第一篇:七年级上册数学教案全集(XX年新课标北师大版)(本站推荐)
七年级上册数学教案全集(XX年新课标
北师大版)
本资料为woRD文档,请点击下载地址下载全文下载地址
1.1 生活中的立体图形
(一)教学目标、知识:认识简单的空间几何棱柱、圆柱、圆锥、球等,掌握其中的相同之处和不同之处
2、能力:通过比较,学会观察物体间的特征,体会几何体间的联系和区别,并能根据几何体的特征,对其进行简单分类。
3、情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。
教学重点:认识一些基本的几何体,并能描述这些几何体的特征
教学难点:描述几何体的特征,对几何体进行分类。
教学过程:
一、设疑自探
.创设情景,导入新课
在小学的时候学习了那些平面图形和几何图形,在生活你还见到那些几何体?
2.学生设疑
让学生自己先思考再提问
3.教师整理并出示自探题目
①生活常见的几何体有那些?
②这些几何体有什么特征
③圆柱体与棱柱体有什么的相同之处和不同之处
④圆柱体与圆锥体有什么的相同之处和不同之处
⑤棱柱的分类
⑥几何体的分类
4.学生自探(并有简明的自学方法指导)
举例说说生活中的物体那些类似圆柱、圆锥、正方体、长方体、棱柱、球体?
说说它们的区别
二.解疑合探
.针对圆柱、圆锥、正方体、长方体、棱柱、球体特征的认识不彻底进行再探
2、对这些类似圆柱、圆锥、正方体、长方体、棱柱、球体的分类
2.活动原则:学困生回答,中等生补充、优等生评价,教师引领点拨提升总结。
三.质疑再探:
说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)
四.运用拓展:
.引导学生自编习题。
请结合本节所学的知识举例说明生活简单基本的几何体,并说说其特征
2.教师出示运用拓展题。
(要根据教材内容尽可能要试题类型全面且有代表性)
3.课堂小结
4.作业布置
五、教后反思
1.1 生活中的立体图形
(二)教学目标、知识:认识点、线、面的运动后会产生什么的几何体
2、能力:通过点、线、面的运动的认识几何体的产生什么
3、情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。
教学重点:几何体是什么运动形成的 教学难点:对“面动成体”的理解
教学过程:
一、设疑自探
.创设情景,导入新课
我们上节课认识了生活中的基本几何体,它们是由什么形成的呢?
2.学生设疑
点动会生成什么几何体?
线动会生成什么几何体?
面动会生成什么几何体?
3.教师整理并出示自探题目
教师根据学生的設疑情况梳理、归纳、细化得出自探题目
4.学生自探(讨论)
二.解疑合探
举例分析那些几何体由什么运动形成的?
那些图形运动可以形成什么几何体?
三.质疑再探:
说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)
四.运用拓展:
.引导学生自编习题。
2.教师出示运用拓展题。
(要根据教材内容尽可能要试题类型全面且有代表性)
3.课堂小结
4.作业布置
五、教后反思
.2 展开与折叠
教学目标:
.通过折叠棱柱,发展学生空间观念,积累数学活动经验.
2.了解棱柱的相关概念,认识棱柱的某些特性.
教学重点:棱柱的特性.
教学难点:某些平面图形是否可以折叠成棱柱的思索.
教学过程:
一、设疑自探
.创设情景,导入新课
我们已经学过了一些几何体,它们是由什么组成的?它的展开图形是什么样?一个平面图形可以折叠成什么样的几何体呢?
2.让学生拿出各自制作的三棱柱,四棱柱,五棱柱,通过观察和测量回答:
(1)三棱柱的上、下底面都一样吗?它们各有几条边?四棱柱,五棱柱呢?
(2)三棱柱有几个侧面?侧面是什么图形?四棱柱,五棱柱呢?
(3)这三种棱柱侧面的个数与地面多边形的边数有什么关系?
(4)三棱柱有几条恻棱?它们的长度之间有什么关系?四棱柱,五棱柱呢?
结合同学们的回答,共同总结出棱柱的性质:
棱柱的所有侧棱都相等;棱柱的上、下底面是相同的图形;侧面都是长方形.
3.课堂练习:P11 1.
4.展示正六棱柱模型.(底面边长都是5厘米,侧棱长4厘米)
二.解疑合探
(1)这个六棱柱一共有多少个面?它们分别是什么形状?那些面的形状、面积完全相同?
(2)这个六棱柱一共有多少条棱?它们的长度分别是多少?
展示下列图形:
先想一想,再折一折,哪些图形可以围成正方体?哪些图形不能围成正方体?
结合以上问题,全班进一步分组讨论:
你能否指出具有什么特征的平面图形可以折成正方体?什么样的图形不能?
(教师参与小组讨论,并进行适当指导)
总结结论:
凡符合以上基本图形或变式图形的平面图形都可以折叠成正方体.
三.质疑再探:
上例中为什么是旋转90度?
探索并思考:什么样的平面图形可以折叠成三棱柱,四棱柱,五棱柱?
进一步思考什么样的平面图形可以折叠成棱柱?
四.运用拓展:、课堂练习P11 想一想
2、小结
①.棱柱的相关概念及特征
②.什么样的平面图形叠成三棱柱,四棱柱,五棱柱等.
③作业
P10习题1.3
每人用纸制作一个完整的正方体以备下节课使用.
.3 截一个几何体
教学目标:、认知目标:通过用一个平面去截一个正方体的切截活动过程,掌握空间图形与截面的关系,发展学生的空间观念,发展几何直觉。
2、能力目标:通过学生参与对实物有限次的切截活动和用操作探索型进行的无限次的切截活动的过程,使学生经历观察、猜想、实际操作验证、推理等数学活动过程,发展学生的动手操作、自主探究、合作交流和分析归纳能力。
3、情感目标:通过以教师为主导,引导学生观察发现、大胆猜想、动手操作、自主探究、合作交流,使学生在合作学习中体验到:数学活动充满着探索和创造。使学生获得成功的体验,增强自信心,提高学习数学的兴趣。
教学的重点:引导学生用一个平面去截一个正方体的切截活动,体会截面和几何体的关系,充分让学生动手操作、自主探索、合作交流。
教学的难点:从切截活动中发现规律,并能用自己的语言来表达。能应用规律来解决问题。
课程过程:
一、设疑自探
.创设情景,导入新课
复习面的分类和面面相交的结果.
集体回答或发表个人见解.
为理解截面的边数作铺垫.
2、学生探索
由实物引入截(切)面的意义.用教具演示,将一个几何体切开得到截(切)面,让学生观察这两个面的特点.
了解到这两个截面完全一样的.
自然过渡到用一个平面去截正方体.
问题的提出:“你注意到了吗?妈妈在将黄瓜切成一片片时,得到的截面是什么样的?…,如果用一个平面去截一个正方体得到的截面可又将是怎样的呢?分组讨论,比一比那一组的结论多”激发竞争意识.
实施“想—做—想”的学习策略,让学生先想一想,并把猜想的结果记录下来,的猜想.
培养学生的想象力.
分组实践操作:“与同伴交流,看看别人截处的面是什么?他为什么得到与你不同的截面?他是怎样得到的?你还能截得什么样的截面?”比一比那一组讨论的结果与实践一致的多.表扬表现好的.培养集体荣誉感.
分组通过实践操作证实小组的讨论的结果,发表、展示自己的研究成果.(由于时间关系,选择有代表性的小组展示)
培养学生的合作交流能力、对问题的探究能力及表达能力和竞争意识.
二、解疑合探
帮助学生完成由实际体验到空间想象的过渡,提高想象能力.并总结各种截面是如何截出来的,它们有什么规律.
观察,想象,思考截面的边那些面相交的来.
新问题:“刚才切、截一个正方体就得多个不同的截面,那么如果截一个圆柱体呢?或是截一个其它棱柱体呢?你又会得到一些什么样的截面?”
动手操作、探究、交流.
三.质疑再探:
说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)
四、运用拓展
练习、作业布置、解答课堂练习.学生能独立完成课堂练习.
1.4 从不同方向看
教学目标:
.经历“从不同方向观察物体”的活动过程,发展空间思维,能在与他人交流的过程中,合理清晰地表达自己的思维过程.
2.在观察的过程中,初步体会从不同方向观察同一物体可能看到不一样的结果.
3.能识别简单物体的三视图,会画立方体及其简单组合体的三视图.
教学重点:识别简单物体的三视图,会画立方体及其简单组合体的三视图.
教学难点:画立方体及其简单组合体的三视图.
教学过程:
一、设疑自探、创设问题情境,从学生熟悉的古诗入手,引出课题.
横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.
哪位同学能说说苏东坡是怎样观察庐山的吗?
这首诗隐含着一些数学知识.它教会了我们怎样观察物体,这也是我们这节课将要学习的内容——《从不同方向看》.
在此,我想先请同学们一起来做一个小实验.
2、观察实物、利用小实验,使学生初步体会从不同方向观察同一物体,可能看到不一样的结果.
水壶、杯子、乒乓球先用布盖好.
三名学生从不同角度进行观察,回答分别看到了什么?
思考:为什么三名学生看到的不一样?
二、解疑合探、观察几个简单几何体的组合,讨论得出“观察同一物体时,可能看到不同的图形”的结论.
拿出前两节课自制的模型(三棱柱).看三棱柱的侧面是什么图形?底面呢?
是不是同一物体,从不同方向看结果一定不一样呢?
由此,我们得到这样的结论:从不同方向观察同一物体时,可能看到不同的图形.
在几何中,我们把从正面看到的图叫主视图,从左面看到的图叫左视图,从上面看到的图叫俯视图.
2、讨论立方体及其简单组合的三视图.通过讨论,让学生能在与他人交流的过程中,合理清晰地表达自己的思维过程.
给定一个几何体。说说你从正面、左面、上面分别看到什么图形?
主视图、左视图、俯视图是相对于观察者而言的,相对于不同的观察者,其三视图可能不同.
假设从右下角往左上角的方向看是从正面看,则从左向看为从左看,站在观察主视图的位置从上往下看为从上面看.
请同学们思考一下从这三个方向看分别看到什么图形?
(1)
(2)
(3)
图(1)是从左边看到的图,即左视图.
图(2)是从正面看到的图,即主视图.
图(3)是从上面看到的图,即俯视图.
刚才我们从不同方向观察了实物、几何体,还学习了简单几何体的三视图,为了巩固这些知
识,下面我们来做几道练习.
三、质疑再探
说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)
1.5 生活中的平面图形
教学目标:、经历从现实世界中抽象出平面图形的过程,感受图形世界的丰富多彩;
2、认识多边形,探索多边形的某些性质;在活动中感受归纳思想;
3、在活动中发展有条理地思考(感受分类思想).
重点和难点:感受归纳思想和分类思想;归纳.
教学过程:
.创设情景,导入新课
我们今天要讨论的内容呢,是“生活中的平面图形”.书上有几幅照片,我们可以从中看到哪些平面图形?
2.学生设疑
刚才我们提到的象三角形、长方形和圆等等图形,和我们前几天讨论过的棱柱、圆锥等图形一样,都是几何图形.只不过长方体等这些图形是立体图形,而我们今天所讨论的这些图形是平面图形.我们只考虑它的形状和大小,以及它们相互之间的位置关系.
我们一起来讨论一下一些平面图形有些什么性质.
请同学们在练习本上分别画一个三角形、一个四边形、一个五边形、一个六边形.
我们把三角形、四边形、五边形、六边形等这些图形都称为多边形.
请同学们讨论一下:这些多边形都有些什么共同特点?什么叫多边形?
由不在同一直线上的几条线段依次首尾相连而成的封闭图形叫多边形.
这些多边形呢,我们还可以给它们取名字.比如说三角形,它有三个顶点,我们把它的三个顶点分别记为A、B、c,那么这个三角形就叫“三角形ABc”.
现在,请同学们给你刚才所画的这个四边形的四个顶点依次标上字母A、B、c、D.请注意:字母要大写,要按照顺序依次书写.
新增加线段Ac,称为这个四边形的一条对角线.观察一下,在增加了这条对角线以后,图形有什么变化?
