无穷递缩等比数列求和教学案例及反思

时间:2019-05-15 02:58:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《无穷递缩等比数列求和教学案例及反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《无穷递缩等比数列求和教学案例及反思》。

第一篇:无穷递缩等比数列求和教学案例及反思

无穷递缩等比数列求和教学案例及反思

如“无穷递缩等比数列求和”是在学生学习了数列及数列极限等知识的基础上提出来的,它与数列、方程、函数和极限等知识有内在的联系,能与实际生产和生活中的问题相结合,但是,学生对无穷数列各项和,有限到无限的思想方法,以及用极限的方法去解决实际问题还缺少思想基础,因此,我在设计这一节课时,设计情景,提出问题,通过实际问题、具体问题,以引起学生情感体验,引导学生学会建构、探究,最终达成教学目标。

(一)设计情境——提出问题

问题1:如果不停地往一只空箱子内放东西,箱子会满吗?为什么? 这问题表面上看是一个游戏,事实上,它隐含着无穷数列各项和知识,有一定的趣味和魅力,能引起学生的思考,不同层次的学生都有发言权,也不乏味,有能力发展点、个性和创新精神培养点,学生从实际背景出发,通过动脑思考,动手操作,动口说明,能经历从抽象表示到符号变换和检验应用全过程,能培养学生的数学建模能力。

(二)自主探究——感知问题

我提示学生用数学眼光去看上述问题,即将上述问题转化为数学模型,然后让学生展开讨论。

(三)合作交流——形成共识(1)问题1的讨论结果:

S1:箱子即使很大也会满,因为,设第一次放入的量为a1, 第二次放入的量为a2,„设第n次放入的量为an,„,则a1+a2+a3+„+an+„可能很大,总能放满箱子。S2:箱子即使很小也不会满,因为,设第一次放入的量为a1, 第二次放入的量为a2,„第n次放入的量为an,„,则a1+a2+a3+„+an+„可能也很小。

(2)引导学生对问题进行探究,构建数学模型 问题2:你能尽可能多地举出箱子不会满的例子吗?

S3:把一支粉笔的一半放入空箱子中去,剩下粉笔的一半再放入空箱子中去,如此下去,„,放入空箱子中的充其量也只有一支粉笔,不会满,其数学模型是:a+a+a+„=a(a是粉笔的长)S4:把一杯水的倒入空容器中去,剩下水的再倒入空容器中去,如此下去,„,倒入容器中的只有一杯水,也不会满,其数学模型是:

b+b+b+„=b(b是一杯水)„„

问题3:你能否将S3与S4这类问题一般化?若设第一次放入空箱子中去的量为a1,第二次放入空箱子中的量为a2,„第n次放入空箱子中去的量为an,„,数列{an}有何特点?

同学们得出结论:数列{an}是等比数列,也是递减数列,且项数无穷的。

接着再让学生自主研究无穷递缩等比数列的定义,并判定数列{an}是否为无穷递缩等比数列?再进一步思考无穷递缩等比数列是否一定是递减数列?总结无穷递缩等比数列的几个特征,加深对概念的理解。

(3)Sn与S的关系

问题4:当|q|<1,qn=a1qn,可以证明,当n→+∞时,an→0(让学生课后证明)请学生思考:若设数列{an}前n项和为Sn,所有项的和为S,运用极限的思想,你能否发现Sn与S的关系?讨论结果:S=limSn(4)求无穷递缩等比数列的和

问题5:怎样求无穷递缩等比数列{an}的和? Sn=a1+a2+a3+„+an=,lim Sn=lim 因为当|q|<1时,limqn=0, 所以S= lim Sn= 我这时就说:好!我们通过自主探索与合作交流,得出了无穷递缩等比 数列的求和公式:S=(|q|<1)(5)公式的应用(略)

通过应用交流,使学生加深对公式的认识,体验了数学模型化思想,让学生在交往中学习数学。

(四)总结反思——共同创新

本课我们运用情景化、问题形象化、探究化等数学方法,将游戏问题转化为数学模型——无穷递缩等比数列的和。为了概括所学内容的逻辑结构,提炼思想观点,引导学生创新,我将本课研究过程和方法概括如下:

抽象概括 应用

教学全过程概括为:具体问题——————数学模型—————解决实际问题。

改造 抽象概括

解决问题的思想方法:现实问题————现实模型————数学模型—— 数学方法 检验 探究、深化、拓展、————数学模型的解————现实问题的解————————现实问题

是否符合实际?

