九年级数学上册 21.3 实际问题与一元二次方程(第1课时)教案 (新版)新人教版

时间:2019-05-15 01:30:25下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《九年级数学上册 21.3 实际问题与一元二次方程(第1课时)教案 (新版)新人教版》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《九年级数学上册 21.3 实际问题与一元二次方程(第1课时)教案 (新版)新人教版》。

第一篇:九年级数学上册 21.3 实际问题与一元二次方程(第1课时)教案 (新版)新人教版

21.3实际问题与一元二次方程(1)

【教学目标】

知识与技能:1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.

2.能根据具体问题的实际意义,检验结果是否合理.

过程与方法:经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述

情感态度价值观:通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.

【教学重难点】

教学重点:列一元二次方程解有关传播问题的应用题 教学难点:发现传播问题中的等量关系 【教学过程】

一、复习引入

1、解一元二次方程都是有哪些方法?

2、列一元一次方程解应用题都是有哪些步骤?

①审题;②设未知数;③找相等关系;④列方程;⑤解方程;⑥答

说明:为继续学习建立一元二次方程的数学模型解实际问题作好铺垫.

二、探索新知 【探究1】

有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?

思考:(1)本题中有哪些数量关系?

(2)如何理解“两轮传染”?

(3)如何利用已知的数量关系选取未知数并列出方程?

设每轮传染中平均一个人传染x个人,那么患流感的这个人在第一轮传染中传染了 人;第一轮传染后,共有 人患了流感;

在第二轮传染中,传染源是 人,这些人中每一个人又传染了 人,那么第二轮传染了 人,第二轮传染后,共有 人患流感.(4)根据等量关系列方程并求解

解:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感.于是可列方程:

1+x+x(1+x)=121 解方程得

x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.

(5)为什么要舍去一解?

(6)如果按照这样的传播速度,三轮传染后,有多少人患流感?

说明:使学生通过多种方法解传播问题,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关

系的适当变形对解题的影响,丰富解题经验.

【探究2】

两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?

思考:(1)怎样理解下降额和下降率的关系?

(2)若设甲种药品平均下降率为x,则一年后,甲种药品的成本下降了 元,此时成本为

元;两年后,甲种药品下降了 元,此时成本为 元。(3)对甲种药品而言根据等量关系列方程并求解、选择根?

解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5000(1-x)元,两年后甲种药品成本为5000(1-x)元. 依题意,得5000(1-x)=3000 解得:x1≈0.225,x2≈1.775(不合题意,舍去)

(4)同样的方法请同学们尝试计算乙种药品的平均下降率,并比较哪种药品成本的平均下降率较大。设乙种药品成本的平均下降率为y. 则:6000(1-y)=3600 整理,得:(1-y)=0.6 解得:y≈0.225 答:两种药品成本的年平均下降率一样大

(5)思考经过计算,你能得出什么结论?成本下降额较大的药品,它的下降率一定也较大吗?应怎样全面地比较几个对象的变化状况?

三、巩固练习

说明:通过练习加深学生列一元二次方程解应用题的基本思路

四、小结作业

小结:1.列一元二次方程解应用题的步骤:审、设、找、列、解、答。最后要检验根是否符合实际意义。

2.用“传播问题”建立数学模型,并利用它解决一些具体问题.

3.对于变化率问题,若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有:a(1x)b(常见n=2)

作业:n

第二篇:九年级数学上册 21.3 实际问题与一元二次方程教案 (新版)新人教版

21.3实际问题与一元二次方程

教学目标

1、本节课主要学习建立一元二次方程的数学模型解决平均变化率问题。

2、能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.

3、能根据具体问题的实际意义,检验结果是否合理.

4、通过用一元二次方程解决身边的问题,体会数学知识应用的价值. 重难点、关键

重点:列一元二次方程解有关平均变化率问题的应用题 难点:发现平

中的等

关键:建立一元二次方程的数学模型 教学准备

教师准备:制作课件,精选习题

学生准备:复习有关知识,预习本节课内容 教学过程

一 展示学习目标(使学生明确本节课学习目标,具体内容如下)学习目标

1、本节课主要学习建立一元二次方程的数学模型解决平均变化率问题。

2、能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.

3、能根据具体问题的实际意义,检验结果是否合理.