看刚才所画的这个五边形,选择其中一个顶点,画出从这个顶点出发的所有对角线.图形有什么变化?
我们来看一下:从四边形的一个顶点出发,有1条对角线,把这个四边形分割成2个三角形;从五边形的一个顶点出发,有2条对角线,把这个五边形分割成3个三角形;从六边形的一个顶点出发,有3条对角线,把这个六边形分割成4个三角形.这其中是不是可能存在着某种规律?
在四边形中,有1条对角线,2个三角形;五边形中,有2条对角线,3个三角形,等等,现在我们要研究的问题就是:是不是对所有的多边形都是这样?还是只对部分多边形才是这样?一个多边形,如果从一个顶点出发的对角线有n条,那么被分割成三角形的个数是不是一定比n多1个,也就是个呢?
我们回顾一下刚才的学习内容:从生活中所熟悉的事物中抽象出几何图形,然后对这些图形的某些性质进行了探讨.在探索活动中,要充分发挥了自己的聪明才智,发现了很多非常重要的结论.如果我们把这些结论本身先放在一边不说,就得到结论的整个过程而言,这个过程本身是不是也非常有意义?
二、解疑合探
看课本,整个图案都是由什么图形组成的?数数看,共有多少个三角形?怎么数?可以互相交流一下.
我们把所有的三角形按大小分成三类:第一类,边长为1个单位的三角形,有几个?
第二类,边长为2的三角形,共有3个;第三类,边长为3的三角形,只有1个.那么所有的三角形只要加加起来就行了.
书上有什么叫弧、什么叫扇形,自己回去看一看.后面“读一读”里有几种正多面体,每种正多面体有几个面、每个面是正几边形、共有多少个顶点、多少条棱,这些呢,书上的表里面也都列出了.
三、质疑再探
说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)
四、运用拓展、学生自己编题
2、作业
丰富的图形世界(第一章)复习
教学目标:、让学生在动手实践、自主探索、合作交流的过程中,回顾本章内容,梳理本章知识,反思所学,形成积极的学习态度和情感.
2、结合本章复习题,进一步认识图形及其性质,把握实物与相应的几何图形,几何体与其展开图和三视图之间的相互转换关系,丰富几何的活动经验和良好的体验,发展空间观念.
教学过程:
一、设疑自探
、梳理本章知识
经过一章的学习,同学们体会到我们就生活在一个丰富的图形世界中,现实物体以图形的形式呈现在我们面前,我们通过图片这个窗口认识了我们生存的现实空间.下面我们乘坐一列“问题”快车一同来回顾本章的知识,反思所学.
(一)生活中有哪些你熟悉的图形?举例说明.
(二)你喜欢哪些几何体?举出一个生活中的物体,使它尽可能地包含不同的几何体.
(三)用自己的语言说一说棱柱的特征?(直棱柱)
展示六棱柱模型,学生观察交流回答棱柱有以下特征:
①棱柱上有上下两个底面,它们形状大小相同;
②棱柱的侧面都是长方形;
③侧棱的长度都相等;
④侧面的个数与底面多边形边数相同.
二、解疑合探
A、利用棱柱的特征我们可以解决哪些问题?
B、能根据下列给出的正方体平面展开图指出正方体中相对的面吗?(可用相同的字母表示),发现了什么规律?
给出若干个具有代表性的正方体平面展开图,如图
第二篇:北师大七年级上册数学教案 合并同类项
合并同类项
【知识要点】
1.同类项:含有相同的字母,并且相同字母的指数也相同的项叫做同类项,单独一个字母或数也是同类项。
2.合并同类项的方法:
(1)找出同类项;
(2)将同类项的系数相加,所得结果作为系数,字母及字母的指数不变。
3.去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号。括号前面是“-”号,把括号和它前面的“-”去掉,括号里各项都改变符号。
4.添括号法则:添括号后,若括号前面是“+”号,括到括号里的各项都不变符号,添括号后,若括号前面是“-”号,括到括号里的各项都要改变符号。
【典型例题】
例1下列代数式中,是同类项的组数有()组
①0.5a2b②4xy③1
2xyz④ab⑤1⑥3222
5xy⑦xy⑧0 32
A.1B.2C.3D.
4例2合并同类项:
(1)a2a2a2;(2)xx1
例3去括号:2a2a1212x3x7。22bc=2
例4去括号,并合并同类项:4x2y8xyay8a5y
例5已知a2,b0.25,求代数式9ab3ab58ab3ab77ab的值。22222
例6若2a2b3和
23a
m1
b
n1
是同类项,求m,n的值。
【巩固练习】
一、填空
1.去括号:abc,abc;xyz,xyz2.添括号:abcdac
abc2aba
;x2
;abcd
2x7x
ad;
.
x
3.单项式a2b,3a2b,2a2b的和是,6ab与ab的差是.
二、选择
1.下列叙述的语句,其中错误的有()个
①如两个单项式所含的字母完全相同,那么这两个单项式是同类项;
②如两个单项式的次数相同,所含的字母也相同,那么这两个单项式就是同类项;③所含字母相同且相同字母的次数也分别相同的项叫同类项;④系数互为相反数的同类项合并后为零.A、0
A、把相同的项合并C、把各项合并成一项
3.下面式子中正确的是()A、5a2b7ab
B、5xy5yx0
C、3a2a1 D、3x2x5x
B、1 C、2
B、把各项系数相加
D、3
2.合并同类项就是()
D、把多项式中的同类项合并成一项
4.下列各式中成立的是()
A、xyxyB、xyxyC、xyyxD、xyxy 5.下列去括号正确的是()
A、a2abca2abc
B、3x5x2x13x5x2x1 D、2xyz12xyz1
C、a3x2y1a3x2y
16.把x2xyy2x2y的二次项放在添“+”的括号里,把一次项放在添“-”号的括号里,按要求完成并正确的是()
A、x2xyy2x2yxy
B、x2xyyC、x2xyy
22xy2x2y
2x2yx2xyy2x2y 2x2yxy2xy2x2y
D、x22xyy22x2yx22xyy22x2y
7.x2y5a6x()A、2y5a6
B、2y5a6
C、2y5a6
D、2y5a6
8.a2b2baa2b2()A、ba
三、解答题
1.去括号再合并同类项
(1)a33a27a3a21(2)2x23x25x2x1 B、ba C、ab D、ab
(3)3x275x22
(5)2a3b4a3ab
4)4x25x8x213x24x21(6)a
b2
b2
(2.若a,b互为相反数,求a3a5a7a9a2b4b5b6b8b的值.3.若
4.如果三个连续奇数的和是381,则其中一个奇数是119、121、123、125中的哪一个?
5.当a0.2,b0.04时,求代数式
7273
717
212mn
a1
和
m
b1
b是同类项,求a的值.
3b
a
b
ba0.16ab的值.
合并同类项作业
姓名:成绩:
1.下列各组式子中,不是同类项的是()A、7x2y3,7x3y2
B、5,5
C、12
ab2
D、xy,yx
22,ab
2.下面的式子中,正确地进行了合并同类项的是()A、2x2x0
B、2x2y3xy25x2y
2C、3abba2ab
D、12
xy
xyxy
3.如两个单项式是同类项,那么下列叙述错误的是()A、这两个单项式中,相同字母的指数一定相同B、这两个单项式所含的字母一定相同C、这两个单项式的次数一定相同D、这两个单项式的和不一定是单项式
4.当a2时,代数式5a24a245a2a246a的值是()A、2
B、-10
C、-6
D、-14
5.在下列等号右边的括号前的横线上填上适当的符号,使等式成立.
(1)abba; abab; baab;
(2)xyyx;xyxy;xyyx
6.化简
(1)10x2x7x35
(3)45xy3
13x
4
y1 3
(2)3x27x22x3x2x1
(4)8x3y4x3yz2z
(5)5aa5a2a2a3a(6)2x3x
n
n1
x5x
nn1
10x
n2
(7)3abab
baba.(8
1222
3m4n(mn3m)
7.若三角形的第一边等于ab,第二边比第一边长a5,第三边等于2b,求此三角形的周长,并求当
a2厘米,b3厘米时,三角形的周长.
8.当a9.若
10.若a3b2cb0,化简:a2bc.
12,b
时,求3abab2abba4ab的值.
ab
3n4
和2a2
m1
b是同类项,且3x2n16ym0,求xxy2y的值.
第三篇:人教版七年级上册数学教案
人教版七年级上册数学教案
第二章、一元一次方程:
2.1 从算式到方程
教学目标:
1.了解什么是方程,什么是一元一次方程;
2.通过“列算式”和“列方程”解决问题的方法,感受方程是应用广泛的数学工具;
3.初步学会分析实际问题中的数量关系,利用其中的相等关系列出方程,渗透建立方程模型的思想;
4.经历从生活中发现数学和应用数学解决实际问题的过程,树立多种方法解决问题的创新意识,品尝成功的喜悦,增强用数学的意识,激发学习数学的热情。
教学重点:
1.了解什么是方程、一元一次方程;
2.分析实际问题中的数量关系,利用其中的相等关系列出方程。
教学难点:
分析实际问题中的数量关系,利用其中的相等关系列出方程。
教学过程:
一、游戏激趣
同学们,大家小时候一定都说过儿歌吧?那么这一首儿歌你一定说过(屏幕出示):1只青蛙1张嘴,2只眼睛4条腿,扑通一声跳下水;„„。现在,我们就来“比一比,说儿歌”(屏幕出示)。要求是:以这样的速度说(师说一段),不能说错或停顿,如果停顿或者说错了就立即停止。规则是:每一大组各派一名代表,看谁说得又快又好;第一大组,谁来?其他同学可听仔细了。(进行比赛)
我们知道,这是一首永远也说不完的儿歌,你能不能想个方法用一句话把这首儿歌说完呢(屏幕出示)?(根据学生回答,说出“x只青蛙x张嘴,2x只眼睛4x条腿,x声扑通跳下水”)(屏幕出示)
这样,我们用字母x代替了具体的数,就用一句话代表了所有情况,使问题变得方便、简捷。
二、创设情境,引入课题
1、同学们都挺喜欢吃巧克力吧!假如你妈妈从文峰买了42颗你最喜欢吃的巧克力,你准备怎么处理呢?
好东西要与好朋友分享,对吧?如果你和你的好朋友一人一半,你分得多少呢?我们也不能忘了孝敬长辈,假如分给奶奶的是分给你的2倍,那么你分了多少颗?
如果还要分给爷爷,且分给奶奶的不变,还是你的2倍,分给爷爷的比分给你的1.5倍少3个。此时你又分得多少颗?(让学生自己回答出两种解法——代数方法和算术方法)
2、刚才解决这个问题时,两位同学一人用了列算式的方法,一人用了列方程的方法(屏幕出示)。今天这一节课我们就共同来研究“2.1节从算式到方程”。
3、什么是方程?同学们还记得吗?请大家回忆一下。、4、刚才的问题是用列方程的方法解答的请举手。
确实,方程也是解决问题的一种好方法。
(设计意图:通过巧克力问题,1、让学生认识到列方程也是解决数学问题的一个好方法,甚至有时比算术方法要简单,2、引出方程的概念)
三、呈现问题,自主探索
1、请你用算术方法或列方程解决下列问题:
每一道题你都可以选择用算术方法还是列方程解决,只要想到方法的就到黑板上来写,不需要举手,如果列算术请写在左边,如果列方程请写在右边。
注意:我们这一节课只研究根据实际问题列方程,怎样从方程中求出未知数,我们以后会深入讨论。所以,今天的问题都只要求同学们列出算式或方程,不需要求出结果。现在开始。
2、学生自由到黑板上写
3、现在请各位同学解释一下自己的方法。(学生在座位上回答,教师适当提醒学生说出等式两边的含义和列方程所依据的相等关系。针对解题格式上的问题加以提醒。)
统计每道题用算术方法和用代数方法的人数。
4、通过解决刚才的这几个问题,对于做一道题时,是选择列算式还是列方程,你有什么感想?(生答)
其实呀,方程确实是一种应用很广泛的数学工具,在现实生活中有好多好多的问题可以用方程解决。下面我们不妨来试试看。好吗?
