第一篇:人教版七年级数学下册不等式的性质课件
课题:9.1.2 不等式的性质(1)
教学目标
1、经历通过类比、猜测、验证发现不等式性质的探索过程,掌握不等式的性质;
2、初步体会不等式与等式的异同;
3、通过创设问题情境和实验探究活动,积极引导学生参与数学活动,提高学习数学的兴趣,增进学习数学的信心,体会在解决问题的过程中与他人交流合作的重要性.
教学难点
正确运用不等式的性质。
知识重点
理解并掌握不等式的性质。
教学过程
(师生活动)设计理念
提出问题 教师出示天平,并请学生仔细观察老师的操作过程,回答下列问题:
1、天平被调整到什么状态?
2、给不平衡的天平两边同时加人相同质量的砝码,天平会有什么变化?
3、不平衡的天平两边同时拿掉相同质量的砝码,天平会有什么变化?
4、如果对不平衡的天平两边砝码的质量同时扩大相同的倍数,天平会平衡吗?缩小相同的倍数呢? 通过天平演示,结合自己的观察和思考,让学生感受生活中的不等关系。
探究新知
1、用“>”或“<”填空.
(1)-1 < 3 -1+2 3+2-1-3 3-
3(2)5 >35+a 3+a 5-a 3-a
(3)6 > 2 6×5 2×5 6×(-5)2×(-5)
(4)-2 < 3(-2)×6 3×6
(-2)×(-6)3×(一6)
(5)-4 >-6(-4)÷2(-6)÷
2(-4)十(-2)(-6)十(-2)
2、从以上练习中,你发现了什么?请你再用几个例子试一试,还有类似的结论吗?请把你的发现告诉同学们并与他们交流.
3、让学生充分发表“发现”,师生共同归纳得出:
不等式性质1:不等式两边都加上(或减去)同一个数(或式子),不等号的方向不变.
不等式性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.
不等式性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变.
4、你能说出不等式性质与等式性质的相同之处与不同之处吗? 通过动手、动口、动脑,引导学生运用类比、归纳的数学思想去探究问题,在品尝成功的喜悦中激发出学数学的兴趣,渗透类比思想。
探究新知
2、下列哪些是不等式x+3 > 6的解?哪些不是?
-4,-2.5,0,1,2.5,3,3.2,4.8,8,122、直接想出不等式的解集,并在数轴上表示出来:
(1)x+3 > 6(2)2x < 8(3)x-2 > 0
巩固新知
1、判断
(1)∵a < b ∴ a-b < b-b
(2)∵a < b ∴
(3)∵a < b ∴ -2a < -2b
(4)∵-2a > 0 ∴ a > 0
(5)∵-a < 0 ∴ a <
32、填空
(1)∵ 2a > 3a ∴ a是 数
(2)∵ ∴ a是 数
(3)∵ax < a且 x > 1 ∴ a是 数
3、根据下列已知条件,说出a与b的不等关系,并说明是根据不等式哪一条性质。
(1)a-3 > b-3(2)
(3)-4a > -4b 设置这几个练习,既可以培养学生独立思考的能力,又可强化对概念的理解,使学生真正认识不等式的性质。
总结归纳
在学生自己总结的基础上,教师应强调两点:
1、等式性质与不等式性质的不同之处;
2、在运用“不等式性质3“时应注意的问题. 学生通过总结,可以帮助自己从整体上把握本节课所学知识,培养良好的学习习惯,也为下节课学好解不等式打下基础。
小结与作业
布置作业
1、必做题:教科书第134页习题9.1第4、5题
2、选做题:教科书第134页习题9.1第7题.
3、备选题:
本课教育评注(课堂设计理念,实际教学效果及改进设想)
本节课设计旨在让学生经历通过实验、猜测、验证,发现不等式性质的探索过程.用类比和实验探究法作为主要方法贯穿整个课堂教学之中,并以多媒体作为辅助教学手段.让学生充分进行讨论交流,在自主探索和合作学习中掌握不等式的性质.这样就能有效地突破本节课的难点,为学生今后的学习打下坚实的基础.
教学过程中贯穿了一条“创设情境,引出新知—实验讨论,得出性质—探究辨析,突破难点—运用性质,解决问题”的线索,使学生真正成为学习的主人.在师生交流合作中营造互动的氛围,让学生积极主动地参与教学的整个过程,使他们的学习态度、情感意志和个性品质等都得到不同程度的提高.
为了突破教学难点,让学生能熟练准确地运用“不等式性质3”,本课设计了多样化的练习以巩固所学知识.在学生回答、板演、讨论的过程中,课堂气氛被激活,教学难点被突破,使学生在轻松愉快的氛围中扎实地掌握性质并灵活运用.同时,学习伙伴之间进行了思维的碰撞和沟通.
