第一篇:人教版数学九年级上册22.3《实际问题与一元二次方程》精选教案
人教版数学九年级上册22.3《实际问题与一元二次方程》精选教案
教学内容
根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题.教学目标
掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.
利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题.重难点关键
1.重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.
2.难点与关键:根据面积与面积之间的等量关系建立一元二次方程的数学模型.教具、学具准备
小黑板
教学过程
一、复习引入
(口述)1.直角三角形的面积公式是什么?一般三角形的面积公式是什么呢?
2.正方形的面积公式是什么呢?长方形的面积公式又是什么?
3.梯形的面积公式是什么?
4.菱形的面积公式是什么?
5.平行四边形的面积公式是什么?
6.圆的面积公式是什么?
(学生口答,老师点评)
二、探索新知 现在,我们根据刚才所复习的面积公式来建立一些数学模型,解决一些实际问题. 例1.某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,上口宽比渠深多2m,渠底比渠深多0.4m.
(1)渠道的上口宽与渠底宽各是多少?
(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?
分析:因为渠深最小,为了便于计算,不妨设渠深为xm,则上口宽为x+2,渠底为x+0.4,那么,根据梯形的面积公式便可建模.
解:(1)设渠深为xm
则渠底为(x+0.4)m,上口宽为(x+2)m
第二篇:九年级数学上册 22.3《实际问题与一元二次方程(第2课时)》教案 新人教版
22.3 实际问题与一元二次方程(第2课时)
教学目标:
1.通过学生自学探究感受用一元二次方程解决实际问题的过程;
2.在阅读的过程中,掌握实际问题的类型(裁边分割问题)及解题的具体步骤。教学重点:一元二次方程解决裁边分割问题.教学难点:如何寻找更加直接的等量关系来建立裁边分割问题的方程.教学过程:
一、出示学习目标:
1.继续感受用一元二次方程解决实际问题的过程; 2.通过自学探究掌握裁边分割问题。
二、自学指导:(阅读课本P47页,思考下列问题)1.阅读探究3并进行填空;
2.完成P48的思考并掌握裁边分割问题的特点;
3.在理解的基础上完成P48-49第8、9题(不精确,只留根号即可)。
三、效果检测:
1.例题点评:
探究3:要设计一本书的封面,封面长27cm ,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?
分析:封面的长宽之比为27﹕21=9﹕7,中央矩形的长宽之比也应是9﹕7,则上下边衬与左右边衬的宽度之比是。9﹕7 设上、下边衬的宽均为9xcm, 左、右边衬的宽均为7xcm, 则:
(2718x)(2114x)32721 4由中下层学生口答书中填空,老师再给予补充。思考:如果换一种设法,是否可以更简单? 设正中央的长方形长为9acm,宽为7acm,依题意得
9a·7a= 32721(可让上层学生在自学时,先上来板演)42.P48-49第8、9题 中下层学生在自学完之后先板演 效果检测时,由同座的同学给予点评与纠正
9.如图,要设计一幅宽20m,长30m的图案,两横两竖宽度之比为3∶2,若使彩条面积是图案面积的四分之一,应怎样设计彩条的宽带?(讨论用多种方法列方程比较)
2303x2202x43x2x33020 413020 4(304x)(206x)注意点:要善于利用图形的平移把问题简单化!
四、当堂训练:
1.如图,在一幅长90cm,宽40cm的风景画四周镶上一条宽度相同的金色纸边,制成一幅挂画.如果要求风景画的面积是整个挂画面积的72%,那么金边的宽应是多少?(只要求设元、列方程)72%(902x)(402x)9040
2.要设计一个等腰梯形的花坛,上底长100m,下底长180m。上下底相距80m,在两腰中点连线出有一横向甬道,上下两底之见有两条纵向的甬道,各甬道宽度相等,甬道的面积是梯形面积的六分之一,甬道的宽应是多少?(可供选做)
五、归纳小结,鼓励评价:
在几何图形应用题中,我们往往以“面积”来找出等量关系,要灵活地将“面积”拼成一个“整体图形”,使问题更易解决。
六、布置作业: 暗线:P53-54 第8、10题
第三篇:新人教版九年级数学上册《22.3实际问题与一元二次方程(第2课时)》教案
新人教版九年级数学上册《22.3实际问题与一元二次方程(第2课时)》教案
一、出示学习目标:
1.继续感受用一元二次方程解决实际问题的过程; 2.通过自学探究掌握裁边分割问题。
二、自学指导:(阅读课本P47页,思考下列问题)1.阅读探究3并进行填空;
2.完成P48的思考并掌握裁边分割问题的特点;
3.在理解的基础上完成P48-49第8、9题(不精确,只留根号即可)。
探究3:要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?