(设计意图:通过几道例题,1、让学生初步学会分析实际问题中的数量关系,利用其
中的相等关系列出方程,2、渗透建立方程模型的思想)
四、巩固练习,提高发展
1、现在我们就用列方程的方法解决问题,请拿出学案纸,完成第一大题。要求是:(屏幕出示)根据下列问题,设未知数并列出方程,同样不需要求出结果。
2、学生独立完成。
3、哪位同学来讲讲你做的第一题,说说你的解题思路和过程。
4、通过刚才的研究,我们发现利用方程解决问题要经过哪些步骤呢?
先设未知数,然后根据相等关系列出方程,这样,就将实际问题转化成了数学问题。(设计意图:通过练习让学生继续学会分析实际问题中的数量关系,利用其中的相等关系列出方程。)
五、合作学习,开拓创新
1、我们知道,数学来源于生活,又应用于生活。今天,老师在来滨江初中的过程中,遇到了这样一个问题:
汽车匀速行驶,7:00从实验初中出发,7:30途经常青初中到达滨江初中是7:50,吴庄在常青初中、滨江初中两地之间,距常青初中6千米,与滨江初中的距离是总路程的,问实验初中到吴庄的路程有多远?
现在,就请大家运用你所掌握的知识、方法,结合线段图解决它。
请拿出学案纸,看第二大题,只需要列式,并说出理由,不需要求出结果。请大家先独立思考,然后学习小组内互相交流,互相讨论,看看谁想到的方法多。现在开始。
2、学生完成3、学生展示不同的方法。
(设计意图:改变书上的引例,把它换成现实生活中的实例,鼓励学生探索、合作、交流,有利于激发学生的学习兴趣)
六、交流收获,归纳总结
各组同学都积极开动脑筋,想出了各种方法解决问题,看来同学们今天都是“学有所获”,我们共同来对今天的学习活动作一个总结与回顾。通过本节课的学习,你有哪些收获?
七、课后作业,拓展视野
1.必做题:阅读课本第72页“阅读与思考”;完成课本第75页第1题,第76页第5、6题。
2.选做题:课本第74页第10题。
第四篇:北师大版五年级上册数学教案
北师大版五年级上册数学教案
第一单元 倍数与因数
一、单元教学目标
1、使学生经历探索数的有关特征的活动,认识自然数,认识倍数与因数,能找出10以内某个自然数在100以内的全部倍数,能找出100以内某个自然数的所有因数。知道什么是质数、合数,使学生经历2、5、3的倍数的特征的探索过程,知道的其特征,知道奇数和偶数。
2、使学生经历将一些实际问题抽象为数与代数问题的过程,发展学生的抽象思维。在探索过程中,发展实践能力与创新精神。能综合运用所学的知识和技能解决问题,发展应用意识。
3、在探索活动中,体会观察、分析、归纳、猜想、验证等过程,体验数学问题的探索性和挑战性。积极参与数学学习活动,对数学有好奇心与求知欲。形成质疑和独立思考的习惯。
二、单元教学重点
因数与倍数;2,5,3的倍数的特征;奇数与偶数;质数与合数。
三、单元教学难点
在探索过程中,能根据解决问题的需要,收集有关信息,进行分析、归纳、发现数的特征。
四、单元课时划分 9课时
第 1 课时
[教学内容] 数的世界(第2-3页)[教学目标]
1、结合具体情境,认识自然数和整数,联系乘法认识倍数和因数。
2、探索找一个数的倍数的方法,能在1-100的自然数中,找出10以内某个自然数的所有倍数。
[教学重、难点] 探索找一个数的倍数的方法,能在1-100的自然数中,找出10以内某个自然数的所有倍数。[教学过程]
一、数的世界
创设“水果店”的情境,呈现了生活中的数有自然数、负数、小数。在比较中认识自然数、整数,使对数的认识进一步系统化。
先让学生观察情境图,说说图中有哪些数,并给它们分类。
学生汇报观察结果,通过比较认识自然数、整数,使学生对数的认识进一步系统化。
二、因数与倍数
1、在解决书上提出的问题的过程中引出算式。5×4=20(元)
以这个乘法算式为例说明倍数和因数的含义,即20是4的倍数,20也是5的倍数,4是20的因数,5也是20的因数。引导学生认识倍数与因数,体会倍数与因数的含义。
在利用乘法算式说明倍数和因数的含义的基础上,出示一个除法算式,如:18÷6=3 启发学生思考:根据整数除法算式能不能确定两个数之间的倍数关系。说明:在研究倍数和因数,范围限制为不是零的自然数。
2、你写我说
让学生同桌间互相写算式,再说一说。算式可以是乘法算式,也可以是除法算式。
三、找一找
1、判断题目中给的数是不是7的倍数
先让学生用自己的方法判断,再组织学生交流,使学生逐步体会可以通过想乘法算式或除法算式的方法来判断。
2、找7的倍数:
引导学生体会一般可以用想乘法算式的方法来找一个数的倍数,要注意引导学生有序思考,并逐步让学生领会一个数的倍数的个数是无限的。
四、练一练:
第2题:先让学生自己找一找4的倍数和6的倍数,并用不同的符号做好记号。然后组织学生交流,并让学生说说找倍数的方法。最后,说说哪几个数既是4的倍数有是6的倍数。
第3题:先让学生独立写一写,再组织学生交流各自的方法,并在交流比较的过
程中体会怎样做到不重复、不遗漏。体会到像这样找一个数的倍数,一般用乘法想比较方便。[板书设计] 倍数与因数
像0、1、2、3、4、5、…这样的数是自然数。
像-
3、-
2、-1、0、1、2、…这样的数是整数。5×4=20(元)20是4和5的倍数
4和5是20的因数
第 2课时
[教学内容] 2、5的倍数特征(第4-5页)[教学目标]
1、经历探索2、5倍数的特征的过程,理解2、5倍数的特征,能判断一个数是不是2或5的倍数。
2、知道奇数、偶数的含义,能判断一个数是奇数或是偶数。
3、在观察、猜测和讨论过程中,提高探究问题的能力。
[教学重、难点] 在观察、猜测和讨论过程中,提高探究问题的能力。[教学过程]
一、5的倍数的特征的探究
让学生在100以内的数表中找出5的倍数,用自己的方式做记号,并观察、思考5的倍数有什么特征。在此基础上组织学生交流。
引导学生归纳5的倍数的特征:个位上是0或5的数是5的倍数。试一试:尝试用5的倍数特征来判断一个数是不是5的倍数。
二、2的倍数的特征的探究
让学生在100以内的数表中找出2的倍数,用自己的方式做记号,并观察、思考2的倍数有什么特征。在此基础上组织学生交流。
引导学生归纳2的倍数的特征:个位上是0、2、4、6、8的数是2的倍数。
三、奇数、偶数
在学生理解2的倍数的特征后再揭示偶数、奇数的含义,并进行你问我答的判断练习。
四、练一练:
第2题:引导学生先独立思考,然后组织学生交流自己的思考方法。在引导学生判断时,应根据2、5的倍数特征说明理由。如“因为85不是2的倍数,所以不能正好装完”;又如:“因为85是5的倍数,所以能正好装完。”
五、数学游戏:
这是围绕“
2、5的倍数的特征”设计的数学游戏,通过游戏加深学生对2、5的倍数的特征的理解。[板书设计] 2、5的倍数的特征
5的倍数的特征:个位上是0或5的数是5的倍数。
2的倍数的特征:个位上是0、2、4、6、8的数是2的倍数。
是2 的倍数的数叫偶数。
不是2 的倍数的数叫奇数。
第3课时
[教学内容] 3的倍数特征(第6-7页)[教学目标]
1、经历探索3倍数的特征的过程,理解3倍数的特征,能判断一个数是不是3的倍数。
2、发展分析、比较、猜测、验证的能力。
[教学重、难点] 发展分析、比较、猜测、验证的能力。[教学过程]
一、3的倍数的特征的猜想
我们研究了2、5的倍数的特征,那么3的倍数有什么特征呢?引导学生提出猜想。学生可能会猜想:个位上能被3整除的数能被3整除等,老师引导学生进行讨论、研究。
二、3的倍数的特征的探究
让学生在100以内的数表中找出3的倍数,用自己的方式做记号,并观察、思考3的倍数有什么特征。在此基础上引导学生将3的倍数每个数位的各个数字加起来再观察,逐步引导学生发现规律,从而归纳出3的倍数的特征。
引导学生归纳3的倍数的特征:每个数位的各个数字加起来是3的倍数。试一试:尝试用3的倍数特征来判断一个数是不是3的倍数。
三、练一练: 第2题:
让学生准备几张卡片:3、0、4、5 边摆边想,再交流讨论思考的过程。(1)30、45、54(2)30、54(3)30、45(4)30
四、实践活动:
让学生运用研究3的倍数的特征的方法去研究9的倍数。让学生经历涂、画、想等过程,使学生获得真实的体验。[板书设计] 3的倍数的特征
3的倍数的特征:这个数各位数字之和是3的倍数。
第4课时
[教学内容] 找因数(第8-9页)[教学目标]
1、用小正方形拼长方形的活动中,体会找一个数的因数的方法,提高有条理思考的习惯和能力。
2、在1-100的自然数中,能找到某个自然数的所有因数。
[教学重、难点] 用小正方形拼长方形的活动中,体会找一个数的因数的方法,提高有条理思考的习惯和能力。
[教学准备] 学生、老师小正方形若干个。[教学过程]
六、动手拼长方形
用12个小正方形拼成长方形有几种拼法。让学生自己先尝试着拼一拼,再交流不同的拼法。
学生一般会用乘法思路思考:哪两个数相乘等于12?然后找出:
1×12、2×6、3×4。这种思路就是找一个数的因数的基本方法,要引导学生关注有序思考,并体会一个数的因数个数是有限的。
七、试一试
找因数的基本练习:找9和15的因数。让学生独立完成,注意引导学生有序思考。
八、练一练:
第2题:先让学生自己找一找18的因数和21的因数,并用不同的符号做好记号,然后让学生说说找因数的方法。最后,说说哪几个数既是18的因数,又是21的因数。
第3题:利用数形结合,进一步体会找因数的方法。
第5题:可以引导学生用找因数的方法进行思考,鼓励学生将想到的排列方法列出来,在交流的基础上,使学生经历有条理的思考过程。48=1×48=2×24=3×16=4×12=6×8,48有10个因数,就有10种排法。如每行12人,排4行;每行4人,排12行等。37只有两个因数,只有两种排法。[板书设计] 找因数
面积是12 的长方形有:6种 1×12=12 2×6=12 图形 3×4=12 第5课时
[教学内容] 找质数(第10-11页)[教学目标]
1、用小正方形拼长方形的活动中,经历探索质数与合数的过程,理解质数和合数的意义。
2、能正确判断质数和合数。
3、在研究质数的过程中丰富对数学发展的认识,感受数学文化的魅力。[教学重、难点]
1、用小正方形拼长方形的活动中,经历探索质数与合数的过程,理解质数和合数的意义。
2、能正确判断质数和合数。
[教学准备] 学生、老师小正方形若干个。[教学过程]
一、动手拼长方形,揭示质数、合数的意义
1、用小正方形拼成长方形有几种拼法。让学生自己先尝试着拼一拼,边拼边填写书上的表格。
2、引导学生观察并提出问题:“这些小正方形有的只能拼成一种长方形,有的能拼成两种或两种以上的长方形,为什么?”