第二篇:七年级数学不等式课件
教学目标:
通过对具体实例的学习,使学生能够了解生活中的不等量关系,理解不等式的概念,知道什么是不等式的解,为以后学习不等式的解法奠定基础.知识与能力:
1.通过对具体事例的分析和探索,得到生活中不等量的关系.2.通过理解得到不等式的概念,从而使学生经历实际问题中数量的分析、抽象过程,体会现实中有各种各样错综复杂的数量关系.3.了解不等式的意义,知道不等式是用来刻画生活中的数量关系的.4.知道什么是不等式的解.过程与方法:
1.引导学生分析具体事例,从对具体事例的分析中得到不等量关系.2.引导并帮助学生列出不等式,分析不等式的成立条件.3.通过分析、抽象得到不等式的概念和不等式的解的概念.4.通过习题巩固和加深对概念的理解.情感、态度与价值观:
1.通过学生的分析和抽象过程使他们体会现实中错综复杂的数量关系,然后从而培养其抽象思维能力.2.通过分组讨论学习,体会在解决具体问题的过程中与他人合作的重要性,培养学生的团体协作精神,使学生获得合作交流的学习方式.3.通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.4.通过创设问题串,让学生仔细观察、对比、归纳、整理,尝试对有理数进行分类,然后体验教学活动充满着探索性和创造性.教学重、难点及教学突破
重点:不等式的概念和不等式的解的概念.难点:对文字表述的数量关系能列出不等式.教学突破:由于学生在以前已经对数量的大小关系和含数字的不等式有所了解,但还没有接触过含未知数的不等式,在学生分析问题的时候注意引入现实中大量存在的数量间的不等关系,研究它们的变化规律,使学生知道用不等式解决实际问题的方便之处.在本节的教学中能够在组织学生讨论的过程中适当地渗透变量的知识,让学生感受其中的函数思想,并引导学生发现不等式的解与方程的解之间的区别.在处理本节难点时指导学生练习有理数和代数式的知识,准确“译出”不等式.教学过程:
一.研究问题:
世纪公园的票价是:每人5元,一次购票满30张可少收1元.某班有27名少先队员去世公园进行活动.当领队王小华准备好了零钱到售票处买了27张票时,爱动脑的李敏同纪学喊住了王小华,提议买30张票.但有的同学不明白.明明只有27个人,买30张票,岂不浪费吗?
那么,究竟李敏的提议对不对呢?是不是真的浪费呢
二.新课探究:
分析上面的问题:设有x人要进世纪公园,①若x≥30,应该如何买票?②若x<30,则又该如何买票呢?
结论:至少要有多少人进公园时,买30张票才合算?
概括:
1、不等式的定义:表示不等关系的式子,叫做不等式.不等式用符号>,<,≥,≤.2、不等式的解:能使不等式成立的未知数的值,叫做不等式的解.3、不等式的分类:⑴恒不等式:-7<-5,3+4>1+4,a+2>a+1.⑵条件不等式:x+3>6,a+2>3,y-3>-5.三、基础训练.例
1、用不等式表示:⑴a是正数;⑵b不是负数;⑶c是非负数;⑷x的平方是非负数;⑸x的一半小于-1;⑹y与4的和不小于3.注:⑴不等式表示代数式之间的不相等关系,与方程表示相等关系相对应;
⑵研究不等关系列不等式的重点是抓关键词,弄清不等关系.例
2、用不等式表示:⑴a与1的和是正数;⑵x的2倍与y的3倍的差是非负数;⑶x的2倍与1的和大于—1;⑷a的一半与4的差的绝对值不小于a.例
3、当x=2时,不等式x-1<2成立吗?当x=3呢?当x=4呢?
注:⑴检验字母的值能否使不等式成立,只要代入不等式的左右两边,如果符合不等号所表示的关系,就成立,否则就不成立.⑵代入法是检验不等式的解的重要方法.学生练习:课本P42练习1、2、3.四、能力拓展
学校组织学生观看电影,某电影院票价每张12元,50人以上(含50人)的团体票可享受8折优惠,现有45名学生一起到电影院看电影,为享受8折优惠,必须按50人购团体票.⑴请问他们购买团体票是否比不打折而按45人购票便宜;
⑵若学生到该电影院人数不足50人,应至少有多少人买团体票比不打折而按实际人数购票便宜.解:⑴按实际45人购票需付钱_________ 元,然后如果按50人购买团体票则需付钱50×12×80%=480元,所以购买团体票便宜.⑵设有x人到电影院观看电影,当x_____时,按实际人数买票______张,需付款_______元,而按团体票购票需付款________元,如果买团体票合算,那么应有不等式________________,由①得,当x=45时,上式成立,让我们再取一些数据试一试,将结果填入下表:
x12x比较480与12x的大小48<12x成立吗?