4、通过用一元二次方程解决身边的问题,体会数学知识应用的价值.

二 展示学习要求(学生对照要求自学,教师巡视并做个别辅)学习要求

1、某农户第一年的粮食产量为6万kg,平均每年的增长率为20%,第二年的产量为____________万kg,第三年的产量为____________万kg ;某商品原价每件100元连续两次降价,平均每次降低率为10%,第一次降价后价格为每件________元,第二次降价后价格为每件________元

通过以上两题你能发现关于两次平均增长(降低)率问题的一般关系吗?(用A表示基数,X表示平均增长(降低)率,B表示新数)

2、学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.设年平均增长率为X,则可列方程为____________。

3、对照课本46页探究2内容,完成下列问题:

(1)甲种药品成本的年平均下降额为 元,•乙种药品成本的年平均下降额为 元,显然,乙种药品成本的年平均下降额较 .

(2)设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为 元,两年后甲种药品成本为

元.从而可列方程为

。解得X=。

请求出乙种药品成本的年平均下降率,并比较两种药品成本的年平均下降率。

4、完成P46最后的“思考”:成本下降额较大的药品,成本下降率一定也较大吗? 三 后教

1、学习小组同学之间互教,解决自学过程中存在的问题;

2、教师引导学生解决学习要求中的问题,对同学普遍存在的问题请会解决的小组代表回答,学生解决不了的问题教师进一步强调并重点点评。四 当堂训练

列方程解运用题

练习

1、某钢铁厂去年1月某种钢产量为5000吨,3月上升到7200吨,这两个月平均每月增长的百分率是多少?

练习

2、某种药剂原售价为4元, 经过两次降价, 现在每瓶售价为2.56元,问平均每次降价百分之几? 五 小结(通过提问引导学生回答)

(一)列方程解应用题的一般步骤是: 审、设、列、解、验、答

1、审:审清题意:已知什么,求什么?

2、设:设未知数,语句要完整,有单位(同一)的要注明单位;

3、列:列代数式,找出相等关系列方程;

4、解:解所列的方程;

5、验:是否是所列方程的根;是否符合题意;

6、答:答案也必需是完整的语句,注明单位且要贴近生活.列方程解应用题的关键是: 找出相等关系.(二)关于两次平均增长(降低)率问题的一般关系:

A(1±x)2=B(其中A 表示基数,x表表示增长(或降低)率,B表示新数)六布置作业:

1完成课本P 48页综合运用第7题 2完成课本P53 页综合运用第9题

第三篇:【2014 21.3 实际问题与一元二次方程(第1课时)教学案 (新版)新人教版

21.3实际问题与一元二次方程(1)

【学习目标】

1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型. 2.能根据具体问题的实际意义,检验结果是否合理.

【教学重点】列一元二次方程解有关传播问题、平均变化率问题的应用题 【教学难点】发现传播问题、平均变化率问题中的等量关系 【学习过程】

一、知识回顾

1、解一元二次方程都是有哪些方法?

2、列一元一次方程解应用题都是有哪些步骤?

二、新知探究

问题1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人? 分析:设每轮传染中平均一个人传染了x个人,那么患流感的这一个人在第一轮中传染了_______人,第一轮后共有______人患了流感; 第二轮传染中,这些人中的每个人又传染了_______人,第二轮后共有_______人患了流感。则:列方程

,解得 即平均一个人传染了 个人。

思考:如果按照这样的传染速度,三轮后有多少人患流感?

问题2:两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?

解:①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为 元,两年后甲种药品成本为 元.

依题意,得

解得:x1≈,x2≈。

根据实际意义,甲种药品成本的年平均下降率约为。

②设乙种药品成本的平均下降率为y.则,列方程:

解得:

答:两种药品成本的年平均下降率 .

思考:经过计算,你能得出什么结论?成本下降额较大的药品,它的下降率一定也较大吗?应怎样全面地比较几个对象的变化状态?

三、巩固练习

1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?

2.青山村种的水稻2011年平均每公顷产7200kg,2013年平均每公顷产8460kg,求水稻每公顷产量的年平均增长率.四、课堂小结

1.通过本节课的学习,你有什么收获?

2.你还有什么疑问?