3、揭示质数、合数的意义
组织学生观察、比较、分析逐步发现特征,并把几个自然数分类,揭示质数和合数的意义。
从概念出发理解“1既不是质数,也不是合数。”
二、讨论判断质数、合数的方法。
1、尝试判断:2、8、9、13、51、37、91、52 是质数还是合数 先让学生独立判断,再组织交流“怎样判断一个数是质数还是合数”
2、归纳方法:
只要找到一个1和本身以外的因数,这个数就是合数。如果除了1 和它本身找不到其他的因数,这个数就是质数。
三、探索活动:
第1题:
用“筛法”找100以内的质数。引导学生有步骤、有目的地操作、观察和交流,找出100以内的质数。
介绍这种方法是两千多年前希腊数学家提出的研究质数的方法,称为“筛法”。现在随着计算机的发展,这种操作方法可以编成程序让计算机进行操作。这样,可以使学生了解数学发展的历史,感受到数学文化的魅力,丰富学生对数学发展的认识,激起学生探究知识的欲望和兴趣。
第2题:
本题引导学生通过操作、观察,探索规律。
第(1)、(2)题,学生会发现这些质数都分布在第1列和第5列,为什么? 引导观察:因为2,4,6列除2外,其他数都是2的倍数,这些数除1和本身外还有2这个因数,所以不是质数。第3列的数除1和本身外还有3这个因数,所以不是质数。第(3)题理由:用6除一个大于6的自然数,如果余数是0、2、4,这个数肯定是2的倍数;如果余数是3,这个数肯定是3的倍数。[板书设计] 找质数
拼长方形表格 一个数除了1和它本身以外还有别的因数,这个数就叫合数。一个数只有1 和它本身两个因数,这个数叫做质数。
1既不是质数,也不是合数。
第6课时
[教学内容] 练习一(第12-13页)[教学目标]
1、复习找倍数和因数的方法。
2、能正确判断质数和合数、奇数和偶数。
3、应用所学知识解决实际问题。[教学重、难点]
1、复习找倍数和因数的方法。
2、能正确判断质数和合数。
3、应用所学知识解决实际问题。[教学过程] 第1题:
先让学生找15的因数和倍数,交流找因数和倍数的方法。在此基础上,还可以引导学生观察15的最大因数是几,15最小的倍数是几。第2题:
可以让学生先列出9的倍数(54以内):9、18、27、36、45、54。再列出54的所有因数:1、2、3、6、9、18、27、54。然后再回答问题。有4种可能:9、18、27、54。第3题:
要引导学生交流一下判断的方法。如果学生有困难,可以分层次进行,先判断奇数和偶数,再填质数和合数。第4题:
本题是对本单元所学概念的理解巩固与综合运用。第1项结论是5,第2项结论是13和2,第3项结论是36或92。在完成本题的基础上,教师还可以引导学生运用本单元的知识自己编一些这样的题,促进学生对概念的理解。第5题:
先让学生解决第1个问题,并交流是如何思考的,一般可以从每盒瓶数是不是90的因数考虑,也可以用除法来解决,6、5、3都是90的因数,能正好装完。8不是90的因数,不能正好装完。第2问是引导学生思考90还有哪些因数,同时还要联系生活实际,如每盒2瓶、9瓶、10瓶等都较合理,每盒90瓶就不太合理。第6题:
本为思考题,主要是引导学生探索、研究“3个连续的自然数组成的数一定是3的倍数”的规律。
第7课时
[教学内容] 数的奇偶性(第14-15页)[教学目标]
1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。[教学重、难点]
1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。[教学过程] 活动1:利用数的奇偶性解决一些简单的实际问题。
让学生尝试解决问题,寻找解决问题的策略,利用解决问题的策略发现规律,教师适当进行“列表”“画示意图”等解决问题策略的指导。试一试:
本题是让学生应用上述活动中解决问题的策略尝试自己解决问题,最后的结果是:翻动10次,杯口朝上;翻动19次,杯口朝下。解决问题后,让学生以“硬币”为题材,自己提出问题、解决问题,还可以开展游戏活动。活动2:探索奇数、偶数相加的规律
先研究“偶数+偶数”的规律,在经历“列式计算—初步得出结论—举例验证—得出结论”的过程后,再引导学生用这样的研究方式探索“奇数+奇数”“奇数+偶数”的奇偶性变化规律,最后让学生应用结论判断计算结果是奇数还是偶数。还可以引导学生研究减法中奇偶性的变化规律。[板书设计] 数的奇偶性
例子: 结论:
+ 34 = 48 偶数+偶数=偶数+ 37 =48 奇数+奇数=偶数 12 + 11 =23 奇数+偶数=奇数
.第4课时
教学内容:找因数 教学目标:
1、在用小正方形拼长方形的活动中,体会找一个数的因数的方法,提高有条理思考的习惯和能力。
2、在1到100的自然数中,能找出一个自然数的所有因数。教学重点:找因数的方法 教学难点:找因数的方法。教学过程:
一、探究
活动:用小正方形拼长方形
思考:用12个小正方形拼成一个长方形,有哪几种拼法? 引导学生在方格纸上画一画,并写出乘法算式。组织学生讨论交流。
小结:找一个数的因数的方法 分别找出9和15的全部因数。
说一说下面的数各有几个因数:1 19 4 32 11 反馈:
小结:用“想乘法算式”找一个数的因数的方法。強调学生要有思考,知道一个数的因数的个数是有限的。巩固 填空
看誰找得快 课本第5题 总结 作业
第5课时
教学内容:找质数 教学目标:
1、在用小正方形拼长方形的活动中,经历探索质数与合数的过程,理解质数和合数的意义。
2、能正确判断质数与合数。
3、在研究质数的过程中丰富对数学发展的认识,感受数学文化的魅力。教学重点: 质数、合数的理解 教学难点:找质数的方法 教学过程: 铺垫
1、找出以下各数的所有因数1、3、6、12、7、15、23
2、根据以上各数的特点分类
一、新授
1、观察讨论:
只有一个因数 1 只有1和本身的 3、7、23 有两个以上因数的 6、12、15
2、学生自学课本:什么是质数,什么是合数,3、讨论交流
二、巩固
1、判断下列各数哪些是质数哪些是合数? 2、9、14、3、18、25、5、16、19(交流是怎样判断的)
2、完成书本练习第一题
3、指名说说你的学号是质数还是合数
三、总结 作业
第6课时
教学内容:练习一 教学目标:
通过练习使学生进一步理解倍数、因数、质数、合数、等概念。通过练习使学生较熟练掌握判断质数合数的方法,会求一个数的倍数。能提高学生应用知识和解决实际问题的能力。教学过程:
一、找出15的全部因数和100以内15的全部奇倍数。
一个数既是9的倍数,又是54的因数,这个数可能是多少?先学生思考然后再交流讨论。
二、分一分 1、10、12、25、37、54、102、417、23、398 奇数
合数
质数
偶数
4、猜一猜
练习一第4题(同桌讨论)
5、应用
练习一第5题 先让学生解决第一个问题,并交流是如何思考的。
6、作业
第7课时
教学内容:数的奇偶性 教学目标:
尝试运用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。
经历探索 加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性的变化规侓在活动中体验研究的方法,提高推理能力。教学重点: 找解决问题的方法.教学过程:
一、让学生感受生活中的奇偶性
指名学生演示:学生先站在教室前面,再从前面走到教室后面,这样来回走.请问:走4次后,这位学生在哪里?走15次后这位学生在哪里? 学生交流:你是怎样想的?
老师进行解决问题方法的指导:列表或画图。
二、应用奇偶性解决实际问题
指名回答活动的两个问题,说说是怎样思考的? 试一试:翻动杯子,判断杯子口的方向。
你能提出生活中存在的类似问题,同桌互想交流。
三、奇偶数相加的规律
让学生观观察下面两组数,各有什么特点?
(1)80 12 20 6 18 34 16 52(2)11 21 37 87 101 25 3 49 试一试
小结: 偶数加偶数 奇数加奇数 偶数加奇数
判断:让学生交流判断的思路
四、总结 作业
第8课时
教学内容:比较图形的面积 教学目标:
借助方格纸,能直接判断图形面积的大小。通过交流,知道比较图形面积大小的基本方法。体验图形形状的变化与面积大小变化的关系。教学重点:面积大小比较的方法。教学难点:图形的等积变换。教学过程:
一、新课教学
比较图形面积大小的方法
让学生观察方格中各种形状的平面图:
提问:下面各图形的面积有什么关系?你是怎样知道的?同学进行交流。
二、归纳比较的方法:(1)平移(2)分割(3)数方格 你还有什么发现?与同学进行交流
三、练习
用分割和平移法来判断
根据自已的理解画图形,只要面积是否120平方厘米都可以。让学生讨论观察补哪块图形好。
四、作业 课堂作业
课外作业:17页 第4、5题。
第9课时
教学内容:地毯上的图形面积 教学目标:
能直接在方格图上,数出相关图形的面积。
能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。
在解决问题的过程中,体会策略、方法的多样性。教学过程:
一、出示图形,让学生观察讨论:地毯上的图形面积是多少? 图形有什么特点?
求地毯上蓝色部分的面积有哪些方法? 小组讨论
求积的方法:(1)数格(2)大面积减小面积(3)分割数格
二、练一练
求下列图形的面积:你是用什么方法知道每个图形的面积?(讨论)下列点图上的面积是多少?请学生说如何分割?为什么怎样分割? 总结:求这类图形的面积有哪些方法?应注意什么?
三、作业
第10课时
教学内容:平行四边形面积的计算 教学要求:
1.使学生理解并掌握平行四边形面积的计算公式,能正确地计算平行四边形的面积。
2.通过操作,进一步发展学生思维能力。培养学生运用转化的方法解决实际问题的能力发展学生的空间观念。
3.引导学生运用转化的思想探索规律。
教学重点:理解并掌握平行四边形面积的计算公式。
教学难点:理解平行四边形面积计算公式的推导过程。教学过程:
一、激发
1.提问:怎样计算长方形面积? 板书:长方形面积=长×宽
2.口算出下面各长方形的面积。
(1)长1.2厘米,宽3厘米。(2)长0.5米,宽0.4米。
3.出示方格纸上画的平行四边形,提问:这是什么图形?什么叫平行四边形?指出它的底和高。
4.揭题:我们已经学会了长方形面积的计算,平行四边形的面积该怎样计算呢?这节课我们就学习“平行四边形面积的计算(板书课题:平行四边形面积的计算)
二、尝试
1.用数方格的方法计算平行四边形面积。(1)请大家打开书自学
(2)指名到投影上数。边数边讲解:我先数……,它是……平方厘米;再数……,它是……平方厘米;两部分合起来是……平方厘米。
(3)投影出示长方形。提问:数一数,这个长方形的长是多少?宽是多少?怎样计算它的面积。
(4)观察比较两个图形的关系,提问:你发现了什么? 引导学生明确:平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。
2.通过操作,将平行四边形转化成长方形。(1)自由剪、拼,进一步感知。
①每个平行四边形只准剪一下,试一试被剪下的两部分能拼成已学过的什么图形?学生自己剪、拼。
②互相讨论。提问:你发现了什么规律? 通过操作讨论得出:只有沿着平行四边形的高剪开,才能拼成一个我们会计算的图形——长方形。这种剪法最简便。(2)揭示转化规律
任何一个平行四边形都可以转化成一个长方形,在转化的过程中,怎样按照一定的规律来做呢?(教师边演示边讲述)
①沿着平行四边形的高剪下左边的直角三角形。(出示剪刀,闪动被剪掉的部分)。②左手按住右手的梯形,右手抽拉剪下的直角三角形,沿着底边慢慢向右移动,直到两斜边重合为止。这样就得到一个长方形。③学生根据刚才的演示模仿操作,体会平移的过程。3.归纳总结公式
(1)比较变化前的两个图形,提问:你发现了什么?互相讨论,汇报讨论结果。根据讨论结果完成填空。
引导学生明确:你发现了什么?互相讨论,汇报讨论结果。
①平行四边形转化为长方形后,面积没有改变。即长方形面积等于平行四边形面积。(同时板书)②这个长方形的长、宽分别与平行四边形的底、高相等。(同时板书)(2)根据这些关系,你认为平行四边形的面积计算公式怎样推导出来?强化理解推导过程。
板书:平行四边形的面积=底×高 4.教学字母公式
(1)介绍每个字母所表示的意义及读法。板书S=a×h(2)说明在含有字母的式子里,字母和字母中间的乘号可以记作“·”,也可以省略不写。所以平行四边形面积的计算公式可以写成“S=a·h或“S=ah”。(同时板书)(3)提问:计算平行四边形面积,需要知道哪些条件?
