六年级工程问题试讲教案

时间:2019-05-15 02:48:22下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《六年级工程问题试讲教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《六年级工程问题试讲教案》。

第一篇:六年级工程问题试讲教案

六年级奥数专题

工程问题

知识点导入:

工程问题是应用题中一种类型,在工程问题中,一般要出现三个量:工作总量、工作时间(完成工作总量所需的时间)和工作效率(单位时间内完成的工作量)。

这三个量之间有下述一些关系: 工作效率×工作时间=工作总量 工作总量÷工作时间=工作效率 工作总量÷工作效率=工作时间

为叙述方便,把这三个量简称为工量、工时、工效。例题选讲:

1、一项工程,甲单独完成12天,乙单独完成需9天,若甲先做若干天后乙接着做,共用10天完成,问甲做了几天?

2、甲、乙两人植树,单独植完这批树甲比乙所需的时间多1/3,如果两人一起干,完成任务时乙比甲多植树36棵,问这批树有多少棵?

3、一件工作甲先做6小时,乙接着做12小时可以完成。甲先做8小时,乙接着做6小时也可以完成。如果甲做3小时后由乙接着做,还需要多少小时完成?

知识点导入:在解答“水管注水”问题时,会出现一个进水管,一个出水管的情况。若进水管、出水管同时开放,则积满水的时间=1÷(进水管工效-出水管工效);排空水的时间=1÷(出水管的工效-进水管的工效)。

4、蓄水池有一条进水管和一条排水管,要灌满一池水,单开进水管需5小时。排光一池水,单开排水管,需3小时。现在池内有半池水,如果按进水,排水,进水,排水„„的顺序轮流各开1小时。问多长时间后水池的水刚好排完?(精确到分钟)

例5有甲、乙两项工作,张师傅单独完成甲工作要9天,单独完成乙工作要12天.王师傅单独完成甲工作要3天,单独完成乙工作要15天.如果两人合作完成这两项工作,最少需要多少天?

巩固提高

1、一项工程,甲单独做12天可以完成,如果甲单独做3天,余下工作由乙去做,乙再用6天可以完成。问甲单独做6天,余下工作乙单独要做几天?(4天)

2、一条水渠,甲乙两队合挖30天完工。现在合挖12天后,剩下的由乙队挖,又用24天挖完。这条水渠由乙单独挖,需要多少天?(40天)

3、水箱上装有甲、乙两个注水管。单开甲管20分钟可以注满全箱。现在两管同时注水2.5分钟,注满水箱的5/24,如果单开乙管,需要多少分钟注满水箱?(30分钟)

4、做一批儿童玩具。甲组单独做10天完成,乙组单独做12天完成,丙组每天可生产64件。如果让甲乙两组合作4天,则还有256件没完成,现在决定三个组合做这批玩具,需要多少天完成?(4天)

5、筑路队预计30天修一条公路,先由18人修12天只完成全部工程的1/3。如果想提前6天完工,还需增加多少人?(18人)

6、一件工作,甲5小时先完成了1/4,乙6小时又完成了剩下任务的一半,最后余下的部分由甲、乙合作,还需多少时间才能完成?(10/3)

第二篇:六年级工程问题应用题

工程问题

【含义】工程问题主要研究工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。

【数量关系】解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。

工作量=工作效率×工作时间工作时间=工作量÷工作效率

工作时间=总工作量÷(甲工作效率+乙工作效率)

【解题思路和方法】变通后可以利用上述数量关系的公式。

例1一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?

解题中的“一项工程”是工作总量,由于没有给出这项工程的具体数量,因此,把此项工程看作单位“1”。由于甲队独做需10天完成,那么每天完成这项工程的1/10;乙队单独做需15天完成,每天完成这项工程的1/15;两队合做,每天可以完成这项工程的(1/10+1/15)。由此可以列出算式:1÷(1/10+1/15)=1÷1/6=6(天)

答:两队合做需要6天完成。

例2一批零件,甲独做6小时完成,乙独做8小时完成。现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?

解设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/6-1/8),二人合做时每小时完成(1/6+1/8)。因为二人合做需要[1÷(1/6+1/8)]小时,这个时间内,甲比乙多做24个零件,所以(1)每小时甲比乙多做多少零件? 24÷[1÷(1/6+1/8)]=7(个)

(2)这批零件共有多少个?7÷(1/6-1/8)=168(个)

答:这批零件共有168个。

解二上面这道题还可以用另一种方法计算:

两人合做,完成任务时甲乙的工作量之比为1/6∶1/8=4∶3

由此可知,甲比乙多完成总工作量的4-3/4+3=1/7

所以,这批零件共有24÷1/7=168(个)

例3一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?

