九年级数学下册 2.5 二次函数与一元二次方程教案1 (新版)北师大版

时间:2019-05-15 02:27:24下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《九年级数学下册 2.5 二次函数与一元二次方程教案1 (新版)北师大版》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《九年级数学下册 2.5 二次函数与一元二次方程教案1 (新版)北师大版》。

第一篇:九年级数学下册 2.5 二次函数与一元二次方程教案1 (新版)北师大版

二次函数与一元二次方程

【教学内容】二次函数与一元二次方程

(一)【教学目标】

知识与技能 理解二次函数与一元二次方程的关系,会用△值判断二次函数与x轴交点个数

过程与方法 经历用二次函数图象探索一元二次方程根的过程,能够领会二次函数与x轴交点个数与一元二次方程根的个数关系。

情感、态度与价值观 通过对二次函数与一元二次方程关系的探讨,培养学生勇于探索的好习惯,感受数学的严谨性以及数学结论的确定性。【教学重难点】

重点:理解一元二次方程的根就是二次函数与交点的横坐标 难点:利用二次函数的与x轴交点与一元二次方程根的关系 【导学过程】

【知识回顾】 一元二次方程的一般形式是什么?二次函数的一般形式是什么? 【情景导入】

二次函数与一元二次方程有一定的相似之处,它们的表达式基本相同。其实,二次函数中的y值为零时,那么就会变成一元二次方程。那么它们之间到底有怎样的关系,本节课将给以解答。

【新知探究】 探究

一、我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面以40m/s的速度竖直向上抛出起,小球的高度h(m)与运动时间t(s)的关系如图所示,那么(1).h和t的关系式是什么?

(2).小球经过多少秒后落地?你有几种求解方法?与同伴进行交流.探究

二、在同一坐标系中画出二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象并回答下列问题:

(1).每个图象与x轴有几个交点?

(2).一元二次方程? x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x+2=0有根吗?(3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?你能利用a、b、c之间的某种关系判断二次函数y=ax+bx+c的图象与x轴何时有两个交点、一个交点,何时没有交点?

2探究

三、【例1】已知二次函数y=kx-7x-7的图象与x轴有两个交点,则k的取值范围为

2【例2】抛物线y=ax+bx+c与x轴交于点A(-3,0),对称轴为x=-1,顶点C到x轴的距离为2,求此抛物线表达式.

【例3】有一个二次函数的图象,三位学生分别说出了它的一些特点: 甲:对称轴是直线x=4;

乙:与x轴两个交点的横坐标都是整数;

丙:与y轴交点的纵坐标也是整数,且以这三点为顶点的三角形面积为3. 请写出满足上述全部特点的一个二次函数表达式

. 【知识梳理】本节课我们学习二次函数与一元二次方程的关系,能够领会二次函数与x轴交点个数与一元二次方程根的个数关系。会用△值判断二次函数与x 轴交点个数,【随堂练习】

1.求下列二次函数的图象与x轴交点坐标,并作草图验证.

22(1)y=x-2x;(2)y=x-2x-3.

22已知二次函数y=ax+bx+c,且a<0,a-b+c>0,则一定有().2222 A.b-4ac>0 B.b-4ac=0 C.b-4ac<0 D.b-4ac≤0 3.抛物线y=a(x-2)(x+5)与x轴的交点坐标为

4.已知抛物线的对称轴是x=-1,它与x轴交点的距离等于4,它在y轴上的截距是-6,则它的表达式为

25.若a>0,b>0,c>0,△>0,那么抛物线y=ax+bx+c经过

象限.

26.抛物线y=x-2x+3的顶点坐标是

27.若抛物线y=2x-(m+3)x-m+7的对称轴是x=1,则m=

28.抛物线y=2x+8x+m与x轴只有一个交点,则m= .

29.已知抛物线y=ax+bx+c的系数有a-b+c=0,则这条抛物线经过点 .

210.二次函数y=kx+3x-4的图象与x轴有两个交点,则k的取值范围

2211.抛物线y=x-2ax+a的顶点在直线y=2上,则a的值是 .

