实际问题与一元二次方程(第1课时)教案

时间:2019-05-13 01:24:15下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《实际问题与一元二次方程(第1课时)教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《实际问题与一元二次方程(第1课时)教案》。

第一篇:实际问题与一元二次方程(第1课时)教案

21.3实际问题与一元二次方程(1)

课型:新课 课时:1 主备人:林玲 教学目标:

知识与技能:1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.

2.能根据具体问题的实际意义,检验结果是否合理.

过程与方法:经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述

情感态度价值观:通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.

教学重难点

教学重点:列一元二次方程解有关传播问题的应用题 教学难点:发现传播问题中的等量关系 教学方法:引导发现法 教学过程

一、复习引入

1、解一元二次方程都是有哪些方法?

2、列一元一次方程解应用题都是有哪些步骤?

①审题;②设未知数;③找相等关系;④列方程;⑤解方程;⑥答

说明:为继续学习建立一元二次方程的数学模型解实际问题作好铺垫.

二、合作探究 【探究1】

有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?

思考:(1)本题中有哪些数量关系?

(2)如何理解“两轮传染”?

(3)如何利用已知的数量关系选取未知数并列出方程?

设每轮传染中平均一个人传染x个人,那么患流感的这个人在第一轮传染中传染了 人;第一轮传染后,共有 人患了流感;

在第二轮传染中,传染源是 人,这些人中每一个人又传染了 人,那么第二轮传染了 人,第二轮传染后,共有 人患流感.(4)根据等量关系列方程并求解

解:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感.于是可列方程:

1+x+x(1+x)=121 解方程得

x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.

(5)为什么要舍去一解?

(6)如果按照这样的传播速度,三轮传染后,有多少人患流感?

说明:使学生通过多种方法解传播问题,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关系的适当变形对解题的影响,丰富解题经验. 【探究2】

两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?

思考:(1)怎样理解下降额和下降率的关系?

(2)若设甲种药品平均下降率为x,则一年后,甲种药品的成本下降了 元,此时成本为 元;两年后,甲种药品下降了 元,此时成本为 元。(3)对甲种药品而言根据等量关系列方程并求解、选择根?

解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5000(1-x)元,两年后甲种药品成本为5000(1-x)元.

依题意,得5000(1-x)2=3000 解得:x1≈0.225,x2≈1.775(不合题意,舍去)

(4)同样的方法请同学们尝试计算乙种药品的平均下降率,并比较哪种药品成本的平均下降率较大。

设乙种药品成本的平均下降率为y.

则:6000(1-y)2=3600 整理,得:(1-y)2=0.6 解得:y≈0.225 答:两种药品成本的年平均下降率一样大

(5)思考经过计算,你能得出什么结论?成本下降额较大的药品,它的下降率一定也较大吗?应怎样全面地比较几个对象的变化状况?

三、巩固练习

说明:通过练习加深学生列一元二次方程解应用题的基本思路

四、课堂小结:1.列一元二次方程解应用题的步骤:审、设、找、列、解、答。最后要检验根是否符合实际意义。

2.用“传播问题”建立数学模型,并利用它解决一些具体问题.

3.对于变化率问题,若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有:a(1x)nb(常见n=2)

作业:练习册

板书设计: 实际问题与一元二次方程(1)

1.归纳

2.实际问题探究 3.小结 4.作业

教学反思:

第二篇:《实际问题与一元二次方程》第二课时参考教案

21.3 实际问题与一元二次方程(2)

教学内容

建立一元二次方程的数学模型,解决如何全面地比较几个对象的变化状况.

教学目标

掌握建立数学模型以解决如何全面地比较几个对象的变化状况的问题.

复习一种对象变化状况的解题过程,引入两种或两种以上对象的变化状况的解题方法.

重难点关键

1.重点:如何全面地比较几个对象的变化状况.

2.难点与关键:某些量的变化状况,不能衡量另外一些量的变化状况.

教具、学具准备

小黑板

教学过程

一、复习引入

(学生活动)请同学们独立完成下面的题目.

问题:某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,•商场要想平均每天盈利120元,每张贺年卡应降价多少元?

老师点评:总利润=每件平均利润×总件数.设每张贺年卡应降价x元,•则每件平均利润应是(0.3-x)元,总件数应是(500+

解:设每张贺年卡应降价x元

则(0.3-x)(500+

解得:x=0.1

答:每张贺年卡应降价0.1元.