分析:封面的长宽之比为27﹕21=9﹕7,中央矩形的长宽之比也应是9﹕7,则上下边衬与左右边衬的宽度之比是。9﹕7 设上、下边衬的宽均为9xcm,左、右边衬的宽均为7xcm,则: 由中下层学生口答书中填空,老师再给予补充。思考:如果换一种设法,是否可以更简单? 设正中央的长方形长为9acm,宽为7acm,依题意得 9a·7a=(可让上层学生在自学时,先上来板演)
第 1 页 2.P48-49第8、9题中下层学生在自学完之后先板演 效果检测时,由同座的同学给予点评与纠正
9.如图,要设计一幅宽20m,长30m的图案,两横两竖宽度之比为3∶2,若使彩条面积是图案面积的四分之一,应怎样设计彩条的宽带?(讨论用多种方法列方程比较)注意点:要善于利用图形的平移把问题简单化!
四、当堂训练:
1.如图,在一幅长90cm,宽40cm的风景画四周镶上一条宽度相同的金色纸边,制成一幅挂画.如果要求风景画的面积是整个挂画面积的72%,那么金边的宽应是多少?(只要求设元、列方程)
2.要设计一个等腰梯形的花坛,上底长100m,下底长180m。上下底相距80m,在两腰中点连线出有一横向甬道,上下两底之见有两条纵向的甬道,各甬道宽度相等,甬道的面积是梯形面积的六分之一,甬道的宽应是多少?
第 2 页
第四篇:实际问题与一元二次方程教案
教学过程
〖活动1〗 问题 通过上节课的学习,大家学到了哪些知识和方法? 教师提出问题,学生回忆,选一位同学作答,其他同学补充.在本次活动中,教师应重点关注:(1)学生对列方程解应用问题的步骤 是否清楚;(2)学生能否说出每一步骤的关键和应注意问题.(活动1为学生创设了一个回忆、思考的情景,又是本课一种很自然的引入,为本课的探究活动做好铺垫).〖活动2〗 问题 要设计一本书的封面,封面长27cm ,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm).(1)本题中有哪些数量关系?
(2)正中央是一个与整个封面长宽比例相同的矩形如何理解?(3)如何利用已知的数量关系选取未知数?(4)列方程并得出结论.(5)反思解决问题的关键是什么?