由上表可见,至少要__________人时进电影院,购团体票才合算.五、小结:
⑴不等式的定义,不等式的解.⑵对实际问题中探索得到的不等式的解,然后不仅要满足数学式子,而且要注意实际意义.六、作业课本P42习题8.1第1、2、3题.补充题:
1.用不等式表示:
(1)与1的和是正数;(2)的与的的差是非负数;
(3)的2倍与1的和大于3;(4)的一半与4的差的绝对值不小于.(5)的2倍减去1不小于与3的和;(6)与的平方和是非负数;
(7)的2倍加上3的和大于-2且小于4;(8)减去5的差的绝对值不大于
2.小李和小张决定把省下的零用钱存起来.这个月小李存了168元,然后小张存了85元.下个月开始小李每月存16元,小张每月存25元.问几个月后小张的存款数能超过小李?(试根据题意列出不等式,并参照教科书中问题1的探索,找出所列不等式的解)
3.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆,已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,然后从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元,(1)设从乙仓库调往A县农用车辆,用含的代数式表示总运费W元;(2)请你用尝试的方法,探求总运费不超过900元,共有几种调运方案?你能否求出总运费最低的调运方案.
第三篇:七年级下册不等式性质说课稿
七年级下册数学《9.1.2不等式的性质》说课稿 9.1.2《不等式的性质》---说课稿
本节课的内容是《不等式的性质》第1课时,课题选自人教版《义务教育课程标准实验教科书数学(七年级下册)》.我将从教学目标的设定;教学重点、难点的分析;教学方式与手段的选择及教学过程的设计几方面来阐述我对本节课的教学设计.
一、教学目标
不等式的性质是本章的重点内容之一,是在学生学习了等式的基本性质、不等式及其解集的基础上进行,是不等式变形的依据,也是探索不等式方法的基础,学生掌握好本节内容是学好本章内容的关键。同时,本节课的内容蕴含着丰富的数学思想,是培养学生类比、化归、数形结合等数学思想的良好素材。《课程标准》中有关本节课的要求是:探索不等式的基本性质,会解简单的一元一次不等式,并能在数轴上表示出解集。
根据《课程标准》对本节内容的教学要求,以及学生的认知水平,制定的教学目标如下: 知识与技能:
1、掌握不等式的三个性质并且能正确应用。
2、经历探究不等式性质的过程,体会不等式与等式的异同点,发展学生分析问题和解决问题的能力。
3、开展研究性学习,使学生初步体会学习不等式性质的价值。4.学生学会时刻归纳总结的学习方法。
过程与方法:本节课采用“类比-实验-交流”的教学方法。
情感、态度与价值观:
1、认识通过观察实验类比可以获得数学结论,体验数学活动充满着探索性和创造性。
2、在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,学会分享别人的想法和结果,并重新审视自己的想法,能从中获益。
二、教学重点、难点
不等式的性质是解不等式方法的依据,在全章中意义重大。教学中应切实使学生理解不等式性质的由来、意义,并知道它与等式的性质既有区别又有联系,会利用不等式的性质对不等式作简单变形,解简单的一元一次不等式。因此,本节课的教学重点为:掌握不等式的性质;教学难点为:不等式性质3的探索及运用。
三、教学方式与手段 不等式性质的(2)、(3)是不等式性质与等式性质的主要区别,为了使学生能够正确理解和运用这两条性质,我在设计中引导学生经历类比、猜想、观察、归纳、验证、比较、运用的探究过程,由学生自己发现结论,得出结论,这样可以使学生对结论理解的更深刻,映像更牢固。因此,本节课采用的教学方式是启发式教学方式。
教学中利用幻灯片,可以增强不等式的对比的视觉效果,有利于学生发现规律,辅助对教学重点的突出;利用实物投影展示学生的解题过程,矫正出现的问题,感受数学的严谨性.
四、教学过程
本节课的教学程序分为复习旧知、创设情境;探究新知、总结规律;巩固训练、加深理解;归纳小结、分层作业四个环节进行.
(一)复习旧知、创设情境
首先回顾等式的性质,教师提问:
1、等式有哪些性质?用数学式子怎样表示?
2、这说明我们可以在等式两边同时作哪些相同的运算?运算后的结果呢? 然后,引入本节课的主题:不等式是否也具有类似的性质呢?