12.抛物线y=3x+5x与两坐标轴交点的个数为()A.3个

B.2个

C.1个

D.无

abc213.如图1所示,函数y=ax-bx+c的图象过(-1,0),则bccaab的值是()

A.-3

B.3

1C.2

1D.-2

14.已知二次函数y=ax+bx+c的图象如图2所示,则下列关系正确的是()2bbbbA.0<-2a<1 B.0<-2a<2 C.1<-2a<2 D.-2a=1 15.已知二次函数y=x+mx+m-2.求证:无论m取何实数,抛物线总与x轴有两个交点.

2216.已知二次函数y=x-2kx+k+k-2.(1)当实数k为何值时,图象经过原点?

(2)当实数k在何范围取值时,函数图象的顶点在第四象限内?

217.已知抛物线y=mx+(3-2m)x+m-2(m≠0)与x轴有两个不同的交点.(1)求m的取值范围;

(2)判断点P(1,1)是否在抛物线上;

(3)当m=1时,求抛物线的顶点Q及P点关于抛物线的对称轴对称的点P′的坐标,并过P′、Q、P三点,画出抛物线草图.

218.已知二次函数y=x-(m-3)x-m的图象是抛物线,如图2-8-10.(1)试求m为何值时,抛物线与x轴的两个交点间的距离是3?

2(2)当m为何值时,方程x-(m-3)x-m=0的两个根均为负数?

(3)设抛物线的顶点为M,与x轴的交点P、Q,求当PQ最短时△MPQ的面积. 2

19.在平原上,一门迫击炮发射的一发炮弹飞行的高度y(m)与飞行时间x(s)的关系满12足y=-x+10x. 5(1)经过多长时间,炮弹达到它的最高点?最高点的高度是多少?(2)经过多长时间,炮弹落在地上爆炸?

220.已知抛物线y=x-(k+1)x+k.(1)试求k为何值时,抛物线与x轴只有一个公共点;(2)如图,若抛物线与x轴交于A、B两点(点A在点B的左边),与y轴的负半轴交于点C,试问:是否存在实数k,使△AOC与△COB相似?若存在,求出相应的k值;若不存在,请说明理由.

第二篇:二次函数与一元二次方程教案

22.5二次函数与一元二次方程(教案)

一、教学目标

1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的关系.2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时函数有两个交点、一个交点和没有没有交点.3、理解一元二次方程的根就是二次函数与x轴交点的横坐标.二、教学重点和难点

重点:探索二次函数图象与x轴的交点及一元二次方程的根的情况.难点:利用图象法探究交点个数的判别方法.三、教学方法 自主探究、合作交流

四、教学设计

1.旧知回顾:(1)一次函数y=x+2的图象与x轴的交点为(,)

一元一次方程x+2=0的根为________

(2)一次函数y=-3x+6的图象与x轴的交点为(,)一元一次方程-3x+6=0的根为________ 通过观察对比,一次函数y=kx+b的图象与x轴的交点与一元一次方程kx+b=0的根有什么关系?

结论:一次函数y=kx+b的图象与x轴的交点的横坐标就是一元一次方程kx+b=0的根 2.新课引入:

2.1问题导出:二次函数y=ax2+bx+c与一元二次方程ax2+bx+c=0有什么关系? 动手操作:请每位同学在方格纸中画出二次函数y=x-2x-3的图象 观察思考:你的图象与x轴的交点坐标是什么? 解一元二次方程: x-2x-3=0

你发现了什么? 发现的结论:(1)二次函数y=ax2+bx+c与x轴的交点的横坐标就是当y=0时一元二次方程ax2+bx+c=0的根

(2)二次函数的问题可以转化为一元二次方程去解决 反馈练习1:求下列二次函数与x轴的交点坐标

(1)y=x+4x-5;(2)y=-x+6x-9;(3)y=2x+3x+5

通过计算发现问题:不是所有的二次函数与x轴都有两个交点!有的函数只有一个交点,有的没有交点(借助图象的平移说明这个事实)

