第一篇:轴对称和平移的坐标表示教学反思
《轴对称和平移的坐标表示(1)》教学反思
本节课通过复习轴对称的知识点以及轴对称的图片来引入新课,然后在图片上加上箭头将轴对称的知识点融入到平面直角坐标系中,很好的过渡到新课中去,这样的设计能强烈地吸引学生的注意力,较好地激发学生的学习兴趣。本节课主要是让学生在平面直角坐标系中通过作图去寻找关于坐标轴对称的点的坐标的一般规律,培养学生观察、归纳、分析问题、解决问题的能力,使学生体验数形结合思想。寻找规律后检验其正确性是科学研究问题的一个必不可少的步骤,通过一系列的练习培养学生思维的流畅性,主要形式是简单的练习、游戏和在平面直角坐标系作轴对称图形来巩固和理解知识点,通过这一系列的练习使学生特别是学有困难的学生都能达到基本的学习目标,较好地激发学生的学习兴趣,符合八年级学生的心理特征,也是本节课所学内容的一个较好运用。
本节课的不足之处有:一是在找点关于坐标轴对称的变化规律的时候可以适当的添加学生讨论的环节,然后让学生自己去总结规律,这样既可以加深学生对知识点的理解,也可以培养学生观察和归纳的能力。二是学生练习的时间可以稍微多一点。
第二篇:用坐标表示平移教案
6.2.2用坐标表示平移
自贡市22中
钟长敏
教学目标
一.知识技能
1.了解坐标平面内平移点的坐标变化规律;2.会写出平移变化后, 点的坐标.二.过程与方法
1.通过坐标平面内, 点的坐标平移变化情况, 进一步学生抽象概括的能力;2.通过坐标表示点的平移, 体会数形结合的思想.三.情感态度与价值观
在坐标系中, 通过对点坐标的平移变化的探究, 培养学生合作交流的意识和探索精神.教学重点与难点
1.重点:点的坐标平移变化规律.
2.难点:利用坐标变化与图形平移的关系解决实际问题. 教学过程
一、复习引入
1. 什么叫做平移?(回忆不上动作展示)2 .平移后得到的新图形与原图形有什么关系?(我们学习了坐标,今天我们就一起来学习用坐标表示平移。一起进入今天的学习)
二、授新课
(一).出示学习目标.(1)了解坐标平面内平移点的坐标变化规律;(2)会写出平移变化后, 点的坐标.(二)探究平移与点的坐标的变化关系
1、认真看一看
将点A(-2,-3)向右平移3个(5个)单位长度,它的坐标是
。把点A向上平移5个(7个)单位长度呢?(课件演示)
2、想一想, 议一议
你能找出上述两种平移变化后,坐标的变化规律吗? 把你的发现和小组其他成员进行交流。
3、动手验证
请同学们在坐标纸上建立坐标系,描出点A(-1,-2).(1)将点A向右平移5个单位长度,得到点A1,标出这个点,并写出它的坐标;
(2)将点A向上平移4个单位,得到点A2,标出这个点,并写出它的坐标.4、总结规律:图形平移与点的坐标变化间的关系(出示并朗读)
5、趁热打铁(出示课件练习)
(1).在平面直角坐标系中,把点P(-1,-2)向上平移4个单位长 度所得点的坐标是。
(2)已知点A(-4,-6),将点A先向右平移4个单位长度,再向上平移6 个单位长度,得到A′,则A′的坐标为________.(三)探究点的坐标的变化与平移关系
1、例题探索1(平移引起点坐标变化,点坐标变化又会怎样呢?)(出示课件9引导学生思考)(1)横坐标变化,纵坐标不变。(2)横坐标不变,纵坐标变化。(3)横坐标变化,纵坐标变化。
2、总结规律:点的坐标的变化与平移关系(课件出示并朗读)
3、回顾两条规律。
三、快乐之旅——非常“6+1”
四、课堂小结
本节课你学到了什么?(出示课件完成课本两个归纳P51-52)
五、作业
1、随堂小练P13
2、:教材P54第3、4题(做在书上)教后反思:
第三篇:《用坐标表示轴对称》教学设计
人教版八年级上册数学
12.2 用坐标表示轴对称
教学设计
单位:获嘉县第一初级中学
姓名:尚春平
邮编:453800
电话:4510903
邮箱:hjdycjzx@126.com
教材分析
1.这一章主要研究几何图形的轴对称,并进一步利用轴对称来研究等腰三角形的性质 2.这一节主要学习用坐标表示轴对称,要求学生掌握关于x轴和y轴对称的两个点的坐标之间的关系。学情分析
1.学生已经学习了直角坐标系,对坐标已有一定的认识。
2.学生在前面已经学习了相反数和直角坐标系,具有了一些初步知识,但学生的基础比较差,学习主动性不够,动手能力和空间想象能力比较薄弱。
教学目标
1、了解一个点与它关于x轴或y轴对称的对称点的坐标的规律。
2、能利用这个规律解决求对称点坐标的问题
3、能在直角坐标系中画出一个图形的轴对称图形 教学重点和难点
重点:用坐标表示点关于坐标轴对称的点的坐标. 难点:找对称点的坐标之间的关系、规律.