由此课例,不难看出,问题式、情景式教学交互设计,促进了学生形象思维和抽象思维的相互补充、相互促进,这种设计以培养兴趣为前提,以指导观察思考为基础,以发展思维为重点,以自主探究、合作交流为手段,让学生在感情体验中真正地用“心”去学习。数学本身是为人的,是开放的,是丰富多彩的,一句话,数学是为人所用的。而这一事例生动地告诉我们,作为数学老师,不同的教育观念、不同的思想方法会有不同的数学思路和教学方法,学生会有不同的发展结果,只要我们用心地去备好每一节课,设计得当的教学程序,我们的学生将会把数学掌握得更好,我们的数学教学将会更好地服务于社会。

第二篇:等比数列求和教学设计

等比数列的前n项和

甘天威

一:教学背景

1.面向学生: 中学 学科: 数学 2.课时: 2个课时 3.学生课前准备:(1)预习书本内容

(2)收集等比数列求和相关实际问题。

二:教学课题

教养方面:

1了解等比数列求和问题,感受数学问题的趣味性。

2尝试用不同的方法解决等比数列求和问题,体会错位相减法的应用 3 能准确地解决等比说列求和有关的实际问题。教育方面:

1培养学生积极探索解决问题的良好习惯。

2感受到我国数学文化历史的悠久与魅力,增强民族自豪感,激发学生努力学习数学的热情

发展方面:

培养学生的逻辑推理能力、分析问题能力、解决问题能力。

三:教材分析 教学目标

知识目标:理解等比数列的前n项和公式及简单应用,掌握等比数列前n项和公式的推导方法。

能力目标:培养学生观察、思考和解决问题的能力;加强特殊到一般、类比与转化、分类讨论等数学思想的培养。

情感目标:培养学生合作交流、独立思考等良好的个性品质;以及勇于批判、敢于创新的科学精神。

教学重点、难点

教学重点:公式的推导和公式的运用.

教学难点:公式的推导方法和公式的灵活运用. 公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。

教学方法:

对公式的教学,要使学生掌握与理解公式的来龙去脉,掌握公式的推导方法,理解公式的成立条件,充分体现公式之间的联系.在教学中,我采用“问题――探究”的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段.

四:教学过程

学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学 生去经历知识的形成与发展过程,结合本节课的特点,设计了如下的教学过程: 1.创设情境,提出问题

引导学生写出麦粒总数 1+2+22+23++263.带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路给予肯定.

设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍.同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔.2.师生互动,探究问题

在肯定他们的思路后,我接着问:1,2,22,„,263是什么数列?有何特征? 应归结为什么数学问题呢?

一般的这就是一个等比数列前n项求和的问题,那么一个等比数列

如何求前n项和sn?公比为q,类似等差数列前n项和的表示,等比数列前n项和能否用a1,q,n,an来表示呢?此时要引导学生发现需要构造一个新的等式包含Sn,并且与第一个等式有许多相同的项,从而引导学生发现并利用错位相减法求出Sn。

sn=a1+a1q+a1q2+

qs=aq+aq2+n11

a1-a1qnn 在学生推导完成后,我再问:由(1-q)sn=a1-a1q 得sn=1-q

对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础.)

再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)

设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用. 3.公式运用,加深认识 例1在等比数列an中,11已知a4,q,求S10;12 2已知a11,ak243,q3,求Sk.例2在等比数列an中,S37,S663,求an.变式训练: 1:在上题中,已知S3=7,S663求S9.+a1qn-1+a1qn-1a1qn2:已知a24,a532,求S102

首先,学生独立思考,自主解题,然后师生共同进行总结.

设计意图:采用变式教学设计题组,深化学生对公式的认识和理解,通过直接套用公式、变式运用公式、研究公式特点这三个层次的问题解决,促进学生新的数学认知结构的形成.通过以上形式,让全体学生都参与教学,以此培养学生的参与意识和竞争意识.