解必须先求出各人每小时的工作效率。如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是

60÷12=560÷10=660÷15=4因此

余下的工作量由乙丙合做还需要(60-5×2)÷(6+4)=5(小时)

答:还需要5小时才能完成。

例4一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?

解注(排)水问题是一类特殊的工程问题。往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的流量就是工作效率。

要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。为此需要知道进水管、排水管的工作效率及总工作量(一池水)。只要设某一个量为单位1,其余两个量便可由条件推出。

我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(1×4×5),2个进水管15小时注水量为(1×2×15),从而可知

每小时的排水量为(1×2×15-1×4×5)÷(15-5)=1

即一个排水管与每个进水管的工作效率相同。由此可知

一池水的总工作量为1×4×5-1×5=15又因为在2小时内,每个进水管的注水量为1×2,所以,2小时内注满一池水

至少需要多少个进水管?(15+1×2)÷(1×2)=8.5≈9(个)

答:至少需要9个进水管。

第三篇:工程问题教案

工程问题教案

教学目标:

1、让学生经历用“假设法”解决分数工程问题的过程,理解并掌握把工作总量看作单位“1”的分数工程应用题的基本特点、解题思路和解题方法。

2、通过自主探究,评价交流的学习活动,培养学生分析、比较、综合、概括的能力。教学重点和难点:

能知道把工作总量看作单位“1”,掌握工程问题应用题的数量关系。教学过程:

一、复习旧知,情景引入

师:今天,我们将继续解决生活中的数学问题。先让我们看一个修路队修路的情况。出示:有一个修路队修路的情况:

(1)修一条300米的公路,甲队修10周完成,平均每周修多少米?(2)修一条300米的公路,甲队每周修30米,多少周能完成? 师:默读题目,并在练习本上列式计算。

指名口答,提问:你是根据什么数量关系列式的?根据回答,教师板书:

工作总量÷工作效率=工作时间

追问:要求工作时间,需要知道什么?(工作总量和工作效率)

图片引入:为了建设新农村,各地都在进行乡村公路的建设。王庄村也准备新修一条公路。现在有2个工程队准备应聘参加这条公路的建设。(出示课件)他们单独修完这条公路所用的时间是甲队10周完成,乙队要15周完成。师: 如果让你选择工程队,你怎样选择?还可以怎么选择?

学生可能会回答,甲,也可能选择乙,合修。(对学生的选择作追问,为什么选择甲)根据学生的回答,老师引入:为了加快工程进度,王庒村选择了两队合作的方式进行。

二、探究新知

1、出示例题,分析题目信息:

王庄村要修一条公路,甲队10周完成,乙队15周完成。如果两队同时从公路两端修,几周可以完成?

师:(观察题目,要求合修的时间,需要知道什么?(教师指着数量关系

生:需要知道工作总量和工作效率。

师:可这里工作总量,也就是公路全长并没有告诉我们?我们可以怎么解决? 预设:如果学生说单位1,教师肯定他的想法,师:还可以假设公路全长是多少?(预设:如果单位不太合适,说明修公路,这里用千米更好一些。)

根据学生的回答,老师板书:300米,150米,60米,30米,1等。

师:现在,你们假设了这么多数据。那好,就用你选择一个公路的全长试一试解决这道题吧。

2、辨析各种解法。

(1)学生用假设法解决,老师巡视,发现学生的各种方法,并抽不同假设的同学板书自己的方法。

(2)小组交流:和小组同学交流一下你的方法,看看其他同学的方法能给你什么启示?(3)全班展示并评价各种方法,让学生说说自己解决的思路与方法。预设:A:假设全长300米,300÷(300÷15+300÷10)=6(周)

B:假设全长150米,150÷(150÷15+150÷10)=6(周)

C:假设全长60米 60÷(60÷15+60÷10)=6(周D:假设全长为单位1,1÷(1/15+1/10)=6周

师:黑板上有是几个同学的解法,我们来听听他们解决的思路是什么。

对于假设具体的数据的解法,重点分析第一种,让学生说出具体的数量关系。(如果学生说不太清楚,指导说甲队的工效,乙队的工效,怎样求的合修的时间。)