五、当堂清

1.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,那么根据题意列出的方程是()

A.x(x+1)=182 B.x(x-1)=182 C.2x(x+1)=182 D.x(1-x)=182×2 2.一个小组若干人,新年互相发送祝福短信,若全组共发送祝福短信72条,则这个小组共(). A.12人 B.18人 C.9人 D.10人

3.学校组织了一次篮球单循环比赛(每两队之间都进行了一次比赛),共进行了15场比赛,那么有几个球队参加了这次比赛?

4某商品原来单价96元,厂家对该商品进行了两次降价,每次降低的百分数相同,现单价为54元,求平均每次降价的百分数?

六、教后反思

21.3实际问题与一元二次方程(2)

【教学目标】

知识与技能:1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.

2.能根据具体问题的实际意义,检验结果是否合理.

过程与方法:通过解决封面设计与草坪规划的实际问题,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,发展实践应用意识.

情感态度价值观:通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.

【教学重难点】

教学重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.

教学难点:发现问题中的等量关系

【教学过程】

一、复习引入

1.直角三角形的面积公式是什么?•一般三角形的面积公式是什么呢?

2.正方形的面积公式是什么呢?长方形的面积公式又是什么? 3.平行四边形的面积公式是什么?

二、探索新知

【探究3】

如图,要设计一本书的封面,封面长27cm,宽21cm,•正中央是一个与整个封面长宽比例相同的矩形,•如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,•应如何设计四周边衬的宽度(结果保留小数点后一位)?

问题:(1)本题中有哪些数量关系?

(2)如何理解“正中央是一个与整个封面长宽比例相同的矩形”?(3)如何利用已知的数量关系选取未知数并列出方程?

(4)解方程并得出结论,对比几种方法各有什么特点?

解:依据题意知:中央矩形的长宽之比等于封面的长宽之比=9:7,•由此可以判定:上下边衬宽与左右边衬宽之比为9:7,设上、下边衬的宽均为9xcm,•则左、右边衬的宽均为7xcm,依题意,得:中央矩形的长为(27-18x)cm,宽为(21-14x)cm.

因为四周的彩色边衬所点面积是封面面积的 所以(27-18x)(21-14x)= 整理,得:16x-48x+9=0 解方程,得:x=

21,则中央矩形的面积是封面面积的. 43×27×21 4633,4 x1≈2.8cm,x2≈0.2

所以:9x1=25.2cm(舍去),9x2=1.8cm,7x2=1.4cm 因此,上下边衬的宽均为1.8cm,左、右边衬的宽均为1.4cm.

注意关注学生:

(1)对几何图形的分析能力;

(2)在未知数的选择上,能否根据情况,灵活处理;(3)在讨论中能否互相合作;(4)解答一元二次方程的能力;(5)回答问题时的语言表达是否准确.

说明:使学生体会列方程与解方程的完整结合,通过多种方法解得相同结论,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关系的适当变形对解题的影响,丰富解题经验.

【探究4】

如图,某中学为方便师生活动,准备在长30 m,宽20 m的矩形草坪上修两横两纵四条小路,横纵路的宽度之比为3∶2,若使余下的草坪面积是原来草坪面积的四分之三,则路宽应为多少?

问题:

(1)本题中有哪些数量关系?

(2)剩余草坪的面积,是否就是原草坪的面积减去四条路的面积?(3)由这些数量关系如何列方程?

三、巩固练习

有一张长方形的桌子,长6尺,宽3尺,有一块台布的面积是桌面面积的2倍,并且铺在桌面上时,各边垂下的长度相同,求台布的长和宽各是多少?(精确到0.1尺)

说明:通过练习加深学生列一元二次方程解应用题的基本思路

四、小结作业

本节课应掌握:

小结:利用已学的特殊图形的面积公式建立一元二次方程的数学模型并运用它解决实际问题.

