第一篇:关于双曲线知识点总结
双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。下面是关于双曲线知识点总结,请参考!
关于双曲线知识点总结
双曲线方程
1.双曲线的第一定义:
⑴①双曲线标准方程:.一般方程:.⑵①i.焦点在x轴上:
顶点: 焦点: 准线方程 渐近线方程:或
ii.焦点在轴上:顶点:.焦点:.准线方程:.渐近线方程:或,参数方程:或.②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c.③离心率.④准线距(两准线的距离);通径.⑤参数关系.⑥焦点半径公式:对于双曲线方程(分别为双曲线的左、右焦点或分别为双曲线的上下焦点)
“长加短减”原则:
构成满足(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)
⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:.⑸共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为.例如:若双曲线一条渐近线为且过,求双曲线的方程?
解:令双曲线的方程为:,代入得.⑹直线与双曲线的位置关系:
区域①:无切线,2条与渐近线平行的直线,合计2条;
区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;
区域③:2条切线,2条与渐近线平行的直线,合计4条;
区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;
区域⑤:即过原点,无切线,无与渐近线平行的直线.小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.(2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入法与渐近线求交和两根之和与两根之积同号.⑺若P在双曲线,则常用结论1:P到焦点的距离为m = n,则P到两准线的距离比为m︰n.简证: =.常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b.双曲线方程知识点在高考中属于比较重要的考察点,希望考生认真复习,深入掌握。
第二篇:双曲线教案
2.2.1 双曲线及其标准方程
一、教学目标
1.通过试验体会双曲线图形,从中抽象出双曲线定义,通过讨论能正确说出双曲线定义.2.会画双曲线简图.3.能由椭圆标准方程的推导过程类比推导双曲线标准方程,熟记双曲线标准方程.4.能根据条件确定双曲线的标准方程及简单应用.二、教学重点(难点)
1.教学重点:双曲线的定义和双曲线的标准方程.2.教学难点:双曲线的标准方程的推导.三、教学过程
第一环节 双曲线的定义
1.椭圆的定义是什么?(学生回答,教师板书)平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.教师要强调条件:(1)平面内;(2)到两定点F1、F2的距离的和等于常数;(3)常数2a>|F1F2|.2.提出问题
椭圆是平面内一个动点到两个定点距离之和等于定长的点的轨迹,当然这个定长要大于这两个定点之间的距离.那么,平面上到两定点距离差等于定长的点的轨迹是什么? 3.简单实验(边演示、边说明)做拉链试验
取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F1,F2上,把笔尖放在点M处,随着拉链逐渐拉开或者闭拢,笔尖所经过的点就画出一条曲线.(1)演示图形
4.应该如何描述出动点M所满足的几何条件? 5.还有其他约束条件吗? 发现问题:(1)当2a2c时,(2)当2a2c时,(3)当2a2c时,(4)当2a =0时,6.定义
在上述基础上,引导学生概括双曲线的定义:
平面内与两定点F1 ,F2的距离的差的绝对值是常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点F1 ,F2叫做双曲线的焦点,两个焦点之间的距离叫做焦距.指出:双曲线的定义可以与椭圆相对照来记忆,不要死记.第二环节