三、应用
1.一块平行四边形钢板(如下图),它的面积是多少?(得数保留整数)3.5厘米 4.8厘米
①读题,理解题意。
②学生试做,指名板演。提醒学生注意得数保留整数。③订正。提问:根据什么这样列式? 订正时提问:计算时注意哪些问题? 3.填空
任意一个平行四边形都可以转化成一个(),它的面积与原平行四边形的面积()。这个长方形的长与原平行四边形的()相等。这个长方形的()与原平行四边形的()相等。因为长方形的面积等于(),所以平行四边形的面积等于()。4.判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等()(2)平行四边形底越长,它的面积就越大()
5.你能求出下列图形的面积吗?如果能,请计算出面积。(单位:厘米)16 20 15 20
四、体验
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
五、作业
第11课时
教学内容:平行四边形面积计算的练习(P.74~75页练习十七第4~9题。)教学要求:
1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。2.养成良好的审题习惯。
教学重点:运用所学知识解答有关平行四边形面积的应用题。教学过程:
一、基本练习1.口算。
4.9÷0.7 5.4+2.6 4×0.25 0.87-0.49 530+270 3.5×0.2 542-98 6÷12 2.平行四边形的面积是什么?它是怎样推导出来的? 3.口算下面各平行四边形的面积。⑴底12米,高7米; ⑵高13分米,第6分米; ⑶底2.5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
⑴生独立列式解答,集体订正。
⑵如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?①必须知道哪两个条件? ②生独立列式,集体讲评:
先求这块地的面积:250×780÷10000=1.95公顷, 再求共收小麦多少千克:7000×1.95=13650千克
⑶如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?
与⑵比较,从数量关系上看,什么相同?什么不同? 讨论归纳后,生自己列式解答:58500÷(250×78÷1000)
⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.练习:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少? 1.6厘米 2.5厘米
⑴你能找出图中的两个平行四边形吗? ⑵他们的面积相等吗?为什么? ⑶生计算每个平行四边形的面积。
⑷你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)3.已知一个平行四边形的面积和底,(如图),求高。28平方米 7米
分析与解:因为平行四边形的面积=底×高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习
四、作业
第12课时
教学内容:三角形面积的计算
教学要求:
1.使学生理解并掌握三角形面积的计算公式。能正确地计算三角形的面积。
2.通过操作,培养学生的分析推理能力。培养学生应用所学知识解决实际问题的能力,发展学生的空间概念。3.引导学生运用转化的方法探索规律。
教学重点:理解并掌握三角形面积的计算公式。教学难点:理解三角形面积计算公式的推导过程。教学过程:
一、激发
1.出示平行四边形
1.5厘米
2厘米 提问:
(1)这是什么图形?计算平行四边形的面积我们学过哪些方法?(板书:平行四边形面积=底×高)
(2)底是2厘米,高是1.5厘米,求它的面积。(3)平行四边形面积的计算公式是怎样推导的? 2.出示三角形。三角形按角可以分为哪几种? 3.既然长方形、正方形、平行四边形都可以用数方格的方法或利用公式计算的方法,求它们的面积,三角形面积可以用哪些计算方法呢?(揭示课题:三角形面积的计算)
二、尝试
1.用数方格的方法求三角形的面积。
(1)看书
(2)订正数的结果。
(3)如果不数方格,怎样计算三角形的面积,能不能像平行四边形那样,找出一个公式来?(4)三角形与平行四边形不同,按角可以分为三种,是不是都可以转化成我们学
过的图形。我们分别验证一下。2.用直角三角形推导。
(1)用两个完全一样的直角三角形可以拼成哪些图形?学生自由拼图。(2)拼成的这些图形中,哪几个图形的面积我们不会计算?(3)利用拼成的长方形和平行四边形,怎样求三角形面积?(4)小结:通过刚才的实验,想一想,每个直角三角形的面积与拼成图形的面积有什么关系? 引导学生得出:每个直角三角形的面积等于拼成的平行四边形面积的的一半。3.用锐角三角形推导。
(1)两个完全一样的锐角三角形能拼成平行四边形吗?学生试拼。提问:你发现了什么? 引导学生得出:两个完全一样的锐角三角形也可以拼成平行四边形。
(2)刚才同学们都把两个完全一样的锐角三角形,拼成了平行四边形,在转化的过程中,怎样按照一定的规律来做呢?(教师边演示边讲述边提问)①把两个锐角三角形重叠放置。
提问:怎样操作才能拼成一个平行四边形?直接把一个三角形向左或向右平移,能拼成一个平行四边形吗? ②怎样才能使上面的三角形倒过来,使它原来的底在上面,底所对的顶点在下面?我们用旋转的方法,按住三角形右边的顶点不动,使三角形向逆时针方向转动180度,(也可以左边顶点不动,顺时针转动180度)直到两个三角形的底成一条直线为止。
③再把右边的三角形向上沿着第一个三角形的右边平移,直到拼成一个平行四边形为止。
(3)教师带着学生规范地操作。
重点指导:哪点不动?哪点动?旋转多少度?怎样平移?转化的过程中旋转和平移有什么不同?(平移时各个点沿着直线移动,旋转时一个点不动,其它点都绕着不动点转动。)(4)对照拼成的图形,你发现了什么? 引导学生得出:每个锐角三角形的面积等于拼成的平行四边形面积的一半。
板书:
面积= 面积的一半
(5)练习
①两个完全一样的钝角三角形能用刚才的方法来拼吗?学生实验,教师巡回指导。②通过刚才的操作,你又发现了什么? 引导学生得出:每个钝角三角形的面积等于拼成的平行四边形面积的面积的一半。
面积= 面积的一半
4.归纳、总结公式。
(1)通过以上三个实验,同学们互相讨论一下,你发现了什么规律?(2)汇报结果。引导学生明确:
①两个完全一样的三角形都可以拼成一个平行四边形。②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)
③这个平行四边形的底等于三角形的底。(同时板书)④这个平行四边形的高等于三角形的高。(同时板书)
(3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)
板书:三角形面积=底×高÷2(4)完成书空。5.教学字母公式。(1)学生看书。
(2)提问:通过看书,你知道了什么? 引导学生回答:如果用S表示三角形面积,a和h分别表示三角形的底和高,三角形的面积公式也可以用字母表示为:
S=ah÷2。(板书)
三、应用
1.教学例题:一种零件有一面是三角形,三角形的底是5.6厘米,高是4厘米。这个三角形的面积是多少平方厘米? ①读题。理解题意。②学生试做。指名板演。
③订正。提问:计算三角形面积为什么要“除以2”? 2.做一做。
订正时提问:计算时应注意哪些问题? 3.填空。
两个完全一样的三角形可以拼成一个(),这个平行四边形的底等于(),这个平行四边形的高等于()。因为每个三角形的面积等于拼成的平行四边形的面积的(),所以()。4.练习。
5.利用公式求方格上的三角形的面积。
四、体验
今天有何收获?怎样求三角形的面积?三角形面积的计算公式是怎样推导的?
五、作业
第13课时
教学内容:三角形面积计算的练习教学要求:
1.是学生比较熟练地应用三角形面积计算公式计算三角形的面积。2.能运用公式解答有关的实际问题。
3.养成良好的审题、检验的习惯,提供正确率。
教学重点:运用所学知识,正确解答有关三角形面积的应用题。教具准备:投影 教学过程:
一、基本练习1.填空。
⑴三角形的面积=,用字母表示是。为什么公式中有一个“÷2”?
⑵一个三角形与一个平行四边形等底等高,平行四边形的底是2.8米,高是1.5米。三角形的面积是()平方米,平行四边形的面积是()平方米。
二、指导练习
1.练习:下图中哪个三角形的面积与涂颜色的三角形的面积相等?为什么?你能在途中再画出一个与涂颜色的三角形面积相等的三角形吗?试试看。
⑴生用尺量一量这两条虚线间的距离,搞清这两条虚线是什么关系? ⑵看看图中哪个三角形的面积与涂了色的三角形面积相等?为什么?
⑶分组讨论如何在图中画出一个与涂了颜色的三角形面积相等的三角形,并试着画出来
2.练习:一张边长4厘米的正方形纸, 从一边的中点到邻边的中点连一条线段,沿这条线段剪去一个角,剩下的面积是多少? 分析与解:先求出原正方形的面积,再求出剪去的小三角形的面积,然后求出剩下部分的面积。因为剪去的是正方形的一个角,所以是个直角三角形,它的两条直角边都是正方形边长的一半,所以剪去的面积是2×2÷2=2平方厘米。3.练习:一块三角形土地,底是421米,高是58米。估算一下它的面积是多少平方米,大约是多少公顷。
分析与解:课先取三角形的底和高的近似数400米和60米,再算出这块三角形土地的面积约是:400×60÷2=12000(平方米)=1.2公顷。
三、课堂练习练习。(分组完成)
四、作业
第14课时
教学内容:梯形面积的计算(教学目标:
1.使学生理解并掌握梯形面积的计算公式,能正确地应用公式进行计算。
2.通过操作,培养学生的迁移类推能力和抽象概括能力。
3.培养学生应用所学知识解决实际问题的能力,发展空间观念,引导学生运用转化的思想探索规律。
教学重点:理解并掌握梯形的面积计算公式。教学难点:理解梯形面积计算公式的推导过程。教具准备:
1.两个完全一样的梯形纸板和剪刀。
2.20根同样的铅笔和渠道模型。教学过程:
一、激发
1.计算下面图形的面积。(单位:厘米)1.8 2.1 2.5 3.2 2.三角形面积的计算公式是怎样推导出来的?为什么要“除以2”?
3厘米
3.指出下面梯形的上底、下底和高。
4.导入:我们已经掌握了平行四边形、4厘米 三角形的面积计算公式,有了这两
方面的基础,我相信大家一定也能
5厘米
把梯形转化成已经学过的图形,计算出梯形面积。大家有信心吗?
二、尝试
1.你能仿照求三角形面积的方法,用两个完全一样的梯形推导出梯形面积的计算公式吗?拼拼看。
2.学生操作,互相讨论。
3.根据讨论结果,完成80页书空,并计算出复习(3)的面积。
4.汇报结果。提问:通过刚才的学习,你知道了什么? 引导学生明确:
①操作过程。先按住梯形右下角的顶点,再使一个梯形向逆时针方向旋转180度,使梯形的上下底成一条直线,然后把第一个梯形的左边沿着第二个梯形的右边平行移动,直到成一个平行四边形为止。②两个完全一样的梯形能拼成一个平行四边形。
③这个平行四边形的底等于梯形的上、下底之和,高等于梯形的高,每个梯形的面积等于拼成的平行四边形面积的一半。因为:平行四边形的面积:底×高
所以:梯形面积:(上底+下底)×高÷2(板书)强化理解推导过程。
④计算过程中“3+5”表示上、下底之和,它等于拼成的平行四边形的底,所以计算时要加上小括号。
每个梯形的面积等于拼成的平行四边形面积的一半,所以计算中要加上“除以2”? ⑤想一想:如果是两个完全一样的直角梯形,能拼成什么图形? 学生口述,教师点拨:两个完全一样的直角梯形能拼成一个长方形,而长方形是平行四边形的特殊形式。4.字母公式。
(1)学生看书
(2)提问:通过看书,你知道了什么? 引导学生知道:如果用S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形面积的计算公式可以表示为: S=(a+b)h÷2(板书)(3)要求梯形的面积必须知道哪些条件?为什么要“除以2”?
5.小结:梯形面积的计算公式是怎样推导的?用字母怎样表示梯形的面积公式?
三、应用
1.出示例题:一条新挖的渠道,横截面是梯形(如图),渠口宽2.8米,渠底宽 1.4米,渠深1.2米。它的横截面的面积是多少平方米? ①拿出渠道模型,认识横截面。使学生明白横截面是一个平面。②生试做。
③订正。提问:你是怎样想的?为什么要“除以2”。
2.做一做。①学生试做。
②订正。提问:计算时应注意哪些问题? 3.判断。
(1)平行四边形面积是梯形面积的2倍。()(2)两个面积相等的梯形能拼成一个平行四边形。4.练习
(1)让学生用铅笔代替圆木或钢管摆成图中的形状。(2)根据公式求出总根数,说一说是什么道理。
使学生体会到:把另外一堆同样形状的钢管倒过来,同原来的一堆摆在一起,每层的根数就变成同样多,即都等于上、下底根数之和,这个和乘以层数得到的根数正好是原来一堆根数的2倍。5.练习
四、体验
今天学会了什么?怎样计算梯形的面积?梯形面积的计算公式是怎样推导出来的?