2.2设想:二次函数与x轴的交点个数与一元二次方程的解的个数有关系 我们在学习一元二次方程时是用什么来判断解的个数的? 回顾判别式:对于一元二次方程ax+bx+c=0 b-4ac>0 b-4ac=0 b2-4ac<0 22

2方程有两个不相等的实数根 方程有两个相等的实数根 方程没有实数根

那么,对于二次函数y=ax2+bx+c,判别式又能给我们什么样的结论?学生归纳: b2-4ac>0 b2-4ac=0 b-4ac<0 2函数与x轴有两个交点 函数与x轴有一个交点 函数与x轴没有交点

反馈练习2:判断下列二次函数图象与x轴的交点情况(1)y=x2-1;(2)y=-2x2+3x-9;(3)y=x2-4x+4;(4)y=-ax2+(a+b)x-b(a、b为常数,a≠0)

2.3联想:二次函数与x轴的交点个数可以借助判别式解决,那么二次函数与一次函数的交点个数又该怎么解决呢?

例如,二次函数y=x-2x-3和一次函数y=x+2有交点吗?有几个?

分析:两个函数的交点是这两个函数的公共解,列出方程组,消去y后再利用判别式判断即可.反馈练习3:二次函数y=x2-2x-3和一次函数y=x+b有唯一公共点,求出b的值.3.交流总结

4.作业 2

第三篇:北师大版九年级数学下册教案§2.8 二次函数与一元二次方程

§2.8 二次函数与一元二次方程

学习目标:

体会二次函数与方程之间的联系;掌握用图象法求方程的近似根;理解二次函数图象与x轴交点的个数与一元二次方程的根的个数之间的关系,及何时方程有两个不等的实根,两个相等的实根和没有实根;理解一元二次方程的根就是二次函数y=h(h是实数)图象交点的横坐标. 学习重点: 本节重点把握二次函数图象与x轴(或y=h)交点的个数与一元二次方程的根的关系.掌

22握此点,关键是理解二次函数y=ax+bx+c图象与x轴交点,即y=0,即ax+bx+c=0,从而转化为方程的根,再应用根的判别式,求根公式判断,求解即可,二次函数图象与x轴的交点是二次函数的一个重要内容,在其考查中也有重要的地位. 学习难点: 应用一元二次方程根的判别式,及求根公式,来对二次函数及其图象进行进一步的理解.此点一定要结合二次函数的图象加以记忆. 学习方法: 讨论探索法。学习过程:

一、实例讲解:

我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面以40m/s的速度竖直向上抛出起,小球的高度h(m)与运动时间t(s)的关系如图所示,那么(1).h和t的关系式是什么?

(2).小球经过多少秒后落地?你有几种求解方法?与同伴进行交流.二、议一议:

在同一坐标系中画出二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象并回答下列问题:(1).每个图象与x轴有几个交点?

(2).一元二次方程? x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x+2=0有根吗?(3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?

三、例题:

2【例1】已知二次函数y=kx-7x-7的图象与x轴有两个交点,则k的取值范围为

2【例2】抛物线y=ax+bx+c与x轴交于点A(-3,0),对称轴为x=-1,顶点C到x轴的距离为2,求此抛物线表达式.

【例5】有一个二次函数的图象,三位学生分别说出了它的一些特点:

甲:对称轴是直线x=4;

乙:与x轴两个交点的横坐标都是整数;

丙:与y轴交点的纵坐标也是整数,且以这三点为顶点的三角形面积为3. 请写出满足上述全部特点的一个二次函数表达式

四、随堂练习:

1.求下列二次函数的图象与x轴交点坐标,并作草图验证.

(1)y=x-2x;(2)y=x-2x-3.

2.你能利用a、b、c之间的某种关系判断二次函数y=ax+bx+c的图象与x轴何时有两个交点、一个交点,何时没有交点?

五、课后练习:

1.抛物线y=a(x-2)(x+5)与x轴的交点坐标为

-6,则它的表达式为

. .

