线的性质》说课稿

    七年级下册《平行线的性质》说课稿 七年级下册《平行线的性质》说课稿 尊敬的评委老师: 大家好,我是#号选手,很高兴能有这次机会与大家交流。今天我要说课的内容是义务教育......

    【湘教版】七年级数学下册:4.3《平行线的性质》教案

    平行线的性质 知识与技能: 1、使学生理解平行线的性质,能初步运用平行线的性质进行有关计算。 2、学会平行线性质的简单应用。 过程与方法: 通过本节课的教学,培养学生......

    七年级数学下册《5.3平行线的性质》的教学反思

    第五章平行线的性质内容,是在学生学习习近平行线的条件之后来进行学习的。因此,在引入环节,就充分考虑到学生已经具备的这一知识基础,从回忆平行线的判定入手,创设一个疑问来激发学生......

    湘教七年级上数学教学计划[5篇材料]

    湘教七年级上数学教学计划怎么写?从培养学生学数学、用数学的能力入手,持之以恒地开展教研活动。充分发展学生数学思维,全面提高教育教学质量。这里给大家分享一些关于湘教七......