4.例题讲解,形成技能

例3:求和 1+a+a2+a3++an-1.设计意图:解题时,以学生分析为主,教师适时给予点拨,该题有意培养学生对含有参数的问题进行分类讨论的数学思想. 联系实际

5.总结归纳,加深理解

以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结.

设计意图:以此培养学生的口头表达能力,归纳概括能力. 6.故事结束,首尾呼应

最后我们回到故事中的问题,我们可以计算出国王奖赏的小麦约为1.84×1019粒,大约7000亿吨,用这么多小麦能从地球到太阳铺设一条宽10米、厚8米的大道,大约是全世界一年粮食产量的459倍,显然国王兑现不了他的承诺.

设计意图:把引入课题时的悬念给予释疑,有助于学生克服疲倦、继续积极思维.

7.课后作业,分层练习

必做: P129练习1、2、3、4 思考题(1):求和 x+2x2+3x3++nxn.选作:

2)若数列{an}是等比数列,Sn是前n项的和,那么S3,S6S3,S9S6成等比数列吗?设k∈N*那么Sk,S2kSk,S3kS2k成等比数列吗?

设计意图:作业分为两种形式,体现作业的巩固性和发展性原则。阅读作业中的问题思考是后续课堂的铺垫,而弹性作业不作统一要求,供学有余力的学生课后研究。同时,它也是新课标里研究性学习的一部分。

第三篇:等比数列教学案例

等比数列求和教学案例

等比数列求和公式的推导,是数列教学的难点,推导的方法学生不易理解,但是其求和的方法,思路在后面一般数列求和里面有着非常重要的作用.本案例试着利用问题教学的模式让学生自己去寻找.1、案例

师:西部地区的环境问题正引起越来越广泛的关注,其中一个重要的举措即是退耕还林。王师傅是当地一名热心群众,退休后,他决心用一个月的时间做下面的事:第一天,他自已种一棵树;第二天,他发动两个人和他一起每人做一棵树;第三天,这三个人每人再发动两个人加入他们的行列,每人种一棵树。如此继续,持续了一个月(30天计)。请问他们能让多少耕地还林?对此我们需要考虑哪些问题?

生:就是森林覆盖的面积问题.所以要求出30天种树的总量,以及相邻两树之间的距离。师:这是一个实际问题,为了简便起见,我们假设任何相邻两树间的距离都是0.5米。因此剩下的问题即是求树的总数,大家可以尝试着做一下。

(学生动手求解,求解中允许与周围同学讨论,几分钟后)师:有同学求出来了吗?

生:我发现他们第一天种1棵,第二天种3棵,第三天种9棵,第四天种27棵,依次类推,他们每天种的树构成一个以1为首项,3为公比的等比数列。所以。但我算不出来。S301332329(1)师:当数列项数比较多时,那么一项一项累加就比较繁琐;为了又快又巧地解决这个问题.我们通常有两种思路: 一种就是在项数仍然较多的情况下,使得每一项都相同,即将之特殊化,如前面提到的高斯求和的方法。

生:老师,这个方法我们试过了,S30329328327

12S3013293328323271329

但是下面就没有办法了.因为括号里的不是全部相等.师:对的非常好.,所以我们应该去考虑另一种方法,那就是想办法抵消一些项,使之转化为只有几项相加减的情况。对于等比数列求和,我们采用后一种思路。即求和关键是要消去中间过多的项。另外,这里的S可以看作是天数的函数,比如S30表示30天时的函数值,S29就表示29天时的函数值。那如何消掉中间项呢?看一下前后之间的项的关系?(教师在巡视中可以发现,教师的提示起到了重要的作用,学生求解过程中有如下方案:

组1:先把S30算式中间的项写出来,即333,并提取公因子3后写成:

2283(13327),发现括号里即为S28,所以便有:S3013S28329。做到这一步,学生发现要求S30,却出现了S28,于是有用S30替换S28的,也有用S28替换S30的,最终求得S303301。

2组2:把(1)式作如下处理:S3013(132328)13S29。然后用类似组1的方法求出S30。

组3:(1)×3:3S3033233330(2);(1)—(2)得S3013,求得S30303301。这即是教材的求法。)(教师让每组学生派代表对各自的求解思路作汇报后,作出总结。)