二、探索新知

刚才,我们分析了一种贺年卡原来平均每天可售出500张,每张盈利0.3元,为了减少库存降价销售,并知每降价0.1元,便可多售出100元,为了达到某个

100x)=120

0.1x×100)0.1目的,每张贺年卡应降价多少元?如果本题中有两种贺年卡或者两种其它东西,量与量之间又有怎样的关系呢?即绝对量与相对量之间的关系.

例1.某商场礼品柜台春节期间购进甲、乙两种贺年卡,甲种贺年卡平均每天可售出500张,每张盈利0.3元,乙种贺年卡平均每天可售出200张,每张盈利0.75元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果甲种贺年卡的售价每降价0.1元,那么商场平均每天可多售出100张;如果乙种贺年卡的售价每降价0.25元,•那么商场平均每天可多售出34•张.•如果商场要想每种贺年卡平均每天盈利120元,那么哪种贺年卡每张降价的绝对量大.

分析:原来,两种贺年卡平均每天的盈利一样多,都是150元;0.30.750.10.25100,从这些数目看,好像两种贺年卡每张降价的绝对量一样大,下34面我们就通过解题来说明这个问题.

解:(1)从“复习引入”中,我们可知,商场要想平均每天盈利120元,甲种贺年卡应降价0.1元.

(2)乙种贺年卡:设每张乙种贺年卡应降价y元,则:(0.75-y)(200+

即(y×34)=120 0.253-y)(200+136y)=120

4整理:得68y2+49y-15=0

y=496481

268

∴y≈-0.98(不符题意,应舍去)

y≈0.23元

答:乙种贺年卡每张降价的绝对量大.

因此,我们从以上一些绝对量的比较,不能说明其它绝对量或者相对量也有同样的变化规律.

(学生活动)例2.两年前生产1t甲种药品的成本是5000元,生产1t•乙种药品的成本是6000元,随着生产技术的进步,现在生产1t甲种药品的成本是3000元,生产1t•乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?

老师点评:

绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000元,•乙种药品成本的年平均下降额为(6000-3000)÷2=1200元,显然,•乙种药品成本的年平均下降额较大.

相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.

解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5000(1-x)元,两年后甲种药品成本为5000(1-x)元.

依题意,得5000(1-x)2=3000

解得:x1≈0.225,x2≈1.775(不合题意,舍去)

设乙种药品成本的平均下降率为y.

则:6000(1-y)2=3600

整理,得:(1-y)2=0.6

解得:y≈0.225

答:两种药品成本的年平均下降率一样大.

因此,虽然绝对量相差很多,但其相对量也可能相等.

三、巩固练习

新华商场销售甲、乙两种冰箱,甲种冰箱每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.乙种冰箱每台进货价为2000元,市场调研表明:当销售价为2500元时,平均每天能售出8台;而当销售价每降低45元时,平均每天就能多售出4台,•商场要想使这两种冰箱的销售利润平均每天达到5000元,那么两种冰箱的定价应各是多少?

四、应用拓展

例3.某商店经销一种销售成本为每千克40元的水产品,据市场分析,•若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:

(1)当销售单价定为每千克55元时,计算销售量和月销售利润.

(2)设销售单价为每千克x元,月销售利润为y元,求y与x的关系式.

(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?

分析:(1)销售单价定为55元,比原来的销售价50元提高5元,因此,销售量就减少5×10kg.

(2)销售利润y=(销售单价x-销售成本40)×销售量[500-10(x-50)]

(3)月销售成本不超过10000元,那么销售量就不超过

10000=250kg,在40这个提前下,求月销售利润达到8000元,销售单价应为多少.

解:(1)销售量:500-5×10=450(kg);销售利润:450×(55-40)=450×15=6750元

(2)y=(x-40)[500-10(x-50)]=-10x2+1400x-40000

(3)由于水产品不超过10000÷40=250kg,定价为x元,则(x-400)[500-10(x-50)]=8000

解得:x1=80,x2=60

当x1=80时,进货500-10(80-50)=200kg<250kg,满足题意.

当x2=60时,进货500-10(60-50)=400kg>250kg,(舍去).

五、归纳小结

本节课应掌握:

建立多种一元二次方程的数学建模以解决如何全面地比较几个对象的变化状况的问题.