作业:

第四篇:21.3 实际问题与一元二次方程 同步测试题 人教版九年级数学上册

21.3

实际问题与一元二次方程

同步测试题

(满分120分;时间:90分钟)

一、选择题

(本题共计

小题,每题

分,共计21分,)

1.一组数列2,5,10,17,⋯若其中连续3个数的和为368,则这三个数中最小的一个数为()

A.82

B.101

C.122

D.145

2.某工厂第二季的产值比第一季增长x%,第三季的产值又比第二季增长x%,那么第三季的产值比第一季增长了()

A.2x%;

B.1+2x%;

C.;

D.x%(2+x%);

3.某同学生日聚会,见面时每两个同学都互相握手了一次,共握手了36次,则参加此次聚会的人数是()

A.10人

B.9人

C.8人

D.7人

4.为了美化环境,淮北市加大对绿化的投资.2018年用于绿化投资100万元,2019年至2020年用于绿化投资共260万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x,根据题意所列方程为()

A.100x2=260

B.100(1+x2)=260

C.100(1+x)2=260

D.100(1+x)+100(1+x)2=260

5.某厂一月份生产产品150台,计划二、三月份共生产450台.设二、三月平均每月增长率为x,根据题意列出方程是()

A.150(1+x)2=450

B.150(1+x)+150(1+x)2=450

C.150(1-x)2=450

D.150+150(1+x)2=450

6.如图,学校准备修建一个面积为48m2的矩形花园.它的一边靠墙,其余三边利用长20m的围栏.已知墙长9m,问围成矩形的长为()

A.8m

B.6m

C.4m

D.2cm

7.你知道吗?股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是()

A.(1+x)2=1110

B.x+2x=1110

C.(1+x)2=109

D.1+2x=109

二、填空题

(本题共计

小题,每题

分,共计27分,)

8.要组织一场足球比赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,问比赛组织者应邀请多少只球队参赛?设比赛组织者应邀请x支球队参赛,根据题意列出的方程是________.

9.中秋节当天,小明将收到的一条短信发送给若干人,每个收到短信的人又给相同数量的人转发了这条短信,此时包括小明在内收到这条短信的人共有111人,则小明给________人发了短信.

10.某种品牌的手机经过四,五月份连续两次降价,每部售价由1000元降到了810元,则平均每月降价的百分率为________.11.目前“新冠肺炎”在全球爆发,世界卫生组织提出各国要严加防控.在欧洲的某个国家,有一人感染病毒,经过两轮传染后竟导致共441人一同感染病毒.如果设每轮感染中平均一个人传染x个人,那么可列方程为________.12.如果三个连续的奇数,两两相乘后,再求和得503,那么这三个连续的奇数分别是________.13.某厂今年的产值是前年产值的翻一番,若平均年增长率为x,则可列方程________.

14.我市前年的投入资金是578万元用于校舍改造,今年投入资金是805万元.若设这两年投入改造资金的年平均增长率为x,则根据题意可列方程为________.

15.有一人患了流感,经过两轮传染后共有64人患了流感,那么每轮传染中平均一个人传染给________

个人.16.某商店服装销量较好,于是将一件原标价为1200元的服装加价200元销售仍畅销,在这基础上又涨了10%.现商家决定要回复原价,采用连续两次降价,每次降价的百分率相同的方法,则每次降价的百分率为________(精确到1%).

三、解答题

(本题共计

小题,共计72分,)

17.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后将四周突出部分折起,就能制作一个无盖的方盒,若方盒的底面积(图中阴影部分)是32cm2,则剪去的小正方形的边长为

cm.

18.如图,在一块宽为30m,长为35m的长方形草地上,修建同样宽的小路后,剩下的草坪面积为750m2,求修建的小路的宽度.

19.某农场要建一个长方形的养鸡场,鸡场的一边靠墙,(墙长25m)另外三边用木栏围成,木栏长40m.

(1)若养鸡场面积为200m2,求鸡场靠墙的一边长.

(2)养鸡场面积能达到250m2吗?如果能,请给出设计方案;如果不能,请说明理由.

20.某商场销售一种商品,每件进价60元,每件售价110元,每天可销售50件,每销售一件需要支付给商场管理费3元.6月份该商品搞“减价促销”活动,市场调查发现,售价每降低1元,每天销售量增加2件,若某一天销售该商品共获利2590元,求该商品降价多少元?

21.因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已经成为国内外游客最喜欢的旅游目的地城市之一,在著名“网红打卡地”磁器口,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经过测算知,该小面成本为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天可多售30碗.(1)若该小面店每天至少卖出360碗,则每碗小面的售价不超过多少元?