通过回顾等式的性质,为本节课类比等式的性质,探索不等式的性质做好铺垫,并且从学生已有的数学经验出发,有助于学生建立新旧知识之间的联系,培养学生梳理知识体系的习惯。
(二)探究新知、总结规律
活动1:你能用“﹤”或“﹥”填空,并总结其中的规律吗?(1)7﹥3
(2)
-1﹤3
7+2﹥3+2
-1+2﹤3+2
7-2﹥3-2
-1-3﹤3-3 根据题(1)、(2)发现的规律填空:当不等式两边都加上或减去同一个数(正数或负数)时,不等号的方向。
(3)若7>3,则7×5
3×5 ,7×(-5)
3×(-5);
7÷5 ____3÷ 5 , ÷(-5)____3÷(-5)(4)若-1<3,则(-1)×6
3×6 ,(-1)×(-6)
3×(-6)(-1)÷2____3÷2,(-1)÷(-4)____3÷(-4)根据题(3)、(4)发现的规律填空:当不等式两边都乘以同一个正数时,不等号的方向
;当不等式两边都乘以同一个负数时,不等号的方向。
本次活动以4组精心设计的填空题,让学生通过观察有限个不等式的变化,发现并归纳不等式的性质,进一步培养学生的抽象概括能力及合情推理能力。此次活动是本节课的核心活动,对于学生有一定难度,有些学生可能会直接把等式的性质加以修改推广到不等式,而忽略了不等式的两边乘以同一个正数或同一个负数的不同结论,此时教师应引导学生先计算、再比较,然后认真观察,有必要的话可以继续举几个例子让学生观察,体会不等式性质与等式性质的异同。
活动2:你能用自己的语言概括不等式有哪些性质吗?
本活动中,教师组织学生分组讨论,给每个学生提供发言机会,让每一个学生都尝试用自己的语言概括结论,锻炼学生语言表达能力及抽象概括能力。
当学生概括出结论后,为了使学生对不等式的性质有更全面深入的了解,教师可提出以下3个问题,让学生思考:
(1)性质中的“不等号方向不变”和“不等号方向改变”的含义是什么?
(2)对比性质2和性质3,你能归纳出不等号的方向何时不变,何时改变吗? 使学生经一步明确:“不等号方向不变”是指如果原来是“﹤”,那么变化后仍是“﹤”;“不等号方向改变”是指如果原来是“﹤”,那么变化后将成为“﹥”。活动3:你能用式子表示出不等式的3条性质吗?
教师深入小组,引导学生通过类比等式性质的表示方法,表示出不等式的性质,并注意规范学生的数学语言。在此活动中,教师应重点关注学生是否能根据对c所表示数的条件分开表示性质(2)、(3)。为了加深学生对性质的理解,教师可利用天平的示意图对性质进行直观刻画。
通过用符号语言表示不等式的性质,有助于让学生体会到用字母表示数的优越性,发展学生文字语言与符号语言相互转化能力和符号感。
(三)、范例学习,应用所学
例
1、设a>b,用“<“ 或“>”填空,并在题后的括号内填写理由:(1)a-3
b-3;
()(2);
()(3)0.1a
0.1b;()(4)-4a
-4b;()(5)2a+3____2b+3;
()(6)(m2+1)a ____(m2+1)b(m为常数);()例
2、利用不等式的性质解下列不等式,并把解集在数轴上表示出来
(1)x-7﹥26;
(2)3x﹤2x+1;
(3)
﹥50;
(4)-4x﹥3 在解决问题之前,教师应首先组织学生回顾不等式的解集用式子如何表示,引导学生认识到解不等式就是通过将不等式逐步变形,化为x﹥a或x﹤a的形式。然后,组织学生先独立思考,再分组讨论,并由小组代表发言在全班交流,最后由教师规范统一规范写法。在初学用不等式性质解不等式时,要让学生每一步都考虑“我这一步的依据是什么”,这样可以尽快熟练掌握不等式的性质,养成严谨的思维习惯。
在用数轴表示不等式解集时,要引导学生注意规律:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈。通过用数轴表示不等式解集一方面可以加深对不等式解集以及解不等式的理解,另一方面也为学习不等式组时用数轴确定不等式组的解集做准备。
(四)巩固训练、加深理解
1、按下列要求,写出正确的不等式:(1)由-2<-1,两边都加-a;
(2)由7>5,两边都乘以不为零的-a.
2、判断正误:
(1)如果a>b,那么ac>bc.(2)如果a>b,那么ac2>bc2.(3)如果ac2>bc2, 那么a>b.3、a是一个整数,比较a与3a的大小.4、填空(1)∵ 2a < 3a , ∴a是____数(2)∵, ∴a是____数
(3)∵ ax < a 且 x > 1 , ∴a是____数
5、利用取特殊值法解不等式问题.如果a<b<0,那么一定成立的不等式是()
(A)
(B)ab<1
(C)
(D)
6、(备用)若a是有理数,则下列各式中正确的是()(A)a2>0
(B)若a<2,则a2<4(C)若a<0,则a2>0
(D)若a>-2,则a2>4 这几道题都是是不等式的性质的简单应用,通过由浅入深的练习,进一步帮助学生理解不等式的性质,为下面利用不等式性质解不等式作准备。
(五)归纳小结、分层作业
1、今天你学到了什么知识?