画出双曲线简图 第三环节
双曲线的标准方程
现在来研究双曲线的方程.我们可以类似求椭圆的方程的方法来求双曲线的方程.这时设问:求椭圆的方程的一般步骤方法是什么?不要求学生回答,主要引起学生思考,随即引导学生给出双曲线的方程的推导.标准方程的推导:(1)建系设点
取过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴(如图2-24)
建立直角坐标系.设M(x,y)为双曲线上任意一点,双曲线的焦距是2c(c>0),那么F1、F2的坐标分别是(-c,0)、(c,0).又设点M与F1、F2的距离的差的绝对值等于常数.(2)点的集合
由定义可知,双曲线就是集合:
P={M||M F1|-|M F2||=2a}={M|M F1|-|M F2|=±2a}.(3)代数方程
(4)化简方程(由学生演板)将这个方程移项,两边平方得:
化简得:
两边再平方,整理得:(c2-a2)x2-a2y2=a2(c2-a2).(以上推导完全可以仿照椭圆方程的推导.)由双曲线定义,2c>2a 即c>a,所以c2-a2>0. 设c2-a2=b2(b>0),代入上式得: b2x2-a2y2=a2b2.这就是双曲线的标准方程.两种标准方程的比较(引导学生归纳):
x2y2(1)221(a>0 ,b>0)表示焦点在x轴上的双曲线,焦点是
abF1(-c,0)、F2(c,0),这里c2a2b2;y2x2(2)221(a>0 ,b>0)表示焦点在x轴上的双曲线,焦点是
abF1(0,-c)、F2(0,c),这里cy互换即可得到)
教师指出:
2a2b2;(只须将(1)方程的x、(1)如果x2项的系数是正的,那么焦点在x轴上;如果y2项的系数是正的,那么焦点在y轴上.注意有别于椭圆通过比较分母的大小来判定焦点在哪一坐标轴上.(2)双曲线标准方程中a、b、c的关系是c2a2b2不同于椭圆方程中c2a2b2.第四环节
应用反馈
例1:已知双曲线上一点P到两焦点F1(5,0)、F2(5,0)的距离的差的绝对值为6,求双曲线的方程.x2y2简解:双曲线有标准方程221(a0,b0).abc5,2a 6,又c2a2b2 a3,b4.x2y21 ∴916
变式:
1.若P F1P F2=6?
x2y21(x0)9162.若PF1PF210?
两条射线
3.若PF1PF212? 轨迹不存在
第三篇:双曲线教学设计
双曲线及其标准方程教学
沾化一中
郭梅芳
一、教材分析:
《双曲线及其标准方程》是全日制普通高级中学教科书(人教A版)选修2-1第二章第三节内容,双曲线是平面解析几何的又一重要曲线,本节课既是对解析几何学习方法的巩固,又是对运动,变化和对立统一的进一步认识,从整体上进一步认识解析几何,建立解析几何的数学思想。双曲线是三种圆锥曲线中最复杂的一种,传统的处理方法是先学习椭圆,再学习双曲线,通过对比椭圆知识来学习,降低难度,便于学生学习掌握。教材为《双曲线及其标准方程》安排两课时内容,本文是第一课时,本课的主要内容是:(1)探求轨迹(双曲线);(2)学习双曲线定义;(3)推导双曲线标准方程;
二、教学目标:
1、认知目标:掌握双曲线的定义、标准方程,了解双曲线及相关概念;
2、能力目标:通过学生的操作和协作探讨,培养学生的实践能力和分析问题、解决问题的能力,通过知识的再现培养学生的创新能力和创新意识。
3、情感目标:让学生体会知识产生的全过程,体会解析法的思想。通过画双曲线的几何图形让学生感知几何图形曲线美、简洁美、对称美,培养学生学习数学的兴趣.
三、教学重难点
重点:双曲线中a,b,c之间的关系。
难点:双曲线的标准方程,双曲线及其标准方程的探求;领悟解析法思想.
四、教学方式:
多媒体演示,小组讨论。
五、教学准备:
多媒体课件,六、教学设想: 通过师生的相互“协作”,以提问的形式完成本堂课
七、教学过程:
环节 内容 教学双边活动 设计意图 复习问题
问题1:椭圆的定义是什么?(哪几个关键点)问题2:椭圆的标准方程是怎样的? 问题3:如何作椭圆?