教师展示课件,教师提出问题(1)学生分析,请一位同学回答,教师在题目中指出数量关系.教师提出问题(2)学生思考,请一位同学回答,可举简单例子说明,最后引导学生得出正中央矩形的长宽比是9︰7.问题(1)(2)都是帮助学生更好的理解题意,为后面的解题做以铺垫.教师提出问题(3)学生分组讨论,选代表上台演示、回答,每位同学要着重分析对题目中的数量关系的处理方法.问题(3)是活动2的中心环节,在本次活动中,教师应重点关注:(1)学生对几何图形的分析能力;(2)学生在未知数的选择上,能否根据情况,灵活处理;(3)在讨论中能否互相合作;(4)学生回答问题时的语言表达是否准确.学生充分的讨论,得出多种不同的方法,激发学生的学习热情,使学生体会解决问题的方法多样性.为活动3埋下一个伏笔.教师提出问题(4)学生分组,分别按问题三中所列的方程来解答,选代表展示解答过程.教师提出问题(5)学生充分的讨论,丰富解题经验.〖活动3〗某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条宽度相同的道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种方案(如图),根据两种设计方案各列出方程,求图中道路的宽分别是多少?使图(1),(2)的草坪面积为540米2.教师展示课件,请一位同学朗读题目.教师提出问题,学生回答方案1,学生通过探究与讨论,活跃了解题思路.教师提出方案(2)学生思考.因为有活动2的基础,选一位同学回答这一组问题即可,如有不完全的地方,教师适当补充.教师做屏幕演示,特别提醒学生:剩余草坪的面积,是否就是原草坪的面积减去2条路的面积?以引导学生注意道路重叠部分的处理.活动2是针对活动2的巩固性练习.《思考》:能不能把纵、横两条路移动一下,使列方程容易些? 学生分组讨论,教师指导.引领学生 讨论后请一位同学回答.教师引领学生发现两个图形都存重叠部分,但除此之外的剩余部分,第一个图是一个完整的矩形,易于表示;而第二个图中分为4块,所以不容易表示.《思考》是活动3的中心环节,以图形对比的问题为 引导,通过对比两个图形的联系与区别,启发学生方案1为模型,构建草坪问题的解题思路.学生分组讨论,画图,上台演示.教师与学生一起评价,总结图形变换的基本原则.在本次活动中,教师应重点关注:(1)学生的学习效果;(2)使学生充分体会图形变换的灵活性;(3)学生对图形的观察、联想能力;(4)教师要强调图形变换中图形改变、位置改变、关键量不变的原则.在学生充分的思维活动之后,学生会自然产生动手实践的欲望,教师可以给学生一定的空间去发挥想象,同时也要注意对图形变换的指导,可以对部分不太合适的答案也进行一下点评.〖活动4〗 问题 通过本课的学习,大家有什么新的收获和体会?
〖活动5〗当堂测试
布置作业: 教科书53页,习题21.3第5、8题;教科书58页,复习题21第7、10题,教师应重点关注:
第五篇:数学人教版九年级上册实际问题与一元二次方程教学设计
21.3 实际问题与一元二次方程 第1课时 实际问题与一元二次方程(1)
【知识与技能】
会根据具体问题中的数量关系,列出一元二次方程并求解,能根据问题中的实际意义,检验所得结果的合理性.【过程与方法】
经过“问题情境——建立模型——求解——解释与应用”的过程中,进一步锻炼学生的分析问题,解决问题的能力.【情感态度】
通过建立一元二次方程解决实际问题,体验数学的应用价值,增强学习数学的兴趣.【教学重点】
构建一元二次方程解决实际问题.【教学难点】
会用代数式表示问题中的数量关系,能根据问题的实际意义,检验所得结果的合理性.一、导学 1.导入课题:
问题1:列方程解应用题的基本步骤有哪些?
问题2:有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?
本节课我们学习一元二次方程的应用.(板书课题)2.学习目标:
列一元二次方程解有关传播问题的应用题.3.学习重、难点:
重点:建立一元二次方程模型解决实际问题.难点:探究传播问题中的等量关系.4.自学指导:(1)自学内容:教材第19页“探究1”.(2)自学时间:10分钟.(3)自学方法:完成探究提纲.(4)探究提纲:
①设每轮传染中平均每人传染了x人.第一轮传染后共有x+1人患了流感;
第二轮传染中的传染源为x+1人,第二轮后共有x+1+x(x+1)人患了流感.根据等量关系“经过两轮传染后,有121人患了流感”列出方程x+1+x(x+1)=121.本题的解答过程:
设每轮传染中平均每人传染了x人.由题意列式可得x+1+x(x+1)=121, 解方程.得x1=10,x2=-12(不符合题意,舍去).平均一个人传染了10个人.②能有更简单的解方程的方法吗?怎样求解? 对方程左边提取公因式.(x+1)(x+1)=121 ③如果按这样的传染速度,三轮传染后有多少人患了流感?n轮后呢? 经过三轮传染后共有121×10+121=1331(人)患流感 n轮后患流感的人数为(1+10)n=11n.④某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,三轮感染后,被感染的电脑会不会超过700台?