五、作业
第15课时
练习内容:梯形面积的巩固练习。
练习要求:使学生进一步掌握梯形面积的计算公式,能正确、熟练地计算梯形的面积。
练习重点:应用所学的知识解决一些实际问题。练习过程:
一、基本练习
1.口算:练习十八第5题。根据学生情况,限时做在课本上,集体订正。7.2÷0.12 2.4÷0.3 0.2×12.6×5
0.38×1000 0.8×25 26.1-3.5-7.5 3.8+2.5+6.2 10÷2.5 4.8×0.2+5.2×0.2 2.看图思考并回答。
(1)怎样计算梯形的面积?(2)梯形面积的计算公式是怎样推导出来的?(3)右图所示梯形的面积是多少?
二、指导练习
1.练习
(1)名数的改写方法是什么?根据学生的回答板书: 除以它们之间的进率
低级单位 高级单位 乘它们之间的进率
(2)根据改写的方法将第6题的结果填在课本上。3.6公顷=()平方米 1200平方米=()公顷 4平方千米=()公顷 52公顷=()平方千米 160平方厘米=()平方分米=()平方米 0.25平方米=()平方分米=()平方厘米(3)集体订正时让学生讲一讲自己的想法。
2.练习:科技小组制作飞机模型,机翼的平面图是两个完全相同的梯形制成的(如图)。它的面积是多少?
(1)生独立审题,分小组讨论解法。(2)选代表列出解答算式,不计算。(3)由学生讲所列算式的想法,(4)指导学生讲“(100+48)×250”为什么不除以2?(5)学生计算出它的面积,集体订正。
三、课堂练习
1.练习:根据表中所给的数值算出每种渠道横截面的面积。
渠口宽(米)3.1 1.8 2.0 2.0 渠底宽(米)1.5 1.2 1.0 0.8 渠深(米)0.8 0.8 0.5 0.6 横截面面积(平方米)
生独立解答出结果并填在课本上,集体订正。
2.练习一个果园的形状是梯形。它的上底是180米,下底是160米,高是50米。如果每棵果树占地10平方米,这个果园有多少平方米?
四、作业
第16课时
练习内容:混合练习
练习要求:使学生进一步掌握平行四边形、三角形和梯形的面积公式,能正确、熟练地计算它们的面积。
练习重点:正确运用公式计算所学的图形的面积。教具准备:投影 教学过程:
一、基本练习
1.回答下列各图面积地计算公式和字母公式。长方形 长×宽 ab 正方形 边长×边长 a2 平行四边形 底×高 ah 三角形 底×高÷2 ah÷2 梯形(上底+下底)×高÷2(a+b)h÷2 2.平行四边形、三角形、梯形的面积公式是怎样推导出来的?
二、指导练习
1. 练习:计算下面每个图形的面积。
3米 8米 12米
5.6米 9.5米 12米 5厘米 5.4 分 5.8厘米 5.2厘米 米
3分米 5厘米 7厘米
⑴独立审题,计算每个图形的面积。
⑵师巡视,看同学们在计算书三角形和梯形的的面积时是否注意了“除以2” ⑶指6名学生板演,集体订正。
2.练习。生独立审题并计算出三角形的面积,注意单位的换算。
三、课堂练习
四、攻破难题
1.16题:一个鱼塘的形状是梯形,它的上底长21米,下底长45米,面积是759平方米。它的高是多少? 分析与解:
⑴已知梯形的面积=(上底+下底)×高÷2 ⑵上底+下底=21+45=66米 ⑶高=759÷66×2=23米 20厘米 2.17题:已知右面梯形的上底 是20厘米,下底是34厘米,其中涂色 部分的面积是340平方厘米。这个梯形 的面积是多少? 34厘米
分析与解:要求梯形的面积,但不知道高。根据阴影部分是三角形,又知道三角形的面积和底,可以求出它的高,也就是梯形的高,再算出梯形的面积。高:340×2÷34=20厘米,面积:(34+20)×20÷2=540平方厘米
3.18题:在下面的梯形中,剪下一个最大的三角形,剩下的是什么图形?剩下的图形的面积是多少平方厘米?
15厘米
12厘米 25厘米
分析与解:以下底为底,一上底上的任意一点为三角形的顶点剪下的三角形都是最大的。因为所有的三角形的底和高都没有变,剩下的图形可能是一个三角形,也可能是两个三角形。
(15+25)×12÷2=240平方厘米 25×12÷2=150平方厘米 240-150=90平方厘米 4.思考题 4厘米
右图中,梯形的面积是72 12平方厘米。请你算出阴影 厘 部分的面积。米
解法一:先算出没有阴影部分 的面积:4×12÷2=24平方厘米,再用梯形的面积减去这个三角形 的面积:72-24=48平方厘米。
解法二:阴影部分是一个三角形,这个三角形的高是12厘米,底与梯形的下底是同一条线段,先算出梯形的下底: 72×2÷12-4=8厘米
再算阴影部分的面积:8×12÷2=48平方厘米。
五、作业
三 分数的再认识 单元目标:
1、结合具体情景与直观操作,体验分数生产的实际背景,进一步理解分数,能正确用分数描述图形或简单的生活现象。
2、认识真分数、假分数,理解分数与除法的关系,能正确进行假分数与带分数、整数的互化。
3、探索分数的基本性质,会进行分数的大小比较。
4、能找出10以内两个自然数的公倍数和最小公倍数,能找出两个自然数的公因数和最大公因数,会正确进行约分和通分。
5、体会分数与现实生活的联系,初步了解分数在实际生活中的应用,提高综合运用数学知识和方法解决具体问题的能力,能运用分数知识解决一些简单的实际问题。
6、能积极参与操作活动,主动地观察、操作、分析和推理,体验数学问题的探索性和挑战性。教学重点:
学习分数的再认识、分数与除法的关系、真分数与假分数、分数的基本性质、公因数与公倍数、约分与通分、分数的大小比较等知识。
第17课时
教学内容:分数的再认识 教学目标:
1、在具体的情境中,进一步认识分数,发展学生的数感,体会数学与生活的密切联系。
2、结合具体的情境,进一步体会“整数”与“部分”的关系。
教学重点:体会一个分数对应的“整体”不同,所表示的具体数量也不同。教学过程:
一、谈话引入,教学新课。
现场组织活动:请两位同学到台前,每人分别从一盒铅笔中拿出1/2,结果两位学生的结果不一样多,一位学生拿出的是4枝,另一位学生拿出的是3枝。师:这里有两盒铅笔,你能从每盒铅笔中分别拿出全部的1/2吗?其他同学注意观察,你发现了什么?
师:你准备怎么拿呢?
生1:我准备把全部的铅笔平均分成2份,拿出其中的一份就是1/2。生2:我准备把全部的铅笔除以2,也就是平均分成2份,其中一份就是1/2。学生活动,一位学生拿出3枝笔,另一个学生拿出4枝笔。师:你发现了什么现象,你有什么疑问,或者说你能提出问题吗?
生:他们拿出的枝数不一样多,一个是3枝,一个是4枝,这是为什么呢? 师:他们两人都是拿全部铅笔的1/2,拿出的铅笔枝数却不一样多,这是为什么呢?请想一想,然后小组交流一下。学生小组交流,再全班反馈。
生:我们认识两盒铅笔的总枝数不一样多。生:有可能数错了。
师:现在大家的意见都认为是总枝数不一样,也就是整体“1”不一样了吗? 学生都表示同意。
师:告诉大家总枝数是多少,1/2是多少枝。生1:全部是8枝,1/2是4枝。生2:全部的铅笔是6枝,1/2是3枝。
师:真的是不一样多,一盒铅笔的1/2表示的都是把一盒铅笔平均分成2份,其中的一份就是1/2。但由于分数所对应的整体不同(也就是总枝数不一样多),所以1/2表示的具体的数量也就不一样。
师:原来分数还有这样一个特点,你对它是不是又有了新的认识?
二、练一练
1、看数学书说一说,小林和小明一样多吗?笑笑和小红一样多吗? 说说理由。
2、画一画,说说画法对吗?为什么?还有别的画法吗?
三、巩固练习:
1、独立完成1、2、3,然后选几题说说思考过程。
2、第4题让学生充分说说自己的想法,必要时可以举例说明。
3、第5、6题独立完成,然后选几题说说思考过程。
四、思考题。
放学后独立完成,课后讲评。
五、课堂作业
第18课时
教学内容:复习分数的再认识和完成作业 教学目标:通过完成作业,巩固分数的再认识 教学过程:
一、复习
(1)出示晓鸿和小明都吃了1/2块蛋糕,谁吃的多? 学生讨论
(2)讲解33页第6、7两题。
本题通过学生填数观察,使学生体会这些分数之间的关系,先让学生填一填,再说说发现了什么。
二、独立完成《数学课堂作业》
三、讲评课堂作业。
第19课时
教学内容:分饼
教学目标:
1、结合具体情景,经历假分数和带分数的产生过程,理解“真分数”“假分数”和“带分数”的意义。
2、能正确读写假分数和带分数,了解带分数和假分数的关系。教学过程
一、直接导入
教师:我们已经学习了分数的意义、分数单位等知识,今天我们将继续学习有关给分数分类的知识.板书:真分数和假分数
二、新课
1. 把下面各分数用直线上的点表示出来.
2.观察直线上各分数.
(1)找出比1小的分数写在 里,找出等于1或比1大的分数写在○里.(2)我们是以什么为标准把直线上的所有分数分成两类(组)的?(以1为标准划分的.)
3.说一说,里的分数为什么比1小,○里的分数与1又是什么关系? 学生:我是从这些分数在直线上的位置看出来的.因为像、、……这些分数在直线上的位置都不到1,所以它们都比1小.而像、、这些分数在直线上的位置都超过了1,所以它们都比1大.、的位置正好就在1上,所以它们与1相等.
学生:我是这样想的,里的分数都是把单位“1”平均分成了若干份,取的份数只是其中的一部分,所以它们都比1小.而像○里的分数也是把单位“1”平均分成若干份,但取的份数已经超过了单位“1”或等于单位“1”,所以它们比1大或等于1. 4.找真分数、假分数的特征.
教师:同学们说得对.实际上我们已经从直线上直观地看出了 里的分数位置都在1的左边(不到1),所以它们都比1小;○里的分数位置有的在1的右边(已经超过1),有的正好在1上,所以它们有的比1大,有的等于1.那么,请同学们仔细观察,看看比1小的分数有什么相同点,比1大的分数或与1相等的分数又有什么相同点?能把你观察结果告诉大家吗? 学生:我发现比1小的分数、,它们的分子都是1.
学生:我不同意他的说法,也比1小,但是,它的分子都不是1.
学生:我发现比1小的这几个分数的分子都比分母小一些.比1大的这几个分数的分子都比分母大一些.
学生:我还发现与1相等的分数的分子、分母同样大.
教师:很好.像这些小于1的分数,它们的分子都比分母小.分子比分母小的分数,我们称它为真分数.所有的真分数都小于1(板书:真分数<1).同学们自己能举出几个真分数吗? 学生:、、、、……
教师:○里的分数我们称它为假分数,谁能像老师说真分数那样把这些假分数的
特点用一句话概括出来?试试看. 学生:分子比分母大的分数叫做假分数.
学生:分子和分母相等的分数也叫做假分数.(提问:能把这两种情况连起来说吗?)
学生:分子比分母大或分子和分母相等的分数,叫做假分数.有的假分数大于1,有的假分数等于1.(板书:假分数≥1)
教师:同学们要特别注意的是假分数有两种情况──一种是分子比分母大(它们都大于1),另一种是分子和分母相等(它们等于1).后一种情况往往容易被忽略.请同学们自己举出几个假分数的例子来.
注意:看看学生举例中有没有等于1的假分数例子,如果没有,则要提醒学生举出这种例子.
5.自学,(1)进一步理解真分数、假分数的概念.(2)提出自学中的问题请同学或老师帮助.