作业

第三篇:实际问题与一元二次方程教案

教学过程

〖活动1〗 问题 通过上节课的学习,大家学到了哪些知识和方法? 教师提出问题,学生回忆,选一位同学作答,其他同学补充.在本次活动中,教师应重点关注:(1)学生对列方程解应用问题的步骤 是否清楚;(2)学生能否说出每一步骤的关键和应注意问题.(活动1为学生创设了一个回忆、思考的情景,又是本课一种很自然的引入,为本课的探究活动做好铺垫).〖活动2〗 问题 要设计一本书的封面,封面长27cm ,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm).(1)本题中有哪些数量关系?

(2)正中央是一个与整个封面长宽比例相同的矩形如何理解?(3)如何利用已知的数量关系选取未知数?(4)列方程并得出结论.(5)反思解决问题的关键是什么?

教师展示课件,教师提出问题(1)学生分析,请一位同学回答,教师在题目中指出数量关系.教师提出问题(2)学生思考,请一位同学回答,可举简单例子说明,最后引导学生得出正中央矩形的长宽比是9︰7.问题(1)(2)都是帮助学生更好的理解题意,为后面的解题做以铺垫.教师提出问题(3)学生分组讨论,选代表上台演示、回答,每位同学要着重分析对题目中的数量关系的处理方法.问题(3)是活动2的中心环节,在本次活动中,教师应重点关注:(1)学生对几何图形的分析能力;(2)学生在未知数的选择上,能否根据情况,灵活处理;(3)在讨论中能否互相合作;(4)学生回答问题时的语言表达是否准确.学生充分的讨论,得出多种不同的方法,激发学生的学习热情,使学生体会解决问题的方法多样性.为活动3埋下一个伏笔.教师提出问题(4)学生分组,分别按问题三中所列的方程来解答,选代表展示解答过程.教师提出问题(5)学生充分的讨论,丰富解题经验.〖活动3〗某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条宽度相同的道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种方案(如图),根据两种设计方案各列出方程,求图中道路的宽分别是多少?使图(1),(2)的草坪面积为540米2.教师展示课件,请一位同学朗读题目.教师提出问题,学生回答方案1,学生通过探究与讨论,活跃了解题思路.教师提出方案(2)学生思考.因为有活动2的基础,选一位同学回答这一组问题即可,如有不完全的地方,教师适当补充.教师做屏幕演示,特别提醒学生:剩余草坪的面积,是否就是原草坪的面积减去2条路的面积?以引导学生注意道路重叠部分的处理.活动2是针对活动2的巩固性练习.《思考》:能不能把纵、横两条路移动一下,使列方程容易些? 学生分组讨论,教师指导.引领学生 讨论后请一位同学回答.教师引领学生发现两个图形都存重叠部分,但除此之外的剩余部分,第一个图是一个完整的矩形,易于表示;而第二个图中分为4块,所以不容易表示.《思考》是活动3的中心环节,以图形对比的问题为 引导,通过对比两个图形的联系与区别,启发学生方案1为模型,构建草坪问题的解题思路.学生分组讨论,画图,上台演示.教师与学生一起评价,总结图形变换的基本原则.在本次活动中,教师应重点关注:(1)学生的学习效果;(2)使学生充分体会图形变换的灵活性;(3)学生对图形的观察、联想能力;(4)教师要强调图形变换中图形改变、位置改变、关键量不变的原则.在学生充分的思维活动之后,学生会自然产生动手实践的欲望,教师可以给学生一定的空间去发挥想象,同时也要注意对图形变换的指导,可以对部分不太合适的答案也进行一下点评.〖活动4〗 问题 通过本课的学习,大家有什么新的收获和体会?

〖活动5〗当堂测试

布置作业: 教科书53页,习题21.3第5、8题;教科书58页,复习题21第7、10题,教师应重点关注:

第四篇:实际问题与一元二次方程

实际问题与一元二次方程

(一)-------传播问题和比赛问题

列方程解应用题的一般步骤:(1)__________(2)__________(3)__________(4)__________(5)__________(6)__________。

1、有一人患了流感,经过两轮传染后共有

点121人患了流感,(1)每轮传染中平均一个人传染了几个

人?

(2)如果按照这样的传染速度,三轮传

染后有多少人患流感?

2、有一人患了流感,经过两轮传染后共有

100人患了流感,那么每轮传染中平均一个人传染的人数是_________,如果不及时控制,第三轮将又有_________人被传染?

3、某种植物的主干长出若干数目的枝干,每个枝干又长出相同数目的小分支,若小分支、枝干和主干的总数是73,则每个枝干长出_________个分支?