设每轮感染中平均一台电脑会感染x台电脑.依题意1+x+(1+x)x=81,(1+x)2=81,x+1=9或x+1=-9.解得x=8或x=-10(舍去).三轮感染后被感染的电脑台数为(1+x)2+(1+x)2x=(1+x)3=(1+8)3=729>700.答:每轮感染中平均一台电脑会感染8台电脑;三轮感染后,被感染的电脑台数会超过700台.⑤某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少个小分支? 设每个支干长出x个小分支.根据题意,得1+x+x2=91,即(x-9)(x+10)=0.解得x1=9,x2=-10(舍去).∴每个支干长出9个小分支.二、自学学生可参考自学指导进行自学.三、助学 1.师助生:
(1)明了学情:了解学生是否会寻找等量关系、列方程,对“两轮传染”是否真正理解.(2)差异指导:指导学生寻找等量关系、列方程的过程.2.生助生:小组内互相交流、研讨.四、强化
1.点一名学生口答探究提纲第③题,点两名学生板演第④、⑤题,并点评.2.“传播问题”的两种模型: 问题④:传染源参与两轮传染; 问题⑤:传染源只参与第一轮传染.3.总结列一元二次方程解决实际问题的一般步骤:审、设、找、列、解、答,最后要检验根是否符合实际意义.五、评价
1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?有何收获或不足? 2.教师对学生的评价:
(1)表现性评价:点评学生的学习态度、积极性、小组相互交流情况以及不足之处等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):
(1)教师引导熟悉列一元二次方程解决实际问题的步骤,创设问题推导出列一元二次方程解决实际问题的一般思路,有利于学生掌握列一元二次方程解决实际问题的方法.(2)传播类问题是一元二次方程中的重点问题,经过“问题情境——建立模型——求解——解释与应用”的过程,进一步锻炼学生分析问题、解决问题的能力.1.布置作业:从教材“习题21.3”中选取.一、基础巩固(70分)1.(10分)生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,那么根据题意列出的方程是(B)A.x(x+1)=182
B.x(x-1)=182
C.2x(x+1)=182
D.x(1-x)=182×2 2.(30分)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染? 解:(1)设每轮传染中平均一个人传染了x个人.依题意1+x+(1+x)x=64,即(x+1)2=64,解得x1=7,x2=-9(舍去).答:每轮传染中平均一个人传染了7个人.(2)第三轮被传染的人数为(1+x)2·x=(1+7)2×7=448.答:第三轮将有448人被传染.3.(30分)参加足球联赛的每两队之间都进行了两次比赛(双循环比赛),共要比赛90场,共有多少个队参加了比赛?
解:设共有x个队参加了比赛.依题意x(x-1)=90.解得x1=10, x2=-9(舍去).答:共有10个队参加了比赛.二、综合应用(20分)4.(20分)有一人利用手机发送短信,获得信息的人也按他的发送人数发送了该条短信息,经过两轮短信发送,共有90人的手机上获得同一信息,则每轮平均一个人向多少人发送短信?
解:设每轮平均一个人向x人发送短信.由题意,得x+x2=90.解得:x1=9,x2=-10(舍去).答:每轮平均一个人向9个人发送短信.三、拓展延伸(10分)5.(10分)一个数字和为10的两位数,把个位与十位数字对调后得到一个两位数,这两个两位数之积是2296,则这个两位数是多少?
解:设这个数十位上数字为x,则个位数字为(10-x),原数为10x+(10-x)=9x+10.对调后得到的数为10(10-x)+x=100-9x.依题意(9x+10)(100-9x)=2296.解得.x1=8,x2=2.当x=8时,这个两位数是82;当x=2时,这个两位数是28.答:这个两位数是82或28.1.教师引导学生熟悉列一元二次方程解应用题的步骤,创设问题推导出列一元二次方程解应用题的步骤,有利于学生熟练掌握用一元二次方程解应用题的步骤.2.传播类和增长率问题是一元二次方程中的重点问题,本设计问题中反映出不同的“传播”和增长率,有利于学生更好地掌握这一问题.