2、应用过程中需要注意什么? 通过学生归纳本节课的主要内容、交流学习过程中的心得体会,使学生对本节课的知识进一步加深了理解,同时积累了学习经验,体会到了数学的思想方法。作业:
1、看书P123—P125(补全书上留白,划出重点内容,完成读书笔记)
2、习题9.1第4、5、6、7题
3、选作:习题9.第8题
读书作业有利于学生养成主动复习的学习习惯,分层作业为不同认知水平的学生提供了不同的发展空间。板书设计:
不等式的性质
不等式的性质1
例题
不等式的性质2 不等式的性质3 不等式的性质4 不等式的性质5
第四篇:七年级数学《不等式性质》说课稿
七年级数学《不等式性质》说课稿
七年级数学《不等式性质》说课稿1
我今天说课的题目是《不等式的基本性质》,主要分四块内容进行说课:教材分析;教学方法的选择;学法指导;教学流程。
一、教材分析:
1、教材的地位和作用
本节课的内容是选自人教版义务课程标准实验教科书七年级下第九章第一节第二课时《不等式的基本性质》,这是继方程后的又一种代数形式,继承了方程的有关思想,并实现了数形结合的思想。是初中数学教学的重点和难点,对进一步学习一次函数的性质及应用有着及其重大的作用。
2、教学目标的确定
教学目标分为三个层次的目标:
⑴知士标:主要是理解并掌握不等式的三个基本性质。
⑵能力目标:培养学生利用类比的思想来探索新知的能力,扩充和完善不等式的性质的能力。
⑶情感目标:让学生感受到数学学习的猜想与归纳的思维方式,体会类比思想和获得成功的喜悦。
3、教学重点和难点
不等式的三个基本性质是本节课的中心,是学生必须掌握的内容,所以我确定本节的教学重点是不等式三个基本性质的学习以及用不等式的性质解不等式。本节课的难点是用不等式的性质化简。
二、教学方法、教学手段的选择:
本节课在性质讲解中我采取探索式教学方法,即采取观察猜测---直观验证---托盘实验---得出性质。使学生主动参与提出问题和探索问题的过程,从而激发学生的`学习兴趣,活跃学生的思维。为了突破学生对不等式性质应用的困难,采取了类比操作化抽象为具体的方法来设置教学。整节课采取精讲多练、讲练结合的方法来落实知识点。
三、学法指导:
鉴于七年级的学生理解能力和逻辑推理能力还比较薄弱,应以激励的原则进行有效的教学。鼓励学生一种类型的题多练,并及时引导学生用小结方法,克服思维定势。
例题讲解采取数形结合的方法,使学生树立“转化”的数学思想。充分复习旧知识,使获取新知识的过程成为水到渠成,增强学生学习的成就感及自信心,从而培养浓厚的学习兴趣。
四、(主要环节)教学流程:
1、创设情境,复习引入
等式的基本性质是什么?
学生活动:立思考,指名回答、
教师活动:注意强调等式两边都乘以或除以(除数不为0)同一个数,所得结果仍是等式、
请同学们继续观察习题:
观察:用“”或“”填空,并找一找其中的规律.
(1)55+2____3+2,5-2____3-2
(2)1,-1+2____3+2,-1-3____3-3
(3)6>2,6×5____2×5,6×(-5)____2×(-5)
(4)2(-2)×6____3×6,(-2)×(-6)____3×(-6)
学生活动:观察思考,两个(或几个)学生回答问题,由其他学生判断正误、
五、教法说明
设置上述习题是为了温故而知新,为学习本节内容提供必要的知识准备、
不等式有哪些基本性质呢?研究时要与等式的性质进行对比,大家知道,等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式(实质是移项法则),请同学蜜察①②题,并猜想出不等式的性质、
学生活动:观察思考,猜想出不等式的性质、
教师活动:及时纠正学生叙述中出现的问题,特别强调指出:“仍是不等式”包括两种情况,说法不确切,一定要改为“不等号的方向不变或者不等号的方向改变、”
师生活动:师生共同叙述不等式的性质,同时教师板书、
不等式基本性质1不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变、
对比等式两边都乘(或除以)同一个数的性质(强调所乘的数可正、可负、也可为0)请大家思考,不等式类似的性质会怎样?
学生活动:观察③④题,并将题中的5换成2,-5换成一2,按题的要求再做一遍,并猜想讨论出结论、
六、教法说明
观察时,引导学生注意不等号的方向,用彩色粉笔标出来,并设疑“原因何在?”两边都乘(或除以)同一个负数呢?为什么?