2.已知抛物线的对称轴是x=-1,它与x轴交点的距离等于4,它在y轴上的截距是3.若a>0,b>0,c>0,△>0,那么抛物线y=ax+bx+c经过

4.抛物线y=x-2x+3的顶点坐标是

2象限.

. 5.若抛物线y=2x-(m+3)x-m+7的对称轴是x=1,则m= 6.抛物线y=2x+8x+m与x轴只有一个交点,则m=

. . 7.已知抛物线y=ax+bx+c的系数有a-b+c=0,则这条抛物线经过点 8.二次函数y=kx+3x-4的图象与x轴有两个交点,则k的取值范围

229.抛物线y=x-2ax+a的顶点在直线y=2上,则a的值是 2

10.抛物线y=3x+5x与两坐标轴交点的个数为()A.3个

B.2个

C.1个

D.无 2

abc211.如图1所示,函数y=ax-bx+c的图象过(-1,0),则bccaab的值是()

A.-3

B.3

1C.2

1D.-2

12.已知二次函数y=ax+bx+c的图象如图2所示,则下列关系正确的是()

2bbbbA.0<-2a<1 B.0<-2a<2 C.1<-2a<2 D.-2a=1 13.已知二次函数y=x+mx+m-2.求证:无论m取何实数,抛物线总与x轴有两个交点.

14.已知二次函数y=x-2kx+k+k-2.(1)当实数k为何值时,图象经过原点?

(2)当实数k在何范围取值时,函数图象的顶点在第四象限内?

215.已知抛物线y=mx+(3-2m)x+m-2(m≠0)与x轴有两个不同的交点.(1)求m的取值范围;

(2)判断点P(1,1)是否在抛物线上;

(3)当m=1时,求抛物线的顶点Q及P点关于抛物线的对称轴对称的点P′的坐标,并过P′、Q、P三点,画出抛物线草图.

16.已知二次函数y=x-(m-3)x-m的图象是抛物线,如图2-8-10.(1)试求m为何值时,抛物线与x轴的两个交点间的距离是3?(2)当m为何值时,方程x-(m-3)x-m=0的两个根均为负数?

(3)设抛物线的顶点为M,与x轴的交点P、Q,求当PQ最短时△MPQ的面积.

217.在平原上,一门迫击炮发射的一发炮弹飞行的高度y(m)与飞行时间x(s)的关12系满足y=-x+10x. 5(1)经过多长时间,炮弹达到它的最高点?最高点的高度是多少?(2)经过多长时间,炮弹落在地上爆炸?

18.已知抛物线y=x-(k+1)x+k.(1)试求k为何值时,抛物线与x轴只有一个公共点;(2)如图,若抛物线与x轴交于A、B两点(点A在点B的左边),与y轴的负半轴交于点C,试问:是否存在实数k,使△AOC与△COB相似?若存在,求出相应的k值;若不存在,请说明理由.

第四篇:二次函数与一元二次方程教案1

二次函数与一元二次方程教案1 二次函数与一元二次方程

教学目标

(一)教学知识点

1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.(二)能力训练要求

1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.3.通过学生共同观察和讨论,培养大家的合作交流意识.(三)情感与价值观要求

1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2.具有初步的创新精神和实践能力.教学重点

1.体会方程与函数之间的联系.2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.教学难点

1.探索方程与函数之间的联系的过程.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.教学方法

讨论探索法.教具准备

投影片二张

第一张:(记作§2.8.1A)

第二张:(记作§2.8.1B)

教学过程

Ⅰ.创设问题情境,引入新课

[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.Ⅱ.讲授新课

一、例题讲解

投影片:(§2.8.1A)

我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可以用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面被以40m/s的速度竖直向上抛起,小球的高度h(m)与运动时间t(s)的关系如下图所示,那么

(1)h与t的关系式是什么?