4、某生物实验室需培养一群有益菌。现有

60个活体样本,经过两轮培植后,总和达到目24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌。(1)每轮分裂中平均每个有益菌可分裂

出多少个有益菌?、(2)按照这样的分裂速度,经过三轮后

有多少个有益菌?

5、(1)参加一次足球比赛的每两队之间都

进行两次比赛,共要比赛90场,共有多少个队参加比赛?

(2)参加一次篮球比赛的每两队之间都进行两次比赛,共要比赛15场,共有多少个队参加比赛?

6、生物兴趣小组的同学将自己制作的标本

向本组其他成员各赠送一件,全组共互赠了182件,则该兴趣小组共有多少名同学?

7、在某次聚会上,每两个人都握了一次手,所有人共握手10次,则有多少个人参加这次聚会?

8、某航空公司有若干个飞机场,每两个飞

机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场多少个?

9、(1)两个相邻偶数的积是168,求这两个偶数。(2)两个连续偶数的和为6和8,则这两个连续偶数是________。

第五篇:一元二次方程实际问题

例3.某商店经销一种销售成本为每千克40元的水产品,•据市场分析,•若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:

(1)当销售单价定为每千克55元时,计算销售量和月销售利润.

(2)设销售单价为每千克x元,月销售利润为y元,求y与x的关系式.

(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?

分析:(1)销售单价定为55元,比原来的销售价50元提高5元,因此,销售量就减少5×10kg.

(2)销售利润y=(销售单价x-销售成本40)×销售量[500-10(x-50)]

(3)月销售成本不超过10000元,那么销售量就不超过10000=250kg,在这个提前下,40

•求月销售利润达到8000元,销售单价应为多少.

解:(1)销售量:500-5×10=450(kg);销售利润:450×(55-40)=450×15=6750元

(2)y=(x-40)[500-10(x-50)]=-10x2+1400x-40000

(3)由于水产品不超过10000÷40=250kg,定价为x元,则(x-40)[500-10(x-50)]=8000解得:x1=80,x2=60

当x1=80时,进货500-10(80-50)=200kg<250kg,满足题意.

当x2=60时,进货500-10(60-50)=400kg>250kg,(舍去).

例4.某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.

分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其它依此类推.解:设这种存款方式的年利率为x

则:1000+2000x·80%+(1000+2000x·8%)x·80%=1320

整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0

解得:x1=-2(不符,舍去),x2=

答:所求的年利率是12.5%.

1=0.125=12.5% 8

下载实际问题与一元二次方程(第1课时)教案word格式文档
下载实际问题与一元二次方程(第1课时)教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    实际问题一元二次方程

    22.3《实际问题与一元二次方程》学案 课型:上课时间:课时: 学习目标: 能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型. 学习过程:......

    《实际问题与一元二次方程》教学设计(第3课时)

    《实际问题与一元二次方程》(第3课时)教学设计 北京市海淀区中关村中学 杨爱青 一、内容和内容解析 1.内容 用一元二次方程解决“封面设计问题”. 2.内容解析 本节课是21.3实际问......

    21.1一元二次方程(第1课时)

    21.1一元二次方程(第1课时) 教学内容 一元二次方程概念及一元二次方程一般式及有关概念. 教学目标 了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;•应用一元二次方......

    21.3.1 实际问题与一元二次方程

    21.3.1 实际问题与一元二次方程(1) 学习目标: 1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.并能根据具体问题的实际意义,检验结果......

    【2014 21.3 实际问题与一元二次方程(第1课时)教学案 (新版)新人教版

    21.3实际问题与一元二次方程(1) 【学习目标】 1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型. 2.能根据具体问题的实际意义,检验结......

    实际问题与一元二次方程(面积问题)教案(最终定稿)

    实际问题与一元二次方程 -------面积问题 七中刘英 【教学目标】 1.知识与技能 掌握面积法建立一元二次方程的数学模型并运用它解决实际问题。2.过程与方法 经历将实际问......

    九年级数学上册 21.3 实际问题与一元二次方程(第1课时)教案 (新版)新人教版

    21.3实际问题与一元二次方程(1) 【教学目标】 知识与技能:1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型. 2.能根据具体问题的实......

    实际问题与一元二次方程题型归纳总结

    实际问题与一元二次方程题型归纳总结 一、列一元二次方程解应用题的一般步骤: 与列一元一次方程解应用题的步骤类似,列一元二次方程方程解实际问题的一般步骤也可归纳为:“审、......