师:从三组学生对这个问题的求解过程来看,前n项求和的本质都是为了消去中间过多的项,大家也可以从等差数列求和中得到类似的体会。但你们刚才的求和方法是否适合所有等比数列前n项求和的问题呢?比如an是以a1为首项,q为公比的一个等比数列,每小组用你们自己的方法试一下。

(组1:Sna1a1qa1qn2a1qn1

又a1qa1qn2q(a1a1qa1qn3)qSn2

Sna1a1qa1qn2a1qn1a1q(Sna1qn2a1qn1)a1qn1 a1a1qn

(1q)Sna1a1q

得到Sn

1qn组2:Sna1a1qa1qn2a1qn1a1q(a1a1qa1qn2)a1qSn1

即Sna1q(Sna1qn1)

a1a1qn

Sn

1q组3:Sna1a1qa1qn2a1qn1

qSna1qa1qn1a1qn

(1q)Sna1a1qn

a1a1qn

Sn

1q组4:受方组3的启发,从第二项开始提取一个a1, 再应用公式1qn1q1qq2qn1

Sna1a1qa1qn2a1qn1a1(1qq2qn1)

1qnSna1

1q(各小组均未注意到q1的情形,所以教师要作重点强调,并总结出等比数列求和公式。)

2、案例简析

新教材对于此节安排就是一个实际的例子引出,再通过这个实际例子求和的方法推导迁移出一般等比数列的求和公式。如果教学中,对于公式只是简单的推导,再让学生记住公式,并利用公式计算,确实不难,只要将推导的方法直接告诉学生,再让学生利用大量练习进行巩固。这样也能达到一定的教学效果。可是只是这样让学生机械的,被动的去接受结果,忽略让学生自己去发现结果,和探索问题的思维过程,就失去了训练思维的绝好的机会。本案例由现实情境引入课题,在教师引导和提示下,学生提出问题并解决问题,把火热的思维过程展现在课堂上,让他们自己去体验艰辛探索后的成功的愉悦。这对于他们以后学习数学,学好数学非常有益.以往教学只是介绍推导方法,这样的思考问题的思路显得狭隘,限制了学生从多层次,多角度去思考的权利。本案例的处理就是再现一种的推导过程,而在这种推导过程让学生从多个层面去思考,用多种方法去解决问题,通过观察、分析、归纳、猜想,培养学生的数学思维能力,同时调动学生学习数学的积极性。在该案例设计中,笔者是基于以下两点考虑的: 2.1在课上促进学生应用意识的养成

新的课程标准已对学生数学应用意识作了清楚的刻画,正如[1]文中指出的:“学生的应用意识主要体现在以下2个方面。(1)面对实际问题,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略„„(2)认识到现实生活中蕴涵着大量的数学信息,数学在现实世界中有着广泛的应用。”[1]但目前数学教育中存在着一个较大的问题即学生应用能力、应用意识的培养与课堂教学的脱钩,认为课堂是学生学习基础知识、基本技能的主战场,因此一提起数学应用,以及作为数学应用的一个重要载体的研究性学习便想到了让学生走出校园,进入社区,着手调查。笔者以为,让学生在现实生活中体验数学对学生应用意识的养成确有巨大的影响,但不是全部。吕传汉、汪秉彝曾这样写道:“学生学习有别于人类的一般学习,它主要是掌握间接经验的过程„„不必事事从直接经验开始,而应是在教师指导下对现成知识‘再发现’。”[2]如何不出校门培养学生的应用意识?一个有效的手段即是教师创设一个有利于儿童学习活动的问题情境,让“学校数学”与“日常数学”走向融合,使学生不出校门而在问题解决中学习数学知识,逐渐树立起“学数学即是做数学”的观念。而在此过程中一个重要的思想即是模型的思想,或更为具体地说也就是数学建模,这也是笔者在案例设计时思考的又一问题。