①真分数都小于1,可不可以说小于1的分数一定是真分数呢? ②我看出 这个假分数实际就是2个圆,我可以把 写成2吗? ③真分数、假分数的个数是有限的还是无限的? ④人们划分真分数、假分数的标准是什么?
教师:这个问题提得好!请大家回顾一下,我们把分数分成真分数和假分数两大类的标准是什么?
学生:我知道.我们是以1为标准来划分的(指黑板上的直线),真分数全都比1小;假分数都大于或者等于1.
思考:(1)什么条件下,假分数可以化成整数?(2)把分子是分母的倍数的假分数化成整数的根据是什么?
教师:通过刚才的学习,我们不仅知道了什么叫真分数,什么叫假分数,还知道了把分数分成这两大类的分类标准是1,并且还自己学会了怎样把分子是分母的倍数的假分数化成整数,真是不简单!下面让我们应用所学的知识来进行练习,看看哪些同学记得牢,做得好.
三、课堂练习
1.独立练习练一练1、2、3集体校对
2.判断正误.
(1)小于1的分数是真数.()(2)假分数大1.()(3)假分数大于或等1.()(4)真分数小1.()(5)大于1的分数是假数.()(6)等于1的分数也是假数.()3.教师或学生评价做练习的情况.
四、课堂小结
教师:这节课学到了什么知识?你是怎样学到的?
学生:这节课学的是真分数、假分数的概念.我们采用了探究式的学习方法,通过填写、观察、比较,找出了真假分数的特征.采用这种方法学习知识,我觉得很有趣,也记得牢……
教师:本节课的学习,同学们通过积极、主动地探究,我们较好地掌握了有关真分数、假分数的知识.希望大家不断努力,用适合自己的方法继续探索新的知识.
第20课时
教学内容:分数与除法 教学目标:
1、使学生理解、掌握分数与除法的关系,并能用分数表示两个整数相除的商。
2、运用分数与除法的关系,探索假分数与带分数的互化方法。
3、培养学生动手操作、观察、比较和归纳的能力。
4、培养学生团结合作、关心他人、先人后己等优良品质。教学重点:理解、掌握分数与除法的关系。教学难点:理解分数商a/b(b≠0)的意义。
教学具准备:教学课件及3张完全相同的圆和剪刀。教学过程:
一、设置疑问,揭示课题
1、请同学们计算下面各题,你能把商分为哪几类? 36÷6 = 6
4÷5=0.8
80÷5=16 3÷7=
5÷10=0.5 4÷9= 然后引导学生归纳分类:
36÷6 = 6和80÷5=16的商为整数; 4÷5=0.8和5÷10=0.5的商为有限小数; 3÷7=
和4÷9= 的商为循环小数。
2、师指出:两个自然数相除,不能整除的时候,它们的商可以用分数来表示。今天我们就来学习这部分内容:分数与除法(板书:分数与除法)
二、创设情境,引导探索
1、创设情境,引入关系
师:“六一”儿童节就要到了,今年的儿童节,学校要组织全校师生开展野游活动,到了野外,还要以班级为单位开展联欢活动,前几天我同班主任刘老师对想 要买的食品做了一些粗略的计划,知道买哪些东西了,具体怎么分还没有计算,大家愿意和老师一起做一下详细的计划吗? 生:愿意!
师:好!那我们大家就一起来吧!
师:请看我们班级为这次活动准备的食品:
食品名称
食品数量
班级人数
平均每人分的数量
苹果
40个
40÷47
饮料
39瓶
39÷47 花生
8千克
8÷47 上面表格里的商都不能用整数的商来表示,除了可以用小数来表示,能否用 其它的形式,比如分数来表示呢?等我们学完了这节课,同学们自然会找到答案的。
2.层层深入,感知关系
师:我想调查一下,最近谁要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃? 师:同学们愿意帮***同学分一分蛋糕吗?
生:愿意!
师:出示例题:把一个蛋糕平均分给3个人,平均每人能分得多少?师:这时,应该把什么看作单位“1”? 要把蛋糕平均分成几份? 怎样列式?(指名口述算式)1÷3= 师:大家拿出练习本来计算这个商是多少?(用小数表示)生:0.333…或
课件显示:1÷3=0.333…或
师:这个商用小数表示太麻烦了,能不能用分数来表示呢? 请大家看大屏幕大家看,每人得到这个蛋糕的几分之几? 生:
师:对了!那么上面的算式1÷3的商可以用分数
表示了,即:1÷3=(个)
(2)现在小组讨论:1÷3=
中,你发现整数除法中被除数和除数与得数中的分子、分母存在着什么样的关系?
(3)讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师 出示课件:被除数÷除数=
(4)师:现在大家会用分数表示整数除法的商了,那么,大家能把前面表格中的得数用分数表示吗? 生:会!
师出示: 40÷47=?
39÷47=?
8÷47=? 3.,巩固关系
师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?
生:想!
师:大家看问题:我想把这3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?
①议一议:讨论如何分,有哪些分法?(让同学们充分考虑好后,说说自己的想法)
②剪一剪:想好后各小组可以行动了,请同学们以小组为单位拿出我们事先准备的三个完全一样的圆形和剪刀剪一剪,并把分好的四份摆在桌子上。
③拼一拼:分好后,请同学们每人取一份拼在一起,看看是一个“饼”的几分之几?
④列一列:怎样用算式表示自己分饼的数量关系?谁会列式? ⑤算一算:师指一名同学板演算式:3÷4=(张)
答:每人分得
张。
请板演的同学说一说自己是根据什么这样写的?
⑥如果分别用字母a和b表示除法算式中的被除数和除数,分 数与除法的这种关系怎样表示? 学生回答,师板书:a÷b=(b≠0)
师:大家考虑:这里的a和b是否可以是任何自然数?为什么?
生:不可以,因为这里的b≠0
师:左侧b≠0,那么右侧的b是否可以是0?为什么?
师:讨论完后,教师用红色粉笔标上: b≠0
(引导学生懂得:在除法中,除数不能为零,所以在分数中,分母不能为零)
三、总结提升,归纳关系(师生共同完成)
1、让学生说一说分数与除法的联系:分子相当于除法中的被除数,分母相当于除法中的除数,分数线相当于除法中的除号。
2、判断:“分数就是除法,除法就是分数”这句话对不对?
(最后教师总结:分数与除法既有联系,又有区别,除法是一种运算,而分数是一个数)
四、拓展延伸,发展能力
1、填空:7÷13=
=()÷()
()÷9=
()÷26=
2、用分数表示下面各式的商。
3÷4= 7÷12= 16÷49= 25÷24= 12÷25= 36÷57= 30÷37= 33÷78=
7÷13= 74÷14= 77÷13= 78÷97
3、一个4平方米的圆形花坛分成大小相同的5块,每块是多少平方米?(用分数表示)
4、“六一”联欢的时候,大家都会带好多自己爱吃的食品,你们愿意与同学们共同品尝吗?如果愿意的话,请说说你的打算,并编一道符合这节课学习内容的题目说给大家听听好吗?
五、情感教育,教书育人
同学们,我刚才听了大家的各种打算,感到很欣慰,同学们都打算把自己的好吃的分给大家一起享用,我都盼望着过“六一”儿童节了,到那时,我也会准备一些好吃的礼物与大家一起分享好吗?但愿我们同学在共同的学习和生活中,能互相关心,团结友爱,亲如兄妹,让我们的班级成为一个温暖的班级体!板书设计:
分数与除法 a÷b=
(b≠0)3÷4=(张)答:每人分得
张饼。
第21课时
教学内容:带分数假分数的互化和作业 教学目标:巩固带分数假分数的互化 教学过程:
1.媽媽买了 个蛋糕,即是买了多少个蛋糕?
2.教师可利用以下提问,引导学生作答:分母的2代表什么?(每个蛋糕分为2等份)分子的5代表什么?(占了5份)这个是哪一类型的分数?
它的数值是大于1,还是小于1?(大于1)3.教师出示圆形教案
1个蛋糕代表
2个蛋糕代表
个蛋糕代表
所以,=
4.教师把 化為。
5.= 5 ÷ 2=
6.请学生把 化为带分数。
7.教师可利用以下提问,引导学生作答: 这个共有蛋糕多少份?(10份)每几份可合成一个蛋糕?(3份)10份中包含多少个3份?(10 ÷ 3)
8.学生讨论假分数化为带分数后,分母有沒有改变。为什么?(分母不变;每份的大小不变)
9、独立完成作业
10、讲评作业。
第22课时
教学内容:练习三
教学目标:
1、进一步理解分数、真分数、假分数、带分数的意义。
2、巩固比较分数大小的方法。
3、进一步理解分数与除法的关系,并利用关系解决实际问题。教学重点:进一步理解分数与除法的关系,并利用关系解决实际问题。教学过程:
一、复习
1、举例说说分数的意义。
2、说说什么叫真分数、假分数、带分数?
3、说说分数与除法的关系。
二、巩固练习
1、学生独立填写1、2后,说说自己的思考方法。(4/
5、1/5)(4/
12、8/12)(3/
6、3/6)(3/
7、4/7)重点说说写出涂色部分后空白部分你是怎样思考的?
2、先让学生独立填填后,再说说比较分数大小比较是怎样思考的? 1/4=1/4 2/8〈2/3 重点说说2/8和2/3是怎样比较的?
3、先引导学生解决第1个问题,学生根据题意收集有关信息,再根据分数的意义后分数与除法的关系解决问题。引导学生说说还能用分数表示什么?主要用分数进行交流,感受分数与生活的联系,教师要组织学生展开充分交流。
4、举例说说假分数和带分数之间互化的方法,然后独立解决第5题。
5、先独立完成第6题,然后说说比较方法。
6、先独立完成第7题,然后说说思考方法。
三、实践活动:观察年历,独立完成,交流还能提出用分数表示的哪些问题?
四、作业:实践活动出数学报,并说说各栏目所占篇幅约占这张报纸的几分之几
第23课时
教学内容:找规律 教学目标:
1.理解和掌握分数的基本性质。
2.理解分数的基本性质与商不变规律的关系。
3.培养学生观察比较,抽象概括的能力及初步的逻辑推理能力。4.鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。教学重点:掌握分数的基本性质。教学难点:抽象概括分数的基本性质。
教具学具准备:投影仪、投影片、学生每人三张同样大小的纸条、彩笔。教学步骤:
一、铺垫孕伏
1.口算。(读题说得数)3.5×1.8×4.8÷1.28+3.7
4.5×2 2.5×3÷0.5
0.8+1.5
0.8×0.5
0.14×6 2.根据分数与除法的关系填空。3.根据120÷30=4在□里填数。(120×3)÷(30×3)=□(12÷□)÷(30÷10)=4(1)学生填空。
(2)你是怎样想的?(回忆除法中商不变性质)
二、探究新知:
1.新课导入:刚才我们复习了除法中商不变的性质,在分数中有没有类似的性质呢?
2.实际操作,初步感知。
(1)请同学们每人拿出三张形状大小相同的纸条。
①把第一张纸条平均分成2份,其中1份涂上颜色并用分数表示出来; ②把第二张纸条平均分成4份,其中2份涂上颜色并用分数表示出来; ③把第三张纸条平均分成6份,其中3份涂上颜色并用分数表示出来。(2)说说这三个分数的意义。
(3)把三张纸条上下对齐,观察阴影部分:你发现了什么?说明了什么? 3.启发引导,总结规律。(1)从左往右观察总结。①观察手中第一、第二张纸条。
知道平均分的份数由2份变成4份,表示的份数由1份变成2份。学生分组讨论然后填书,一人板演。
④观察上面两个式子,分数分子、分母的变化有什么规律?结果怎样? 引导学生分组讨论:分数的分子、分母同时乘以相同的数,分数的大小不变。
(2)从右往左观察又知道了什么? 启发学生知道:
(3)观察上面两组式子中,分数的分子、分母的变化,你发现了什么规律? 引导学生分组讨论:分数的分子、分母同时除以相同的数,分数的大小不变。(4)总结归纳:
①引导学生讨论有什么规律?
汇报交流:分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。②这就是分数的基本性质。(板书课题)③根据分数与除法的关系,以及整数除法中商不变的性质,你能说明分数的基本性质吗?