(2)小球经过多少秒后落地?你有几种求解方法?与同伴进行交流.[师]请大家先发表自己的看法,然后再解答.[生](1)h与t的关系式为h=-5t2+v0t+h0,其中的v0为40m/s,小球从地面被抛起,所以h0=0.把v0,h0代入上式即可求出h与t的关系式.(2)小球落地时h为0,所以只要令h=-5t2+v0t+h.中的h为0,求出t即可.还可以观察图象得到.[师]很好.能写出步骤吗?

[生]解:(1)∵h=-5t2+v0t+h0,当v0=40,h0=0时,h=-5t2+40t.(2)从图象上看可知t=8时,小球落地或者令h=0,得:

-5t2+40t=0,即t2-8t=0.∴t(t-8)=0.∴t=0或t=8.t=0时是小球没抛时的时间,t=8是小球落地时的时间.二、议一议

投影片:(§2.8.1B)

二次函数①y=x2+2x, ②y=x2-2x+1,③y=x2-2x+2的图象如下图所示.(1)每个图象与x轴有几个交点?

(2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?解方程验证一下:一元二次方程x2-2x+2=0有根吗?

(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?

[师]还请大家先讨论后解答.[生](1)二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象与x轴分别有两个交点,一个交点,没有交点.(2)一元二次方程x2+2x=0有两个根0,-2;方程x2-2x+1=0有两个相等的根1或一个根1;方程x2-2x+2=0没有实数根.(3)从观察图象和讨论中可知,二次函数y=x2+2x的图象与x轴有两个交点,交点的坐标分别为(0,0),(-2,0),方程x2+2x=0有两个根0,-2;

二次函数y=x2-2x+1的图象与x轴有一个交点,交点坐标为(1,0),方程x2-2x+1=0有两个相等的实数根(或一个根)1;二次函数y=x2-2x+2的图象与x轴没有交点,方程x2-2x+2=0没有实数根.由此可知,二次函数y=ax2+bx+c的图象和x轴交点的横坐标即为一元二次方程ax2+bx+c=0的根.[师]大家总结得非常棒.二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点.当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.三、想一想

在本节一开始的小球上抛问题中,何时小球离地面的高度是60m?你是如何知道的?

[师]请大家讨论解决.[生]在式子h=-5t2+v0t+h0中,当h0=0,v0=40m/s,h=60m时,有

-5t2+40t=60,t2-8t+12=0,∴t=2或t=6.因此当小球离开地面2秒和6秒时,高度都是60m.Ⅲ.课堂练习

随堂练习(P67)

Ⅳ.课时小结

本节课学了如下内容:

1.经历了探索二次函数与一元二次方程的关系的过程,体会了方程与函数之间的联系.2.理解了二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解了何时方程有两个不等的实根.两个相等的实根和没有实根.Ⅴ.课后作业

习题2.9

板书设计

§2.8.1二次函数与一元二次方程(一)

一、1.例题讲解(投影片§2.8.1A)

2.议一议(投影片§2.8.1B)

3.想一想

二、课堂练习

随堂练习

三、课时小结

四、课后作业

备课资料

思考、探索、交流

把4根长度均为100m的铁丝分别围成正方形、长方形、正三角形和圆,哪个的面积最大?为什么?

解:(1)设长方形的一边长为x m,另一边长为(50-x)m,则

S长方形=x(50-x)=-x2+50x=-(x2-50x+625)+625=-(x-25)2+625.即当x=25时,S最大=625.(2)S正方形=252=625.(3)∵正三角形的边长为 m,高为 m,∴S三角形= =≈481(m2).(4)∵2πr=100,∴r=.∴S圆=πr2=π·()2=π· = ≈796(m2).所以圆的面积最大.