(2)为了更好的维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元.22.某水果商场经销一种高档水果,原价每千克50元.

(1)连续两次降价后每千克32元,若每次下降的百分率相同,求每次下降的百分率;

(2)这种水果进价为每千克40元,若在销售等各个过程中每千克损耗或开支2.5元,经一次降价销售后商场不亏本,求一次下降的百分率的最大值.

23.为了丰富市民的文化生活,我市某景点开放夜游项目.为吸引游客组团来此夜游,特推出了如下门票收费标准:

标准一:如果人数不超过20人,门票价格为60元/人;

标准二:如果人数超过20人,每超过1人,门票价格降低2元,但门票价格不低于50元/人.(1)当夜游人数为15人时,人均门票价格为________元;当夜游人数为25人时,人均门票价格为________元;

(2)若某单位支付门票费用共计1232元,则该单位这次共有多少名员工去此景点夜游?

第五篇:实际问题与一元二次方程(第1课时)教案

21.3实际问题与一元二次方程(1)

课型:新课 课时:1 主备人:林玲 教学目标:

知识与技能:1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.

2.能根据具体问题的实际意义,检验结果是否合理.

过程与方法:经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述

情感态度价值观:通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.

教学重难点

教学重点:列一元二次方程解有关传播问题的应用题 教学难点:发现传播问题中的等量关系 教学方法:引导发现法 教学过程

一、复习引入

1、解一元二次方程都是有哪些方法?

2、列一元一次方程解应用题都是有哪些步骤?

①审题;②设未知数;③找相等关系;④列方程;⑤解方程;⑥答

说明:为继续学习建立一元二次方程的数学模型解实际问题作好铺垫.

二、合作探究 【探究1】

有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?

思考:(1)本题中有哪些数量关系?

(2)如何理解“两轮传染”?

(3)如何利用已知的数量关系选取未知数并列出方程?

设每轮传染中平均一个人传染x个人,那么患流感的这个人在第一轮传染中传染了 人;第一轮传染后,共有 人患了流感;

在第二轮传染中,传染源是 人,这些人中每一个人又传染了 人,那么第二轮传染了 人,第二轮传染后,共有 人患流感.(4)根据等量关系列方程并求解

解:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感.于是可列方程:

1+x+x(1+x)=121 解方程得

x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.

(5)为什么要舍去一解?

(6)如果按照这样的传播速度,三轮传染后,有多少人患流感?

说明:使学生通过多种方法解传播问题,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关系的适当变形对解题的影响,丰富解题经验. 【探究2】

两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?

思考:(1)怎样理解下降额和下降率的关系?

(2)若设甲种药品平均下降率为x,则一年后,甲种药品的成本下降了 元,此时成本为 元;两年后,甲种药品下降了 元,此时成本为 元。(3)对甲种药品而言根据等量关系列方程并求解、选择根?

解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5000(1-x)元,两年后甲种药品成本为5000(1-x)元.

依题意,得5000(1-x)2=3000 解得:x1≈0.225,x2≈1.775(不合题意,舍去)

(4)同样的方法请同学们尝试计算乙种药品的平均下降率,并比较哪种药品成本的平均下降率较大。

设乙种药品成本的平均下降率为y.

则:6000(1-y)2=3600 整理,得:(1-y)2=0.6 解得:y≈0.225 答:两种药品成本的年平均下降率一样大

(5)思考经过计算,你能得出什么结论?成本下降额较大的药品,它的下降率一定也较大吗?应怎样全面地比较几个对象的变化状况?

三、巩固练习

说明:通过练习加深学生列一元二次方程解应用题的基本思路

四、课堂小结:1.列一元二次方程解应用题的步骤:审、设、找、列、解、答。最后要检验根是否符合实际意义。

2.用“传播问题”建立数学模型,并利用它解决一些具体问题.

3.对于变化率问题,若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有:a(1x)nb(常见n=2)

作业:练习册

板书设计: 实际问题与一元二次方程(1)

1.归纳

2.实际问题探究 3.小结 4.作业

教学反思:

下载九年级数学上册 21.3 实际问题与一元二次方程(第1课时)教案 (新版)新人教版word格式文档
下载九年级数学上册 21.3 实际问题与一元二次方程(第1课时)教案 (新版)新人教版.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