师:哪些同学是假设的300米的,假设60米的呢举手看一看

对用分率进行解的方法,老师作重点追问,他的想法跟大家不一样,让他自己说说想法。提问:

这里的1指什么,1/10,1/15指什么,1/10+1/15各代表什么?为何用1÷?请学生结合工作总量,工作效率与工作时间的关系说说。(同桌说说这种解法的思路)

对有同学用1÷10=1/10,说明根据分数与除法的关系,1/10就能表示出1÷10的关系。今后遇到这种情况,可以直接写1/10。

3、分析工程问题的特点

评价:除了假设300米,60米和单位1的,其他同学你假设的多少,得到的结果又是多少呢?

引发思考:不知道你们发现没有,你们各自假设的公路全长不同,但答案都是6周,为什么呢?

先让学生独立思考,再和小组同学进行讨论。全班交流:你有些什么发现,与全班同学交流一下。

预设:公路全长增加,两个队每天修的米数也在增加,因此,结果都是6周。

运用了除法中商不变的规律。

公路全长与两个队单独修的时间的比是不变的。

如果说因为他们每个队的工效在变化,就追问,工效在变化,但他们所修的公路全长也在变化。

两个队每天修的占全长的几分之几没变,(用前面的数据验证这一说法。)

引导小结:他们单独修的时间不变,无论假设公路全长是多少,两个队每天修的始终占全长的1/10和1/15。对这条公路的全长而言,他们每天修路的米数在变化,但他们每天修这条路的几分之几没有变。

比较这几种解法,哪种解法更简便一些?

4、即时练习

象合修一段路的问题,在工作中会经常遇到。大家看

出示:一件工作,甲要4小时完成,乙要时6小完成。如果两人合作,几小时可以完成这件工作?

学生独立完成,集体订正时,说说自己的解题思路。

5、揭示课题

像这样的如:做一项工作、修一条公路这样的做工问题我们把它叫做“工程问题”(板书课题)。齐读课题

6、小结反思:仔细观察今天,我们解决的工程问题,你觉得有什么特点?可以怎样解决?

根据全班的讨论,得出解决工程问题可以用假设法,利用具体的数量关系进行解决,也可利用分数方法进行解决。

三、巩固反馈,同类拓展。

1、完成课堂活动,第2题。(将两道题放在一起)

学生独立完成,集体订正。展示学生用具体数量和用分数方法解决的方法。比较两种方法的特点。根据交流,强调:相遇问题也可根据工程问题的思考方法进行解决。

2、同类拓展。

一批布,可单独做上衣20件,单独做裤子可做30件。如果将上衣和裤子配套做,可做多少套?

(1)(20+30)÷

2(2)300÷(300÷20+300÷30)

(3)1÷(1/20+1/30)

(4)300÷(1/20+1/30)重点指导错误原因。学生选择后,说说学生选择的理由。及思路。

老师小结练习情况:数学的许多知识是相通的。就象工程问题的思考方法就可以帮助我们解决其他许多类似的数学问题。3提升,补充

1、回到例题。

刚才,我们仔细研究了例题,发现有许多合作的方案。老师出示各种合作方案,学生只列式,不计算。

(1)如果甲,乙两队合作两周,修这条公路的几分之几?(2)甲,乙两队合作几周,就可以完成这条公路的2/3?

(3)如果丙队30周完成,现在三个队一起合作,几周可以修完这条公路?,并独立列式不计算,全班展示,反馈。

五、小结

说说今天你的收获?

延伸:今天,我们在工作总量也就是公路全长不知道的情况下,通过假设的公路全长,很好的解决了工程问题,如果,我们假设甲队或乙队的工作效率,得出的时间会不会和我们今天得出的结果一样呢?同学们下来可以试一试,也可以看看书上第90页上的内容。

第四篇:工程问题教案

小学六年级数学上册分数除法应用题例7工程问题

教学目标:通过教学,使学生初步理解工程应用题的解题方法,会解答简单的工程应用题。

教学重点:掌握题中的数量关系。教学过程:

一、复习铺垫,迁移导入

口算(教师出示,学生计算)

1、甲队修一条公路,每天修18米,20天完成,这条公路有多少长?