师生活动:由学生概括总结不等式的其他性质,同时教师板书、
不等式基本性质2不等式两边都乘(或除以)同一个正数,不等号的方向不变、
不等式基本性质3不等式两边都乘(或除以)同一个负数,不等号的方向改变、
师生活动:将不等式-2<3两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论、
学生活动:看课本第124页有关不等式性质的叙述,理解字句并默记、
强调:要特别注意不等式基本性质3、
实质:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变、
学生活动:思考、同桌讨论、
归纳:只有乘(或除以)负数时不同,此外都类似、
(1)如果x-54,那么两边都可得到x9
(2)如果在-78的两边都加上9可得到
(3)如果在5-2的两边都加上a+2可得到
(4)如果在-3-4的两边都乘以7可得到
(5)如果在80的两边都乘以8可得到
师生活动:学生思考出答案,教师订正,并强调不等式性质的应用、
2、尝试反馈,巩固知识
请学生先根据自己的理解,解答下面习题、
例1 利用不等式的性质解下列不等式并用数轴表示解集、
(1)x-7>26(2)-4x≥3
学生活动:学生立思考完成,然后一个(或几个)学生回答结果、
教师板书(1)(2)题解题过程、(3)(4)题由学生在练习本上完成,指定两个学生板演,然后师生共同判断板演是否正确、
七、教法说明
解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范、【教法说明】要让学生明白推理要有依据,以后作类似的练习时,都写出根据,逐步培养学生的逻辑思维能力、
(四)总结、扩展
本节重点:
(1)掌握不等式的三条基本性质,尤其是性质3、
(2)能正确应用性质对不等式进行变形、
(五)课外思考
对比不等式性质与等式性质的异同点、
八、布置作业
七年级数学《不等式性质》说课稿2
尊敬的各位领导、各位老师:
下午好!
今天,我说课的题目是鲁教版义务课程标准实验教科书七年级下第十一章第二节《不等式的基本性质》,主要从以下几个方面进行说课:教材分析,教法分析,学法指导,教学过程设计,教学评价.
一,教材分析
本节课主要研究不等式的性质和简单应用.它是进一步学习一元一次不等式的基础.它与前面学过的等式性质有联系也有区别,为渗透类比,分类讨论的数学思想提供了很好的素材.这节课在整个教材中起承上启下的作用.它是继方程后的又一种代数形式,继承了方程的有关思想,并实现了数形结合的思想。是初中数学教学的重点和难点,对进一步学习一次函数的性质及应用有着及其重大的作用。
结合本节课的地位和作用,设计本节课的教学目标如下:
1、知识目标:
(1)探索并掌握不等式的基本性质,能解简单的不等式;
(2)理解不等式与等式性质的联系与区别;
2、能力目标:
(1)通过不等式性质的探索,培养学生的观察,猜想,分析,归纳,概括的逻辑思维能力:
(2)通过探索过程,渗透类比,分类讨论的数学思想;
3、情感目标:
(1)培养学生的钻研精神,同时加强同学间的合作与交流;
(2)让学生获得亲自参与探索研究的情感体验,从而增强学习数学的热情,
(3)通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操。
结合本节课的教学目标,确定本节课的
重点是不等式性质及简单应用.
难点是不等式性质的探索过程及性质3的应用.
为了突出重点,突破难点:采用实物投影仪展示学生不同层次的思维探索过程,化抽象为具体;用类比,对比的方法化生疏为熟悉,化零散为系统.
二、教法分析,教学手段的选择:
为了体现以学生为本的课堂教学理念,在教学过程中主要采用探索发现法和启发式教学法,即采取观察猜测---直观验证---推理证明---得出性质。在知识的发生发展中渗透类比,分类讨论的数学思想,学生通过观察,类比,猜想,验证,应用等一系列探究活动,层层推进,环环相扣,体现数学的严密性和系统性.为了突破学生对不等式性质3,理解的困难,采取了类比作化抽象为具体的方法来设置教学。
三、学法指导:
由于七年级学生有比较强的好奇心,好胜心以及显示欲.同时经过一年初中数学的思维锻炼,已经初步具备了提出问题,分析问题和解决问题的能力,基于学生的以上心理特点及认知水平,所以采取动手实践,自主探索,合作交流的学习方法.这样可以使学生积极参与教学过程.在教学过程中展开思维,进一步培养学生提出问题,分析问题,解决问题的能力,进一步理解类比,分类讨论等数学思想.
四、教学过程设计
基于以上教材分析,紧紧围绕本节课的教学目标,从学生的认知水平出发进行如下的教学设计:
1.创设情境,类比猜想
提出问题:今年我比你大10岁,5年后,我比你大还是比你小,大几岁,小几岁?
2年前,我比你大还是比你小,大几岁,小几岁?
类比等式的性质1,不等式有类似的性质吗?