第五篇:九年级数学下册《二次函数与一元二次方程的联系》教案(湘教版)

九年级数学下册《二次函数与一元二次方程的联系》教案(湘教版)

【知识与技能】

掌握二次函数图象与x轴的交点横坐标与一元二次方程两根的关系

2理解二次函数图象与x轴的交点的个数与一元二次方程根的个数的关系

3会用二次函数图象求一元二次方程的近似根

4能用二次函数与一元二次方程的关系解决综合问题

【过程与方法】

经历探索二次函数与一元二次方程的关系的过程,体会二次函数与方程之间的联系,进一步体会数形结合的思想

【情感态度】

通过自主学习,小组合作,探索出二次函数与一元二次方程的关系,感受数学的严谨性,激发热爱数学的情感

【教学重点】

①理解二次函数与一元二次方程的联系

②求一元二次方程的近似根

【教学难点】

一元二次方程与二次函数的综合应用

一、情境导入,初步认识

一元二次方程ax2+bx+=0的实数根,就是二次函数=ax2+bx+,当=0时,自变量x的值,它是二次函数的图象与x轴交点的横坐标

2抛物线=ax2+bx+与x轴交点个数与一元二次方程ax2+bx+=0根的判别式的关系:当b2-4a<0时,抛物线与x轴无交点;当b2-4a=0时,抛物线与x轴有一个交点;当b2-4a>0时,抛物线与x轴有两个交点

学生回答,教师点评

二、思考探究,获取新知

探究1

求抛物线=ax2+bx+与x轴的交点

例1求抛物线=x2-2x-3与x轴交点的横坐标

【分析】抛物线=x2-2x-3与x轴相交时,交点的纵坐标=0,转化为求方程x2-2x-3=0的根

解:因为方程x2-2x-3=0的两个根是x1=3,x2=-1,所以抛物线=x2-2x-3与x轴交点的横坐标分别是3或-1

【教学说明】求抛物线与x轴的交点坐标,首先令=0,把二次函数转化为一元二次方程,求交点的横坐标就是求此方程的根

探究2

抛物线与x轴交点的个数与一元二次方程的根的个数之间的关系思考:

(1)你能说出函数=ax2+bx+的图象与x轴交点个数的情况吗?猜想交点个数和方程ax2+bx+=0的根的个数有何关系?

一元二次方程ax2+bx+=0的根的个数由什么来判断?

下载九年级数学下册 2.5 二次函数与一元二次方程教案1 (新版)北师大版word格式文档
下载九年级数学下册 2.5 二次函数与一元二次方程教案1 (新版)北师大版.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    22.2二次函数与一元二次方程配套教案

    22.2二次函数与一元二次方程 本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数......

    二次函数与一元二次方程的联系教案

    【知识与技能】 1.掌握二次函数图象与x轴的交点横坐标与一元二次方程两根的关系. 2.理解二次函数图象与x轴的交点的个数与一元二次方程根的个数的关系. 3.会用二次函......

    二次函数与一元二次方程教学设计

    二次函数与一元二次方程教学设计 留格初中黄美娜 一、教材分析 1、教材所处的地位和作用: 《二次函数与一元二次方程》是初中数学(山东教育出版社)九年级上册《二次函数》的一......

    二次函数与一元二次方程教学反思

    二次函数与一元二次方程教学反思 王英杰 教学目标的设定: 一、 教学知识点:(1)、 经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.(2)、 理解二次函数与......

    22.2 二次函数与一元二次方程 教学设计 教案

    教学准备 1. 教学目标 知识与技能 1.总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根. 2.会利用......

    22.2二次函数与一元二次方程教学设计

    22.2二次函数与一元二次方程 【教学目标】 知识与技能: 理解二次函数与一元二次方程的关系,会判断抛物线与x轴的交点个数、掌握方程与函数间的转化。 过程与方法: 逐步探索二次......

    二次函数与一元二次方程教案设计[合集5篇]

    教学目标(一)教学知识点1、能够利用二次函数的图象求一元二次方程的近似根。2、进一步发展估算能力。(二)能力训练要求1、经历用图象法求一元二次方程的近似根的过程,获得用图象......

    数学北师大版九年级下册22.2.1《二次函数》教学设计

    22.2.1《二次函数》教学设计 一、 教学目标: 1、经历根据具体问题的数量关系探索二次函数的模型的过程,初步形成学生利用函数的观点认识现实世界的意识和能力。 2、通过二次......