2、修一条360米的公路,甲队修12天完成,平均每天修多少米?

3、修一条360米的公路,甲队每天修18米,多少天能完成?(设计意图:主要复习下工程问题的数量关系式)(板书: 工作总量

工作效率 工作时间)

4、导学作业A第一小题:小红看了一本200页的故事书,10天看完,每天看了()页,每天看了这本书的(.....)(.....),5天看了这本书的。(......)(......)(设计意图:复习工作总量与单位“1”,为新课做铺垫。)

二、创设情境,探究新知

出示例7:张村准备新修一条公路。两个工程队,一队单独修10天完成,二队单独修要15天完成。如果两队合修,多少天能修完? 先学生自我完成,教师巡视。(收集信息,等下反馈)。

问题(1)思考:要求“两队合修,多少天能修好”,需要知道„„数量关系是„„ 预设(这条路的长度“工作总量”;两队1天各修的长度和 “工作效率和”)

工作总量÷工作效率和=工作时间(板书)

(2)已知的信息够吗?如果不够,怎么办?

预设1:公路长度为30KM,预设2:公路长度为单位“1” 反馈预设1:假设公路长度为30KM,生:30÷10=3(km)30÷15=2(km)30÷(3+ 2)=6(天)师:问每一步求的是什么,(3+ 2)求的是什么? 生解答。(结合线段图讲解)反馈预设2:把工作总量看作单位“1”。问题:1是什么?11是什么?是什么? 1015生解答。(结合线段图)

不管假设这条道路的长度是多少,答案都是相同的,把这条路的长度假设成是单位“1”,在计算时是比较简便的。

三、巩固练习,提升认识

1、课本第43页做一做:这批货物,只用我的车运,6次才能运完。只用我的车运,3次就能运完。如果两辆车一起运,多少次才能运完。

2、课本练习九第六题,挖一条水渠,王伯伯每天挖整条水渠的挖整条水渠的1。两人合作,几天能挖完? 301,李叔叔每天203、张村准备新修一条公路。两个工程队,一队单独修10天完成,二队单独修要15天完成。两队合修3天后,接下来一队单独完成,还需要多少天能修完?

4、张村准备新修一条公路。两个工程队,一队单独修10天完成,二队单独修要15天完成。二队先修3天后,一队来帮忙,两个队伍还需要多少天能修完?

四、全课小结

这节课你有什么收获? ①把工作总量看作单位“1”;

②谁几天完成,谁的工作效率就是几分之一; ③用工作总量除以工作效率和就得到工作时间。

第五篇:工程问题教案

《工程问题》教学设计

教学内容:人教版小学数学教材六年级上册第42~43页例7及相关练习。

教学目标:

1.让学生经历用“假设法”解决分数工程问题的过程,理解并掌握把工作总量看作单位“1”的分数工程应用题的基本特点、解题思路和解题方法。

2.通过猜想验证、自主探究、评价交流等学习活动,培养学生分析、比较、综合、概括的能力。

教学重点:认识工程问题的特点,掌握其数量关系、解题思路和方法。

教学难点:学会用“工程问题”的方法解决实际问题。

教学准备:课件。

教学过程:

一、复习旧知

师:今天,我们将继续解决生活中的数学问题。先来看看,你能解决下面的问题吗?(ppt课件出示。)

(1)修一条360米的公路,甲队修12天完成,平均每天修多少米?

360÷12=30(米)。师:你是怎样列式的?为什么?(教师板书:工作总量÷工作时间=工作效率。)

(2)修一条360米的公路,甲队每天修18米,多少天能完成?

360÷18=20(天)。

师:你是怎样列式的?为什么?(教师板书:工作总量÷工作效率=工作时间。)

(3)加工一批零件,计划8小时完成,平均每小时加工这批零件的几分之几?

1÷8=。(师:你是根据什么来列式的?)

(师小结:不知道工作总量时,我们可以用单位“1”来表示,相对应的工作效率就用时间分之一来表示。)

(4)一项工程,施工方每天完成,几天可以完成全工程?

1÷=6(天)。(师:你又是根据什么来列式的?)