问题4:性质: 学生回顾,教师补充纠正 回顾椭圆学习过程,本身具有复习提高价值.此处侧重于类比研究椭圆的思想和方法,期望在双曲线学习中有一种方法引领。
引入新课:到两个定点的距离差为定值的动点轨迹? 过渡
探求轨迹问题:我们用什么方法来探求(画出)轨迹图形?用几何画板演示拉链的轨迹: 同样的,也有设问:①定点与动点 不在同一平面内,能否得到双曲线?请学生回答:不能.指出必须“在平面内”.② 动点M到定点A 与B 两点的距离的差有什么关系?请学生回答,M 到 A与B 的距离的差的绝对值相等,否则只表示双曲线的一支,即 是一个常数.③这个常是否会大于或者等|AB| ?请学生回答,应小于|AB|且大于零.当常数2a=|AB| 时,轨迹是以A、B 为端点的两条射线;当常数2a> |AB|时,无轨迹. 小组讨论实验演示提问 通过提出问题,让学生讨论问题,并尝试解决问题。让学生了解双曲线的前提条件,并培养学生的全面思考的能力。
感受曲线,解读定义:
演示得到的图形是双曲线(一部分);归纳双曲线的定义:平面内,到两个定点的距离的差的绝对值为常数(小于两定点距离)的点的轨迹叫做双曲线。这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距。数学简记: 学生读课本并分析其中的关键点 通过阅读和关键点分析,让学生学会读书,学会分析书,从而理解书。
推导方程,认识特性 :(1)建系以两定点所在直线为x轴,其中点为原点,建立直角坐标系xOy 设 为双曲线上任意一点,双曲线的焦距为,则设点M 与A、B 的距离的差的绝对值等于常数。
(2)点的集合由定义可知,双曲线上点的集合满足||MA|-|MB||=2a(3)利用坐标关系化代数方程
(4)化简方程
(5)双曲线的标准方程:方程形式:焦点在x轴上: 焦点在y轴上: 焦点的中点在原点(中心在原点)
(6)数量特征:(2a)——(实轴长),(2c)——(焦距)指出:a,b,c的含义.注:(1)双曲线方程中,a 不一定大于 b;
(2)如果x 的系数是正的,那么焦点在 x轴上,如果y 的系数是正的,那么焦点在 y轴上,有别于椭圆通过比较分母的大小来判定焦点的位置.(3)双曲线标准方程中a,b,c 的关系不同于椭圆方程.
交流:建系的任意性与合理性由一位学生上黑板演示,教师巡视,通过对双曲线方程的化简,提高学生的演算能力。可注意大部分学生写得是否正确。类比椭圆,认识共同点,辨别不同。
应用方程,体验思想 :
例1 : 说明:椭圆 与双曲线 的焦点相同.
例2:求到两定点 A、B 的距离的差的绝对值为6的点的轨迹方程?如果把上面的6改为10,其他条件不变,会出现什么情况?如果改为12呢? 教师分析,由学生分析,教师板书及补充。可以进一步巩固理解双曲线的定义。
回顾过程,归纳小结 双曲线定义的要点,标准方程的形式
课后练习书本习题
八、自我教学评价
在教学过程中注重知识,能力的融合,努力挖掘内容的本质和联系,以学生 3 为主体,沿着学生的思维方向一步步引入新知识,顺利完成知识的吸纳,利用多媒体演示过程,能给学生一种形象上的吸收,寓思想于教学中。
九、教学反思和回顾
在整个教学中,利用类比椭圆方程定义的形成过程自然进入双曲线定义的教学状态中,并采取多提问的形式,让每个学生思考问题,回答问题,给他们思考的空间,培养他们思索的习惯,让学生与老师互动,交流探讨学习过程中的问题,可以充分提高学生的学习主动性与他们的自信心,在今后的教学中,我要更多的让学生来演示,充分发挥学生的主体作用,让学生真正体会知识的形成过程。
第四篇:双曲线教学设计
双曲线及其标准方程教学设计