【设计意图】通过一些生活实例启发学生思考,猜想不等式的性质1
2、举例说明,验证结论
设计小活动:你说我验
同桌合作,举几个例子,可以是数字例子,也可以是生活当中的例子。相互验证一下你猜想的是否正确
【设计意图】通过这个活动旨在增强教学的有效性,一方面增强学生间的合作意识,另一方面增强学生思考的严谨性。活跃课堂气氛,掀起课堂的一个小高潮。
学生总结,教师板书,以及注意引导学生理解“同一个整式”的含义。
3、类比等式的性质2,使学生发现问题:不等式是否有类似的性质
不等式的`性质2,3是这一节的重点、难点,在这个知识点的处理上,完全放手给学生,让学生自己发现,不等号没变,在什么情况下不变?不等号发生了改变,在什么情况下发生了改变?让学生自己的思维发生碰撞,再套用乘以或除以一个数已经不能满足需要了,因此,必须分成正数和负数两种情况。这种分类不是老师硬塞给学生的,而是水到渠成的。让学生再举几例试试,发现有没有类似的结论。
【教法说明】为了突破学生对不等式性质3理解的困难,根据学生的认知规律采取化抽象为具体的方法来设计教学过程。为了体现以学生
为本的课堂教学理念,在教学过程中主要采用探索发现法和启发式教学法,即观察猜测---直观验证---得出性质,突出时间、结果和体验学生有效学习的三个重要指标,教学过程应该成为学生的一种愉悦的情绪生活和积极的情感体验。基于此,改变以往给学生画好框架,让学生跟着老师的思路走的教学模式,大胆放手给学生,从而培养学生的能力。这种方式能再次掀起小高潮。让学生各有所获,从不懂到懂,从少知到多知,从不会到会,从不能到能。学生通过观察,类比,猜想,验证,应用等一系列探究活动,层层推进,环环相扣,体现数学的严密性和系统性.
师生活动:由学生概括总结不等式的性质2,3,同时教师板书.
4、例题讲解,探究新知
例1将下列不等式化成“xa”或“xa”的形式
(1)x-5-1(2)-2x3
解:(1)根据不等式的基本性质1,两边都加上5,得x-1+5即x4
(2)根据不等式的基本性质3,两边都除以-2,得X-3/2
【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.
【设计意图】应用性质精讲精练,对不等式进行变形,加强对不等式性质的理解,规范书写格式
例2:对习题1进行适当的改编:已知ab,填空并连线:
(1)a-3____b-3根据不等式的性质1
(2)6a____6b根据不等式的性质2
(3)-a_____-b根据不等式的性质3
(4)a-b____0
教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.
注意问题:做此练习题时,应启发学生将所做习题与题中已知条件进行对比,例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.
【设计意图】连线改变以往简单说明理由的形式,增加趣味性,同样让学生明白言之要有理,推理要有依据,这样学生更容易接受。逐步培养学生的逻辑思维能力
5、小试牛刀:断正误,正确的打“√”,错误的打“×”
①∵∴( ) ②∵∴( )
③∵∴( ) ④若,则∴,( )
学生活动:一名学生说出答案,其他学生判断正误.
答案:①√ ②× ③√ ④×
【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错
6、拓展思维,培养能力
比较2a与a的大小
【设计意图】改变学生的思维定势:2a一定比a大,培养学生的分类讨论的思想。
7、分层布置作业必做题:b,填空并连线:(1)a-3____b-3根据不等式的性质1
(2)6a____6b根据不等式的性质2
(3)-a_____-b根据不等式的性质3
(4)a-b____0
教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.注意问题:做此练习题时,应启发学生将所做习题与题中已知条件进行对比,例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.
【设计意图】连线改变以往简单说明理由的形式,增加趣味性,同样让学生明白言之要有理,推理要有依据,这样学生更容易接受。逐步培养学生的逻辑思维能力5、小试牛刀:断正误,正确的打“√”,错误的打“×”①∵∴( ) ②∵∴( )③∵∴( ) ④若,则∴,( )学生活动:一名学生说出答案,其他学生判断正误.答案:①√ ②× ③√ ④×
【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错6、拓展思维,培养能力比较2a与a的大小
【设计意图】改变学生的思维定势:2a一定比a大,培养学生的分类讨论的思想。
第五篇:七年级数学下册9.1.2不等式的性质教案
课题:9.1.2 不等式的性质
教学目标:
探索并理解不等式的性质.重点:
探索不等式的性质. 难点:
正确运用不等式的性质. 教学流程:
一、知识回顾
想一想:等式的基本性质是什么? 答案:
等式性质1:在等式两边都加上(或减去)同一个数或整式,结果仍相等. 如果a=b,那么a±c=b±c
等式性质2:在等式两边都乘以或除以同一个数(除数不为0),结果仍相等. 如果a=b,那么ac=bc或
acbc(c≠0).引问:不等式是否也有类似的性质呢?