【设计意图】小学生学习数学的过程就是新知识同原有知识相互作用,发展形成新的数学认识结构的过程。因此,在复习准备阶段,设计了上述4道基本练习题,帮助学生激发原有的知识记忆,使学生能进一步熟练运用工作总量、工作时间、工作效率这三个量之间的关系解决实际问题,并适当渗透工作总量、工作效率不是具体的数量时应该怎样表示,为学习新知做好铺垫。

二、创设情境,设疑导入

为了建设新农村,各地都在进行乡村公路的建设。张村也准备新修一条公路。两个工程队,一队单独修12天完成,二队单独修要18天完成。(ppt出示。)

师:从以上条件,我们可以获得什么信息?

(预设:一队每天修这条公路的;二队比一队多用6天完成;二队每天修这条公路的……)

师:假如你是负责人,你会承包给谁?为什么?

如果要修得又快又好,怎么办?

(预设:让甲队修;可以让两个队一起修。)

师:如果两队合修,多少天能修完?(PPT出示完整题目。)

张村准备新修一条公路。两个工程队,一队单独修12天完成,二队单独修要18天完成。如果两队合修,多少天能修完? 【设计意图】教材中的例题设计了学生熟悉的修路情境,合理利用情境激发学生的学习兴趣,逐步展开,并在设疑中生成有教学价值的问题——“如果两队合修,多少天能修完”,展开新课教学。

三、猜想验证,合作探究

(一)猜想。

师:请同学们先猜一猜两个队一起修路,大约几天能修完?(教师随机板书学生所说的天数。)

师:在这些天数中,哪些天数可以排除?你是怎样想的?(得出“两队合修的天数比12天少”的结论。)

(二)讨论。

师:到底是几天呢?观察题目,想一想,要知道合修的时间,需要知道什么?

(预设:需要知道工作总量和工作效率。)

师:可这里的工作总量(也就是道路全长)是未知的,怎么解决?

可以假设道路全长是多少?

根据学生的回答,老师随机板书假设的长度(预设单位“1”,如36千米等。如果是假设具体数量,考虑12和18的公倍数会方便些)。

师:请你选择其中一个道路全长的值,试一试解决这道题吧。

(三)验证,辨析各种解法。

1.学生用假设法解题,老师巡视,抽取不同假设的同学板书演示。

2.全班交流评价各种方法,让学生说说自己解决的思路与方法。

预设:(1)假设道路全长36千米,36÷(36÷12+36÷18)=7.2(天);

(2)假设道路全长720米,720÷(720÷12+720÷18)=7.2(天);

(3)假设道路全长为单位“1”,1÷=

(天)。

对于假设具体数据的解法,分析一种,让学生说一说数量关系。(先分别求出两队的效率,再用工作总量除以合作工作效率,即两队效率之和,求出合作修路所需的工作时间。)

对用单位“1”及分率解题的方法,老师结合PPT进行重点追问:

这里的1指什么,各指什么?代表什么?为何用1÷

请学生结合工作总量、工作效率与工作时间的关系说一说。(同桌互相讨论这种解法的思路。)预设:如果有同学用1÷(1÷12+1÷18),肯定并说明可以直接写作的形式。

【设计意图】猜想与验证是学生自主探究的有效方法,让学生发散思维,在猜测中预测结果,提高学生参与验证的热情。另外,因为学生的认知基础不同,允许验证的方法多样化,对于正确的答案都能给予肯定,让学生享受成功的喜悦。

(四)小结建模,策略优化。

1.同学们各自假设的道路总长不同,但答案都是7.2天,说明什么?

(说明完成时间和道路总长没有关系。)

在道路总长发生变化的时候,哪些量在变,哪些量没有变?

引导小结:他们单独修的时间不变,无论假设道路全长是多少,两个队每天修的始终占道路全长的和.也就是说对这条公路的全长而言,他们每天修路的米数在变化,但他们每天修这条路的“几分之几”没有变。

2.比较这几种解法,哪种解法更简便一些? 小结 :这道题没有给出具体的工作总量,我们可以把工作总量看作单位“1”。

根据“一队单独修12天完成”可知一队每天修全长的(也就是一队的工作效率),根据“二队单独修18天完成”可知二队每天修全长的(也就是二队的工作效率),所以表示两队工作效率之和。

用工作总量单位“1”除以工作效率之和,即可求得两队合修所需的工作时间。

【设计意图】在验证过程中,学生发现“工作总量变了,工作时间还是不变”,教师要引导学生悟出其中的算理,使每一个学生自主有效地形成新知。从上一环节的算法多样化,到这一环节的方法小结优化,使学生的思维“量”“质”兼备。