一.教学目标: 1.知识目标:掌握双曲线的定义并会推导其方程.2.能力目标:能根据已知条件,选择恰当的形式的双曲线方程解题;加深对类比,化简,分类讨论的思想的理解与运用.3.情感目标:利用教学内容促进学生对量变,质变规律的理解和对学生进行爱国主义教育.二.教学重点与难点分析: 本节的教学重点是准确理解双曲线的定义.本节的教学难点是选择恰当的双曲线方程解题.三.教学方法和学习方法的设计: 教法:1.在教学目标的指导下,采用”信息环境下情境性问题解决”教学模式实施教学.这种方法是以问题为中心,以学生主动探索数学知识和强化创新意识为主要特征的探究型教学方式.在探索过程中经历”提出问题———分析问题———分组讨论———提炼总结———深化反思”五个不同的教学环节.在整个教学过程中,教师利用问题引路,学生独立思考和分组讨论,从而自己解决问题.2.通过课件和动画展示数学知识的发生﹑发展过程;帮助学生理解抽象的数学概念;借助信息技术实现数学思维的“再现”.学法:在教师的组织,点拨,引导作用下,通过学生积极思考,大胆想象,总结规律,自己不能解决的问题通过小组讨论解决,充分发挥他们的主体作用,让学生置身于提出问题﹑思考问题﹑解决问题的动态过程中.四.媒体选择:多媒体课件.39
五.教学过程设计: 探索问题一: 定圆圆O1内含于定圆圆O2,当圆M与圆O2内切而与圆O1外切时, 圆M的圆心M的轨迹是什么曲线? 学生: 是椭圆.教师: 面内与两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆.若将“距离之和”改为“距离之———差”.那将会出现什么情况呢? 探索问题二: 设圆O1,圆O2外离,其半径分别为r1,r2.动圆圆M与圆O1内切而与圆O2外切,求动圆M的圆心M的轨迹又是什么曲线? 分析: 设动圆M半径为r,有O2MO1Mr2rrr1r1r2 教师: 谁能画出点M的轨迹?(没反应)困难在哪里呢? 学生: 动圆M有无数个,画起来困难.所以点M的轨迹画不出来!(课件演示)教师:原来点M的轨迹是一条开口向左的,向外伸展的不封闭的一条曲线,这是单曲线吗?:是否还有其他情况? 学生:如果圆M与圆O1外切而与圆O2内切情况会怎样? 此时, O1MO2Mr1rrr2r1r2.大概是开口向右的一条曲线吧.课件演示.教师:我们把上述两条曲线称为双曲线(演示课件).请给出双曲线的定义.学生:平面内与两个定点的距离的差的绝对值是常数的点的轨迹.教师:好.请看——(课件演示)当圆O1与圆O2外切时,虽然MO1MO2r1r2O1O2,但点在线段O1O2的两侧,是两条射线.动点M必定满足一个什么样的特定条件? 40
学生:应在前面的叙述中,在”常数”后加上附加条件”小于O1O2”.教师:如果这个常数为0呢?这时点的轨迹是什么? 学生:平面内与两个定点O1,O2的距离的差的绝对值是0的点的轨迹是线段O1O2的垂直平分线.所以这个常数不能为0.教师:这就完整了.称O1,O2为双曲线的焦点.它与椭圆定义比较又有和联系呢? 学生:在椭圆定义中,由三角形两边之和大于第三边的要求,而双曲线的定义中应满足三角形的两边之差的绝对值小于第三边的要求.教师:如此复杂的曲线和平面几何中最简单的结论紧密联系,这充分反映了事物间的和谐的本质属性.问题延伸: 教师:利用平面直角坐标系,我们可以求出该曲线方程,这就是数形结合的思想.问题是如何建立平面直角坐标系? 学生:以O1,O2所在的直线为x轴,线段O1O2的中垂线为y轴,建立直角坐标系.教师:为什么不以O1或O2为原点建立直角坐标系呢? 学生:那样的话, O1与O2就不能关于y轴对称,从前面我们学习的椭圆方程的推导过程中知道,所得的方程较繁.教师:对.请同学们自行推导双曲线方程.(学生推演,教师归纳).教师:同学们都能得出方程c2a2x2a2y2c2a2a2.仿照推导椭圆方程的方法.可
x2y2令cab.则得焦点在x轴上的双曲线方程: 221.类似地,当焦点在y轴上