④学生读书中分数的基本性质。⑤为什么“零除外”?
因为分母不能是0,所以分数的分子、分母不能同时乘以0;又因为除法里,零不能作除数,所以分数的分子、分母也不能同时除以0。4.反馈练习。(投影出示)在下列各图中,画出阴影,表示图下面的分数再比较它们的大小: 5.看书
(2)学生阅读课本并填书,一人板演。(3)说说你是怎样想的?根据是什么? 6.反馈练习:
(1)填空。(投影出题,一人在投影片上做,其他同学填书,再集体订正。)
三、巩固发展:
1.指出下面每组中的两个分数是相等的还是不相等的,为什么? 2.口答(由学生提问,并指名回答)3.同桌根据分数的基本性质互相编题、提问。
四、课堂小结: 这节课学习了什么?
第五篇:三年级上册数学教案 北师大版
一 混合运算 小熊购物
教学目标:
1.通过“小熊购物”的问题情境引入,培养学生提出问题和解决问题的能力。
2.结合解决问题的过程,探索“先乘法,后加减”的运算顺序,体会到数学与实际的密切联系。
3.能正确计算有关的两步试题。教学重难点:
掌握先乘法,后加减的运算顺序。教 法:引导发现法。学 法:动手操作法 教学课时:2 教学准备:
挂图,实物,课件。教学过程:
第一课时
一、切入举偶
1、出示课件,故事引入。
今天是星期日,熊妈妈领着 小熊贝贝去超市购物,超市里的东西可真多呀!小熊贝贝都看不过来,这也摸摸,那也碰碰,嘴里还一个颈地嘟囔:“妈妈,我想买这个。妈妈,我还想买那个„„”最后,他们来到了超市的东南角。
2、出示挂图,谈话引入。
谁能用故事的形式说出这幅图的图意。
二、对话平台
玩中学
1、说一说。
通过看图,获取信息,提出问题。
(1)同学们,请你也仔细观察一下超市的东南角,看一看从图中你能获得什么信息?
(让学生把自己所看到的说出来,教师给予鼓励性的评价,既调动了学生的积极性,使学生参与到教学过程中来,又培养了学生的观察能力。)
(2)如果你是小顾客,你想买些什么东西呢?
指名汇报。
(3)如果只允许你买两种食品,每种食品数量不限,你又准备买些什么呢?
指名汇报,根据学生汇报,教师可板书问题。
(此问题的设计为学生学习新知识做准备。学生上面所提出和解答的问题大多是本节课的知识点,学会后可让学生自己独立解决。自己提出问题再自己解答,学生回兴趣浓,积极性高。)
2、算一算。
在解决问题中掌握运算顺序。
(1)仔细看图,说一说小熊买了什么食品?
(2)那么小熊该付多少钱呢?请你来帮它算一算。
学生独立解答后再小组交流汇报。
(学生的解答可能回出现多种形式:有的列两个算式分步解答;有的把两个算式 合在一起列综合算式解答。无论哪种形式,都必须让学生明确每一步求出的是什么。如果班中学生只有分步解答的,教师要启发学生将两个算式合在一起。教师可根据学生汇报把不同的三种形式进行板书。)
(3)说一说有加法又有乘法,要先算什么?
(通过学生自己探索,得出运算的规律,使学生获得成功的喜悦。)
(4)教师介绍脱式计算的格式及方法。
(脱式计算的格式及运算顺序是本课难点,教师在此处要多加强调,注意学生的个体差异,对学习有困难的学生提供有针对性的帮助,使他们树立学习数学的自信心,逐步提高计算能力。)
三、学中做
1、做一做。
(1)大家真聪明。你能用所学的知识解决黑板上同学们提出的问题吗?
任选一题,做一做。
(2)指名汇报。
(用所学知识解决自己提出的问题,学生积极性高,兴趣浓。)
2、想一想,议一议。
通过小组探究,进一步掌握运算顺序。
熊妈妈有20元钱,买3包饼干应找回多少钱?
(1)试着做一做。
(2)小组议一议。
(完全放手,给学生自学的空间,让学生通过小组合作解决这个问题。本题既可以用两个算式解答,也可以合并成一个算式解答)
(3)说一说。
结合刚才的练习,你能得到什么结论?
(引导学生根据解决问题的过程,发现既有减法又有乘法的情况下,先算乘法,再算减法。)
3、试一试
(1)如果用20元钱买3瓶饮料,应朝晖多少钱?
(2)如果用50元钱买7包花生,应找回多少钱?
(通过试一试的练习,进一步巩固含有乘减的运算顺序。)
四、做中得
1、综合练习。
(1)完成试一试的第(1)题。
(2)完成试一试的第(2)题。
(3)完成做一做的第(3)题。
2、全课总结。
提问:计算乘加、乘减两步式题应先算什么,再算什么?(先算乘除法再算加减法)
第二课时
教学过程:
一、探究新知
1、说一说
通过看图获取数学信息,提出问题。
(1)同学们,请仔细观察一下超市的食品专柜,看一看从图中你能获得哪些数学信息? 指名回答,引导学生找到信息。(出示食品单价课件)生:面包每个3元 饼干每包4元
饮料每瓶6元 花生每包7元 糖果每袋5元(1)如果你是小顾客,你想买什么东西呢?(指名回答)
(2)如果只允许你买两种食品,每种数量不限,你又准备买什么呢?(此问题的设计为学生学习新知做准备。学生上面所提出的问题大多是本课的知识点,学生会对课堂兴趣浓厚,积极性高)
2、算一算
在解决问题中掌握运算顺序
(1)仔细看图,说一说小熊胖胖买了什么食品?(学生独立解答,然后再小组交流汇报)
(2)那么,小熊胖胖该付多少钱?请你帮它算一算。教师引导学生把分步式写成综合式。
说一说既有加法又有乘法的算式中,要先算什么?(组织学生讨论: 3×4+6或6+3×4各表示什么意思?)(1)引导学生用脱式计算 3×4+6= 6+3×4= 提问:以上两个算式有什么共同点?
讨论:含有乘法和加法的计算的分布式题,应先算什么?再算什么?(1)强调脱式计算的书写格式
3、想一想,议一议
(1)小熊乐乐有20元钱,买3包饼干应找回多少钱?(出示乐乐课件)同桌互相探究,并合作解决这个问题。(2)引导学生讨论,并总结
总结:在既有减法又有乘法的两步式计算中,应先算乘法后算加减法。
二、课堂延伸(巩固练习)(1)出示饮料课件
(2)说一说,下面各题要先算什么?然后再解答。50-4×5= 7+6×2= 7×3+4= 6×9-7 学生练习本中完成解答。
在学生练习的过程中强调书写格式。
(3)出示红色饮料课件(学生独立完成练习)(4)出示小兔拔萝卜课件(学生独立完成练习)(5)出示小羊图课件(学生独立完成练习)
三、课堂总结
1、提问:计算乘加、乘减两步式计算题时,应先算什么?再算什么?
2、既有加法,又有减法,而且还有乘法的两步式计算题,我们把它也叫做“混合运算”(板书:混合运算)
四、作业设计
五、板书设计 课后反思:
买文具
教学目标:
1.通过“买文具”的问题情景,发展学生提出问题和解决问题的能力。2.结合解决问题的过程,探索先乘除后加减的运算顺序,体会数学与生活实际的密切联系。
3.引导学生掌握脱式计算的书写要求,能正确地进行除加、除减两步式题的计算。
4.培养学生合作学习的习惯,体验合作学习的快乐。重点难点:
引导学生理解和掌握除加、除减两步式题的运算顺序。教 法:引导发现 学 法:探究学习教学课时:2 教具准备:
口算卡 教学过程:
一、复习
1.口算(开火车)
40÷8 28÷7 36÷6 24÷8 81÷9 15÷3 2.提问:上节课我们学习的乘加、乘减两步计算式题的计算顺序式什么?
二、探索新知
出示P5主题图,引导学生观察。1.理解图示内容,让学生找信息。
2.让学生根据图示提出问题,并着重注意:每本算术本现价比原价便宜多少元? 3.解决问题。
(1)列算式。
笑笑: 18÷3+4 每本算数本现价比原价便宜:3-10÷2 =6+4 =3-2 =10(元)答:(略)=1(元)答:(略)
(2)理解算理,掌握算法。
小组讨论:3-10÷5 表示上意思。
算式“3-10÷5”中的“10”表示5本算术本10元,“10÷5”表示1本算术本多少元。所以“3-10÷5”表示每本算术本现价比原价便宜多少元?
因此计算“3-10÷5”的时候,应先算10÷5=2,再算3-2=1,用脱式计算式
(3)引导学生发现:有减法又有除法时,要先算除法后算减法。4.尝试解决问题。
(1)提问:买1本算术本和1本英文本共花多少元?
(2)让学生独立解答。
(3)订正,并引导学生发现:既有加法又有除法的两步计算式题,要先算除法,后算加法。
5.小结:计算除加、除减两步计算式题的运算顺序是什么?(先算除法后算加减)
三、巩固练习
1.P6“试一试”。先说运算顺序,后让学生独立计算。2.P6“练一练”。先帮助学生理解图意,后放手独立完成。
四、总结
五、作业布置 课后反思:
过 河
教学目标:
1、引导学生在解决问题的过程中经历小括号的产生过程,在具体情境中体会到小括号的作用,能正确计算带有小括号的算式。
2、通过“过河“的情境,发现提出问题和解决问题的能力。
3、使学生养成在做四则混合运算题目的时候先看运算顺序在进行计算的习惯。教具学具:
教具:课件和实物展示图 教学重点难点:
重点:引导学生理解和掌握带有小括号的混合运算的运算顺序,体会小括号在运算中的作用。
难点:探索小括号的运用过程,能利用小括号解决简单的实际问题。教学课时:2 教法:指导练习学法:练习交流
教具准备:小黑板 教学课时:1课时。教学过程:
一、复习巩固
1、口算
6×9= 30+15= 42÷6= 2、脱式计算
7×2+30 46-6×4 63÷9+7
二、解决新知
1.合作探究数学问题。小组根据提供的数学信息,自行编写完整的数学问题。根据问题讨论解决的办法?
例如:二年级*班,有男生29人,女生25人,准备坐船过河,每条船限乘客9人,他们至少需要几条船?
2.展示思维,把握解决问题的方法。
二年级*班,有男生29人,女生25人,准备坐船过河,每条船限乘客9人,他们至少需要几条船?
思维:总人数----限乘客人数----需要多少条船
分步计算:
29+25=54(人)
54÷9=6(人)
综合算式:29+25÷9
思考:这样列式就要依照我们学习的混合运算方法来计算,计算的结果却与我们的分步计算结果不一样。
你有怎样的办法呢?这里我们需要先计算加法。
引入:“()”----小括号----先计算小括号,再计算除法。
看看这样的方法,计算结果怎样呢?学生独立完成,感受这样的方法带来的成功喜悦。
(29+25)÷9
=54÷9
=6(条)
答:至少需要 6条船。
一句话:有小括号真好!
理论,记忆理解:在混合运算中,有乘除,有加减,先算乘除,后算加减,如果有小括号,先算小括号。(分段理解,记忆)
三、体验知识,形成模块
完成P9中的“连一连”第2题。
5×(36-29)(83-35)÷6 94-(25+19)
完成之后,再次体验:在混合运算中,有乘除,有加减,先算乘除,后算加减,如果有小括号,先算小括号。
注意:做完括昊里的运算之后,不再要括号。
四、课堂小节
1.知道解决问题的先后顺序。
2.完整把握混合运算的顺序。
阅读记忆:在混合运算中,有乘除,有加减,先算乘除,后算加减,如果有小括号,先算小括号。
3.数学符号要正确书写。
五、作业设计
1.记忆:在混合运算中,有乘除,有加减,先算乘除,后算加减,如果有小括号,先算小括号。2.完成试一试、练一练。板书设计:
过河(混合运算)
混合运算预算顺序
先乘除,后加减 法一: 29+25=54(人)
课后反思:
有小括号 54先算小括号里,再算小括号外
÷9=6(条)法二:(29+25)÷9