2.2数学模型思想在课堂教学中的渗透

在此强调这一点,笔者以为有着特殊重要的意义。从数学本身的发展来看,数学往往起源于具体事物、具体经验,形成非结构性知识,但数学的发展并不终止于非结构性知识,而往往需要作进一步的抽象,最终形成具有良好结构的数学知识。这种结构的形成在一定程度上是由于数学模型的一般化,模型之间的协调。正是基于此,笔者认为,数学模型化思想(包括数学建模和数学解模的思想)的学习较数学知识本身的学习有更重要的意义和更大的发展潜力。让学生用数学模型思想看问题,用建模的方法解决问题,用解模应用于生活,即是促进了学生“经由数学地思维”的能力。《〈高中数学课程标准〉的框架设想》也明确指出要把数学建模贯穿于各学习模块之中,并单独设立了“数学建模”的专题课程。但笔者以为,目前在中学开设“数学建模”专题课程时机尚不成熟,这首先是因为中学数学课程内容多,学时少;其次是因为学生现有能力结构不适合独立开设数学建模课程。因而,与专门开设数学建模课相比,教师在日常课堂教学中渗透模型思想,以建模为平台开展日常教学就显得更为迫切。结合正常课堂教学,通过对教材呈现的知识的理性重建,在部分环节上“切入”建模的内容,尽管有时会偏离该堂课的教学目标,但对于学生能力的培养,未来的发展都有着很大的作用。

第四篇:等比数列教学反思

等比数列教学反思

许萍萍

时间过的真快,转眼间从初中部来到高中任教已经快1年了,这是我来高中后的第一节公开课,既是新教师的汇报课,又是校内的教学大赛。我根据教学进度确定了课题,提前一周开始准备课件和导学案。因为学生刚刚学习完等差数列,运用类比的思想能够自学等比数列的概念和性质,自行推导出等比数列的通项公式,所以我选择了初中的教学模式——四研互助式高效课堂模式。

一、设计思想:

1、以学生为主导

本课的设计思想是以学生为主导,教师为辅参与学生的互动,巡视学生组内活动参与情况,检查学生自学情况和课堂记录是否及时,在教学中通过导学案的设计,引导启发学生从实际情境中发现数列规律,学生类比等差数列的概念,写出等比数列的概念,类比等差数列的通项公式的获得过程,自行推导等比数列的通项公式。在教学活动中渗透了数学建模的思想。在这个活动中不断将等差与等比的概念及方法做对比,让学生更加清楚地了解等比数列的特征。在等比数列概念的建立及通项公式的探索过程都充满了类比的归纳的数学思想,目的是使学生体会等差数列与等比数列的知识的有关联系,感受数学的整体性。

2、注重培养学生的能力

课前我给各个小组布置任务,整个课堂每个环节都是学生在讲解,学生结合课件,边演示课件边讲解,包括板书,希望学生通过自研,组研,培养学生的自学能力,思考探索精神,组内交流能力。

二、预期目标:

这节课的重要思想采用类比的思想,在教师的引导下,以学生为主体完成整个课堂教学。就课堂反馈情况来看,学生的引导比较到位,讲解的重点突出,前后呼应,学生完成的比较理想,实现了预期的教学目标,个别不到位的地方,教师都及时的补充和拓展了。学生的课堂活动很积极,课堂气氛融洽,实现了良好的师生互动,完成了预先的教学设计过程。并及时对学生的表现给与充分的表扬、鼓励以及正确的引导。现在的教学需要使用鼓励教育,充分调动学生的积极性和能动性,打开学生思维。在整个过程中学生的表达能力,心理素质都得到了提升。

三、努力方向:

基础较好的学生反映课堂容量较小,也有部分同学反映练习题比较简单,随堂练习在层次上没有太大差异,不能很好的满足各个层次学生的需要,今后在习题的选择上应多下功夫,多查阅些资料,精选细练,力求让每个学生各有所得,都能找到适应个人实际的练习,帮助他们更好的理解,当堂的基础知识,也便于课后学生个人的复习总结。更好的实现课堂教学的时效性。

经过这次公开课,只有带着情感态度价值带来备课才能从宏观上来把握整堂课,头脑里清楚我们将带非学生什么东西,这样我们的教学才会具有目标性。这堂课下来,我更多的只是注意了基础知识和基础技能,而忽略了带给学生的思想上的总结。

教学不仅是一门学问,也是一门艺术,还需要我在日常教学中不断地总结和探索,不断学习,不断研究反思,这样才能在教学中不断进步,创新,超越自我。

第五篇:等差数列、等比数列的证明及数列求和

等差数列、等比数列的证明

1.已知数列an满足a11,an3an12n3n2,(Ⅰ)求证:数列ann是等比数列;