ab222时,(或者说以O1O2所在的直线为y轴.线段O1O2的中垂线为x轴建立直角坐标系).双曲线的方程是———
y2x2 学生: 221
ab 41
教师:它们都是双曲线的标准方程.焦点在二次项系数为正的字母所表示的轴上.思考问题一: 例1.(1)已知双曲线两个焦点的坐标为F15,0,F25,0,双曲线上一点P到F1,F2的距离的差的绝对值等于6,求双曲线的标准方程.(2)已知双曲线的中心是坐标原点,焦点在y轴上,焦距为12,且经过点P2,5,求双曲线的方程.(3).求过点A2,43和B2,4的双曲线标准方程.(第(1),(2)小题为课本的例习题.)(请三位同学板演,再请三位同学讲评.第(1),(2)小题略.第3小题不少学生仍分焦点在x,y轴的情况求解.过程较繁.)学生:第(3)题他解对了,但比较繁.我认为只要设mx2ny21.然后把两点坐标分别代入,1得到两个二元一次方程组成的方程组,解得m1, n,表明它是双曲线,同时表示不
6存在过这两点的椭圆.教师:对!讲得有道理.求中心在原点的椭圆.双曲线标准方程,只需两个独立变量.这是它们的本质属性.理解这一点,解题运算量就小多了.教师:上述图形的变化过程反映了事物在一定范围内由量的积累引起质的变化情况.它包括了目前我们所学的几种曲线.现在让我们来了解双曲线在军事上的一些应用.思考问题二:一炮弹在某处爆炸,在A处听到爆炸声的时间比在B处晚2s.(1)爆炸点应在什么样的曲线上?(2)已知A,B两地相距800m,并且此时声速为340ms,求曲线的方程.(3)要想确定爆炸点的准确位置.应采取什么措施?(学生分组讨论.教师巡视指导.把学生解答用投影仪展示.)学生(1)由声速及A,B两处听到爆炸声的时间差为2s,可知A,B两处与爆炸点的距离的
差为PAPB680800,因此爆炸点应该位于以A,B为焦点的双曲线上.因为爆炸点离A处比离B处更远,所以爆炸点应在靠近B处的一支上.(2)如图,建立直角坐标系xoy,使A,B两点在x轴上,并且点O与线段AB中点重合.设爆炸点P的坐标为x,y.则PAPB3402680 AB 即2a680,a340.又AB800 所以2c800,c400
b2c2a244400
因为PAPB6800 所以x0.x2y2所求双曲线方程为1(x0)
11560044400(3).利用两个不同的观测点侧得同一炮弹爆炸声的时间差,可以确定爆炸点所在的双曲线的方程但不能确定爆炸点的准确位置.如果再增设一个观测点C,利用B, C(或A, C)两处侧得的爆炸声的时间差,可以求出另一个双曲线的方程.解这两个方程组成的方程组,就可以确定爆炸点的准确位置.变式一:若将“在A处听到爆炸声的时间比在B处晚2s”改为“在A处听到爆炸声的时间比在B处晚40s”那么爆炸点P应在什么样的曲线上? 17变式二:若将“A,B两地相距800m”改为“A,B两地相距600m” 那么爆炸点P应在什么样的曲线上? 变式三:假若在A,B两处同时听到爆炸声, 那么爆炸点P又在怎样的曲线上呢? 六.小结: 1.双曲线的定义,关键词是绝对值的差小于F1F2.43
2.求双曲线方程要注意选择方程的形式,以简化计算.3.主要思想方法有类比思想及特殊与一般量变与质变的辨证关系.七.教学效果: 这节课充分发挥了多媒体教学的优势,教学设计充分体现”主导----主体”现代教学思想,彻底地改变了传统教学过程汇总学生被动接受知识的状态,学生能够自主探索获取知识,愿意学习也学会学习;学生主动参与的意识提高了.通过多媒体教学,教师把学生引上探索问题之路,调动了每一个学生学习的主动性和创造性,体现了学生的主体地位,有利于学生潜能的开发和创造性思维的培养.44
第五篇:双曲线的渐近线教案
双曲线的渐近线教案
教学目的
(1)正确理解双曲线的渐近线的定义,能利用双曲线的渐近线来画双曲线的图形.