二、探究1 问题1:用“<”或“>”填空,并总结其中的规律:
(1)5>3,5+2 3+2,5-2 3-2 ;(2)-1<3,-1+2 3+2,-1-3 3-3; 答案:>,>,<,<; 问题2:根据发现的规律填空:
当不等式两边加或减同一个数(正数或负数)时,不等号的方向________.答案:不变
问题3:换一些其他的数验证一下吧!归纳1:
不等式的性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式的性质
符号语言:如果a>b,那么a±c>b±c
问题4:用“<”或“>”填空,并总结其中的规律:
(3)6>2,6×5 ___2×5,6×(-5)___ 2 ×(-5);(4)-2<3,(-2)×6___ 3×6,(-2)×(-6)___ 3 ×(-6). 答案:>,<,<,>.问题5:根据发现的规律填空:
当不等式两边乘同一个正数时,不等号的方向______;而乘同一个负数时,不等号的方向______.答案:不变,改变
问题6:换一些其他的数验证一下吧!归纳2:
不等式的性质2 :不等式两边乘(或除以)同一个正数,不等号的方向不变.符号语言:如果a>b,c>0,那么ac>bc(或
ab)ccab)cc不等式的性质3 :不等式两边乘(或除以)同一个负数,不等号的方向改变.符号语言:如果a>b,c<0,那么ac<bc(或问题7:不等式的性质2与性质3有什么区别? 问题8:等式性质与不等式性质,它们有什么异同?
练习1:设a>b,用“<”或“>”填空,并说明依据不等式的那条性质(1)a+2____b+2 ; 答案:>,不等式性质1(2)a-3____b-3 ; 答案:>,不等式性质1(3)-4a____-4b ; 答案:<,不等式性质3(4)a2____ b2; 答案:>,不等式性质2(5)-3a+1___ -3b+1 . 答案:<,不等式性质3和性质1
三、应用提高
例1.利用不等式的性质解下列不等式:(1)x726;(2)3x2x1;(3)
23x50;(4)4x3 解:(1)根据不等式的性质1,不等式两边加7,不等号的方向不变,所以
x77267;x33.(2)根据不等式的性质1,不等式两边减2x,不等号的方向不变,所以
3x2x2x12x; x1.(3)根据不等式的性质2,不等式两边乘
32,不等号的方向不变,所以 32233x250; x75.(4)根据不等式的性质3,不等式两边除以-4,不等号的方向改变,所以4x434; x34.追问:请将例1中四个小题的解集用数轴表示出来:(1)x33;(2)x1;(3)x75;(4)x34 解:(1)(2)(3)(4)
例2.某长方形状的容器长5 cm,宽3 cm,高10 cm.容器内原有水的高度为3 cm,现准备向它继续注水.用V(单位:cm
3)表示新注入水的体积,写出V的取值范围.解:新注入水的体积V与原有水的体积的和不能超过容器的容积,即
V+3×5×3≤3×5×10 解得:V≤105 又由于新注入水的体积不能是负数,因此,V的取值范围是
V≥0并且V≤105(强调:也可以写成0≤V ≤ 105)
在数轴上表示V的取值范围如图所示:
强调:在表示0和105的点上画实心圆点,表示取值范围包含这两个数.四、体验收获
今天我们学习了哪些知识?
1.不等式的性质是什么?不等式性质与等式性质的联系与区别是什么? 2.如何利用不等式的性质解简单不等式? 3.依据不等式性质3解不等式时应注意什么?
五、达标测评
1.设m>n,用“<”或“>”填空.
① m-3 n-3;②2m-6 2n-6;③-3m+6 -3n+6 答案:>,>,<.2.设a>b,则下列不等式中,成立的是().A.a-6<b-6 B.-3a>-3b C.a2b2 D.-a-1>-b-1 答案:C 3.用不等式的性质解下列不等式,并在数轴上表示解集:
4(1)x+5>-1;(2)-8x≥10.解:(1)根据不等式的性质1,不等式两边减5,不等号的方向不变,所以
x+5-5>-1-5 x>-6 这个不等式的解集在数轴上表示为:
(2)根据不等式的性质3,不等式两边除以-8,不等号的方向改变,所以
8x(8)10(8)x-1.25
这个不等式的解集在数轴上表示为:
4.某次“人与自然”的知识竟赛中共有20道题.对于每一道题,答对了得10分,答错了或不答扣5分,至少要答对几道题,其得分不少于80分?
解:设答对了x道题,则答对或不答的题数为(20-x)道,根据题意,得 10x-5(20-x)≥ 80 解得: x≥12 答:至少要答对12道题,其得分不少于80分.六、布置作业
教材120页习题9.1第4、5、7题.