(Ⅱ)求数列an的通项公式。

2.已知数列an满足a15,an12an3nnN*,(Ⅰ)求证:数列an3n是等比数列;

(Ⅱ)求数列an的通项公式。

3.已知数列an满足a11,an2an12(Ⅰ)求证:数列an是等差数列; n2nn2,(Ⅱ)求数列an的通项公式。

4.已知数列an满足a12,an1

an12an,1

(Ⅰ)求证:数列是等差数列;

an

(Ⅱ)求数列an的通项公式。

5.已知数列an,Sn是它的前n项和,且Sn14an2nN,a1

1*

(Ⅰ)设bnan12annN*,求证:数列bn是等比数列;(Ⅱ)设cn

an

2n,求证:数列cn是等差数列;

(Ⅲ)求数列an的通项公式。

数列求和的方法介绍

一、公式法

利用下列常用求和公式求和是数列求和的最基本最重要的方法。

1、等差数列求和公式:Sn

n(a1an)

na1

n(n1)

2d2、等比数列求和公式:Sn

na1n

aanqa1(1q)

11q1q

(q1)(q1)

二、错位相减法

这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列anbn的前n项和,其中an、bn分别是等差数列和等比数列

三、裂项相消法

裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的通项分解,其中裂项是手段,相消是目的。常见的裂项法有:

(1)an

1n(n1)

1n(n2)

1n

1n

1(2)an

1n(n1)

1n1

1n

n2

(3)an

111

2nn2

1anan1

(4)若an等差,公差为d0,则

11

【裂项原理】 an1an

(5)

2n12n1

1、已知数列an是等差数列,设其前n项和为Sn,若a59,S525(Ⅰ)求数列an的通项公式an;

(Ⅱ)设bn3,求数列bn的前n项和Tn

an

2、已知数列an的通项公式为an2n13,求前n项和Sn

n

3、已知数列an是等差数列,设其前n项和为Sn,若S535,S10120(Ⅰ)求数列an的通项公式an和Sn;(Ⅱ)设bn

1Sn,求数列bn的前n项和。

下载无穷递缩等比数列求和教学案例及反思word格式文档
下载无穷递缩等比数列求和教学案例及反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数列求和教学反思

    数列求和教学反思 数列求和教学反思1 这节课是高中数学必修5第二章数列的重要的内容之一,是在学习了等差、等比数列的前n项和的基础上,对一些非等差、等比数列的求和进行探讨......

    数列求和教学反思

    《数列求和》教学反思 针对数列问题的考试重点及学生的薄弱环节,《数列求和》的系列专题复习课《数列求和1》的教学重点放在了数列求和的前两种重要方法: 1、公式法求和(即直接......

    教学案例及教学反思

    教学案例及教学反思 《生命生命》一课是人教版新课标四年级下册选编的一篇精读课文。这篇课文表达了台湾著名残疾女作家杏林子对生命的感悟与体验。文章从寻常生活小事入笔......

    教学案例及反思

    《认识物体》的教学案例 (一)、 创设情景,激情促思 1. 说学具。 师:今天,数学王国的小精灵送给每个小组一袋神秘礼物,想知道有什么吗?快把眼睛闭上 吧!(伴随着音乐、老师发礼物)......

    教学案例及反思

    让学生在生活情境中学习数学 ——三年级数学上册《吨的认识》教学案例与反思 【 教学案例 】 一、激趣导入 师:小朋友,在假日里你们常会跟妈妈上市场买东西吗?(电脑出示情境图)......

    教学案例及反思

    《数、认、读、写11~20各数》教学案例及教学反思 武宣县东乡镇河马小学 罗国林 教学内容 教材60~62页 经历数11~20各数、认数与读写的过程 教学目标 知识与技能:结合具体情境,经......

    数列的求和教学反思

    数列的求和教学反思 数列的求和教学反思1 对于高考班来说,现在的主要任务就是储备足够的知识和经验,迎接高考。而最近几年的高考题中,创新题多数都是数列部分的题目,所以,本节课......

    数列求和的教学反思

    数列求和的教学反思 这节课是高中数学必修5第二章数列的重要的内容之一,是在学习了等差、等比数列的前n项和的基础上,对一些非等差、等比数列的求和进行探讨。 我将从以下几个......