(2)掌握由双曲线求其渐近线和由渐近线求双曲线的方法,并能作初步的应用,从而提高分析问题和解决问题的能力.
教学过程
一、揭示课题
师:给出双曲线的方程,我们能把双曲线画出来吗?
生(众):能画出来.
师:能画得比较精确点吗?
(学生默然.)
其附近的点,比较精确地画出来.但双曲线向何处伸展就不很清楚了.在画其他曲线时,也有同样的问题.如曲线
我们可以比较精确地画出整个曲线.因为我们知道,当曲线伸向远处时,它逐渐地越 的趋向,我们是清楚的,它逐渐地在x轴负方向上越来越接近x轴,即x轴为y=2x的一条渐近线,但它的另一端则不然,它伸向何处是不够清楚的.所以双曲线和其他曲线一样,当它向远处伸展时,它的趋向如何,是需要研究的问题.今天这堂课,我们就来讨论一下“双曲线向何处去”这样一个问题.
(板书课题:双曲线的渐近线.)
二、讲述定义
师:前一课我们讨论了双曲线的范围、对称性和顶点,我们回忆一下,双曲线的范围x≤-a,x≥a是怎样得出来的?
直线x=-a和x=a的外侧.我们能不能把双曲线的范围再缩小一点?我们先看看双曲线在第一象限的情况.
设M(x,y)是双曲线上在第一象限内的点,则
考察一下y变化的范围:
因为x2-a2<x2,所以
这个不等式意味着什么?
(稍停,学生思考.)
平面区域.
之间(含x轴部分).这样,我们就进一步缩小了双曲线所在区域的范围.
为此,我们考虑下列问题:
经过A2、A1作y轴的平行线x=±a,经过B2、B1作x轴的平行线y=±b,以看出,双曲线 的各支向外延伸时,与这两条直线逐渐接近.
下面,我们来证明这个事实.
双曲线在第一象限内的方程可写成
设M(x,y)是它上面的点,N(x,Y)是直线
上与M有相同横坐标的点,则
设|MQ|是点M到直线 的距离,则|MQ|<|MN|.当x逐渐增大时,|MN|逐渐减小,x无限增大,|MN|接近于零,|MQ|也接近于零,就是说,双曲线在第一象限的部分从射线ON的下方逐渐接近于射线ON.
在其他象限内也可以证明类似的情况.我们把两条直线
叫做双曲线的渐近线.
现在来看看实轴在y轴上的双曲线的渐近线方程是怎样的?由于实轴在y轴上的双曲线方程是由实轴在x轴上的双曲线方程,将x、y字母对调所得到,自然,前者
这样,我们就完满地解决了画双曲线远处趋向的问题,从而可比较精确地画出双
手画出比较精确的双曲线.
[提出问题,解决问题,善始善终.]
三、初步练习
(根据由双曲线求出它的渐近线方程与由渐近线求出相应的双曲线方程这两要求,出四个小题让学生练习.)
1.求下列双曲线的渐近线方程(写成直线方程的一般式),并画出双曲线:
(1)4x2-y2=4;(2)4x2-y2=-4.
2.已知双曲线的渐近线方程为x±2y=0,且双曲线过点:
求双曲线方程并画出双曲线.
(练习毕,由学生回答,教师总结.)
解题的主要步骤:
第1题:(1)把双曲线方程化为标准方程;(2)求得a、b;(3)根据定义写出渐近线方程.
第2题:(1)判断何种双曲线,设出相应的标准方程;(2)写出渐近线方程,从而得到关于a、b的一个关系式;(3)将点M代入标准方程,得到关于a、b的另一个关系式;(4)解a、b的方程组,求得a、b,写出双曲线方程.
师:这是两个关于双曲线渐近线的最基本的练习.一个是由双曲线求渐近线,比较简单;一个是由渐近线求双曲线,却比较复杂.这是因为,一个是正向思考和运算,另一个是逆向思考和运算,有一定的难度.同时,因为一条双曲线有两条确定的渐近线,而两条渐近线对应有许多双曲线,因此,求双曲线方程还必须具有另一个条件,两个条件的综合显然比较困难.我们要特别注意对逆向问题的分析,提高解决逆向问题的能力.