(五)点明课题:这就是我们今天要学习的“工程问题”(板书课题)。

(六)针对性练习。

师:咱们一起来试试解题吧!(ppt出示教材第43页“做一做”。)

交流解题方法,说一说“把工作总量看作单位1,效率就是次数分之一”。(PPT直观演示线段图。)

【设计意图】发挥多媒体计算机辅助教学的优势,出示情境,绘制线段图,为学生提供形象直观的演示,让学生在观察、比较中解决疑难问题,进一步突破本课教学难点,提高教学效率。

四、实践应用

(一)辨析性练习

判断题。

(在正确算式后面的括号内打“√”,错误算式后面的括号内打“×”。并说明理由。)

解答时出现了如下几种列式:

①300÷(8+10)……(); ②300÷(300÷8+300÷10)……();

③300÷……(); ④1÷(300÷8+300÷10)……();

⑤1÷……()。

【设计意图】学生对知识的理解容易出现片面性和笼统性,会把刚学的新知识与相似的旧知识混淆,通过辨析,进一步明确工作总量和工作效率必须要相对应,从而促进学生对工程问题本质特征的理解。

(二)变式训练,类推应用

1.甲车从A城市到B城市要行驶2小时,乙车从B城市到A城市要行驶3小时。两车同时分别从A城市和B城市出发,几小时后相遇?(改变问题情境,将工程问题转化为行程问题。)

2.某水库遭遇暴雨,水位已经超过警戒线,急需泄洪。这个水库有两个泄洪口。只打开A口,8小时可以完成任务,只打开B口,6小时可以完成任务。如果两个泄洪口同时打开,几小时可以完成任务?

【设计意图】通过变式训练,引导学生寻找知识间的联系,进行迁移、类推,加强学生对本节课的理解与对知识的消化,有效巩固工程问题的解题思路和解题方法,从而提高解题能力。

五、全课总结

说一说本节课你有什么收获?

今天学习工程问题,这类题目的特点是:①把工作总量看作单位“1”;②谁几天完成,谁的工作效率就是几分之一;③用工作总量除以工作效率和就得到工作时间。

六、课外作业

1.教材第45页第6题;

2.阅读教材第45页“你知道吗”内容。

下载六年级工程问题试讲教案word格式文档
下载六年级工程问题试讲教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    工程问题教案

    工程问题教案 教材简析:工程问题应用是分数应用题中的一个特例。它的数量关系和解题思路与整数工程应用题基本相同。本节教学,主要是用整数工程应用题引入,让学生根据具体数......

    工程问题教案

    讲义:工程问题 三、内容讲解: 【知识要点】 一、知识地图 工程问题的基本数量关系 简单的工程问题工程与行程的问题 工程问题分类及解法分析 复杂工程问题 两人工程问题交替......

    试讲教案

    试讲一:教育管理学内容的三个层次 教育在当代社会是关系到每个人,涉及到方方面面,是我们实现中国梦的基础,而且,教育处在复杂的社会环境中,所以教育是复杂的,教育管理学也同样是复......

    试讲教案

    讲课人:普江婷 学生:七年级 课时;20分钟 一、教学目标; 课题:真实动人的艺术形象 1、通过欣赏了解西方传统绘画的总体风格,掌握欣赏写实性绘画作品的基本方法。 2、通过欣赏,初步......

    试讲教案

    专题一:高考语文18个文言虚词小结 同学们,大家好!我们近几次课程的任务是对高考语文中18个文言虚词的意义及其用法做一个总结性地学习。由于时间关系,我们今天重点学习其中的六......

    三单-六年级工程问题

    六年级数学《工程问题》预习单评价台难不住我1.修一条360米的公路,甲队修12天完成,平均每天修多少米?2.修一条360米的公路,甲队每天修18米,多少天能完成?3.加工一批零件,计划8小时......

    六年级数学工程问题计算

    工程问题计算 教学内容:人教版九年义务教育五年制小学数学第九册第95页例9及相应练习。教学目标:1、使学生认识工程应用题的特点,初步掌握它的解答方法,理解解题思路。2、培养......

    六年级数学工程问题说课稿

    六年级数学工程问题说课稿 一、教材分析 《工程问题》这部分内容是九年义务教育小学数学第十一册第三单元分数、小数应用题的最后一部分内容。它是学生在学习了整数工程问题......