[问题虽然简单,但确是基础,不仅掌握基本知识,同时有利于正、逆两方面思考问题的训练.]
四、建立法则
师:仔细分析一下上述练习的结果:
双曲线方程:4x-y=4;渐近线方程:2x±y=0.
双曲线方程:4x-y=-4;渐近线方程:2x±y=0.
双曲线方程:x2-4y2=4;渐近线方程:x±2y=0.
双曲线方程:x2-4y2=-4;渐近线方程:x±2y=0.
可以发现,双曲线与其渐近线的方程之间似乎存在某种规律.
(启发学生讨论、归纳.)
生甲:每项开平方,中间用正负号连结起来,常数项改为零,就得到渐近线方程.
生乙:以各项系数绝对值的算术平方根为x、y的系数,且用正负号连结起来等于零,就是渐近线方程.
生丙:如果两个双曲线方程的二次项相同,那么渐近线方程就相同,与常数项无关.
生丁:反过来,渐近线的方程相同,双曲线方程的二次项就相同,常数可以不同.
生戊:应该说二次项系数成比例.
师:大家揭示了其中的规律.但是,大家的回答,还不够严格,也不够简洁,是否可以归纳出一种方法,把双曲线方程处理一下,就得到渐近线方程?
把双曲线方程中常数项改成零,会怎样呢?
点适合这个方程,适合这个方程的点在渐近线上.
就是两渐近线的方程.实际上,两条渐近线也可看作二次曲线,是特殊的双曲线.同样,b2x2-a2y2=0,即 bx±ay=0;
b2y2-a2x2=0,即 by±ax=0.
所以把双曲线方程的常数项改为零,就得到其渐近线方程.这具有一般性吗?也就是说对任意双曲线
A2x2-B2y2=C(C≠0)
它的渐近线方程是不是A2x2-B2y2=0?回答是肯定的.
分情况证明一下:
C>0,A2x2-B2y2=C,故渐近线方程为
也可以化成 Ax±By=0,即 Ax-By=0.
其他情况,同学们可以自己去证明.反之,渐近线方程为
Ax±By=0 的双曲线方程是什么?可以证明是:A2x2-B2y2=C(C≠0).C>0,实轴在x轴上;C<0,实轴在y轴上.因此,我们得到下列法则:
(1)双曲线 A2x2-B2y2=C(C≠0)的渐近线方程是
A2x2-B2y2=0;
(2)渐近线方程是Ax±By=0的双曲线方程是
A2x2-B2y2=C
(C≠0的待定常数).
现在谁能把上面的练习第2题再解答一下?
生:因为渐近线方程是x±2y=0,所以双曲线方程为
x2-4y2=C. 22
∴ 双曲线方程为x2-4y2=4.
∴ 双曲线方程为x2-4y2=-4.
[建立解题法则,既使解题比较方便,又使学生得到解题能力的培养.]
五、巩固应用
师:前面我们讲述了双曲线渐近线的定义和法则,下面大家使用定义或者法则再做两个练习.
2.证明:双曲线上任一点到两渐近线的距离之积是个常数.
(练习毕,由学生回答,教师总结解题步骤.)
师:解练习1的方法有两种.一是直接运用定义.
由双曲线求渐近线:
由渐近线求双曲线:
二是直接运用法则.
练习2的解法如下:
六、布置作业
课本练习;略.
教案说明
(1)本课教材内容不难接受,但教学中如何引出渐近线以致不感到突然,我采取了进一步缩小双曲线所在范围的方法,引出了渐近线.至于课题的引出,也是顺应认识的需要,为了对双曲线作深入的研究.我认为这些做法都是比较自然的.
(2)本课的基础内容,一是定义和法则,二是双曲线与其渐近线的互求的方法.
本教案既注意狠抓基础,也注意综合提高.
(3)本教案建立了一个法则,作为定义的补充,也是为了解题的方便,建立法则的过程,也是学生提高观察能力、归纳总结能力的一种训练.