教学过程
[活动1]创设情境承上启下 图片故事导入
①一边呈现老北京城的景观,一边话说2008奥运会,北京吸引了许多游客……
提问:同学们去过北京吗?知道老北京城整体上有什么样的特点吗?它的对称轴在哪?知道故宫,知道东直门、西直门吗?其中,东直门、西直门就关于它轴对称。现在咱们以这条对称轴为y轴,天安门为原点,就可以在这个平面图上建立直角坐标系。
②引出小故事:一天小明在天安门广场玩,一位外国友人向小明问西直门的位置,可小明只知道东直门的位置,不过,小明想了想,就准确的告诉了她。提问:你知道西直门的位置具体在坐标系中的哪一点上吗? 【今天咱们就一起来学习《用坐标表示轴对称》 [活动如图:
学生动手画图
教师板书课题《用坐标表示轴对称》 组织学生进行讨论交流,并个别提问
加强学生对已学知识的复习,并为新知埋下伏笔
[活动
在如图所示的平面坐标系中,画出下列已知点及其对称点,并把坐标填入表格中.看看每对对称点的坐标有怎样的规律.再和同学讨论一下.
已知点A(2,-3),B(-1,2),C(-6,-5),D(,1),E(4,0).
关于x轴的对称点A′(____,____)B′(_____,______)C•′(•_____,•_____)••D′(____,_____)E′(_____,_____).
关于y轴的对称点A″(_____,____)B″(_____,______)C″(•_____,•_____)••D″(____,_____)E″(_____,_____)归纳:
1、点(x,y)关于x轴对称的点的坐标为(,)
2、点(x,y)关于y轴对称的点的坐标为(,)
组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳. 板书规律
学生认真思考,讨论、动手实践。学生归纳规律
学生在探索的过程中会遇到困难,出现问题是通过合作学习加以解决 在课堂中培养学生归纳、总结的习惯和能力 [活动 练习:
1.分别写出下列各点关于x轴和y轴对称的点的坐标:(-2,6),(1,-2),(-1,3),(-4,-2),(1,0). 引导学生思考,动手 学生思考、回答
通过一定的练习使学生特别是学有困难的学生都能达到基本的学习目标 [活动学习例题
例
2、已知四边形ABCD的顶点坐标分别为:A(-5,1)、B(-2,1)、C(-2,5)、D(-5,4),分别作出四边形关于x轴与y轴对称的图形
教师展示学生的作品,并给与鼓励。关注学生的动手实践能力和归纳能力、表达能力
培养学生运用知识的能力
让学生探究关于坐标轴对称的点坐标之间的联系,渗透数形结合的思想。[活动 练习
2.例:已知△ABC的三个顶点的坐标分别为A(-3,5),B(-4,1),C(-1,3),作出△ABC关于y轴对称的图形。
教师展示学生的作品,并给与鼓励。关注学生的动手实践能力,教师指导学生参与活动,倾听鼓励学生交流
学生分组合作完成画图,讨论、交流问题,描点,画图
再次体验数形结合思想,使学生学会通过寻找对应线段与对称轴之间的关系来求点的坐标,而不是机械地通过记忆规律来解决。板书设计(需要一直留在黑板上主板书)归纳:
1、点(x,y)关于x轴对称的点的坐标为(,)例2 已知四边形ABCD的顶点坐标分别为:A(-5,1)、2、点(x,y)关于y轴对称的点的坐标为(,)
B(-2,1)、C(-2,5)、D(-5,4)分别作出四边形关于x轴与y轴对称的图形 学生学习活动评价设计
课堂上前后位互相探讨发现规律,体验成功的喜悦。
布置的作业由各组小组长进行批改,若出现不懂问题向老师请教。
教学反思
本节课通过学生对北京城内天安门、长安街、东直门等的方位引入新课,能强烈地吸引学生的注意力,较好地激发学生的学习兴趣。本节课通过找具有一定代表性的分别位于四个象限及坐标轴的一些点的对称点及坐标,寻找关于坐标轴对称的点的坐标的一般规律,培养学生观察、归纳、分析问题、解决问题的能力,使学生体验数形结合思想。寻找规律后检验其正确性是科学研究问题的一个必不可少的步骤,通过一系列的练习培养学生思维的流畅性,也使学生特别是学有困难的学生都能达到基本的学习目标,较好地激发学生的学习兴趣,符合八年级学生的心理特征,也是本节课所学内容的一个较好运用。
第四篇:轴对称和平移单元反思
轴对称和平移单元反思
本单元是北师大版小学数学五年级上册的第二单元,在此之前学生已经对轴对称有了初步的认识。教学中我按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,发挥多媒体在教学中的作用,让学生在动手操作中探究,以学生的自主活动和合作活动为主,认识了轴对称图形和成轴对称图形,以及它们的区别和联系。进一步学习补全轴对称图形的另一半。而平移,从知识结构与前后衔接来说,是相对比较独立的。在我的教学过程中我没有过多的解释平移这一概念,只是略微让学生了解知道平移这一生活现象,然后就是放手让学生练习。学生在练习和操作过程中学到平移的知识与方法。课堂上要信任学生,没有过多的代替学生的思考,让学生多练习、多操作,多叙述,使学生在自己的经验基础上获取知识。
反思本单元教学,我认为主要有以下几点收获:
1.利用课件将学习目标、学习中难理解的内容、结论性内容、典型练习题等呈现出来,既直观、形象,学生容易理解,又加大了课堂的练习题容量。同时,课前的制作课件对我自己来说也是一次学习提高的机会。
2.通过大量的动手操作,如折一折、画一画,让学生用自己的思维方式自由开放地去探索、去发现。培养学生动手操作能力,进一步体会轴对称的含义。
3.采用小组合作的方式,通过在小组内折一折、互相说一说把课堂中更多的时间与空间还给了学生,从学生的实际出发,遵循学生的认知规律,让全体学生“动”起来,争取做到人人参与。
4、让学生观看视频,从学生身边的平移现象出发创设情境,让学生从感知中初步认识平移,引入新课,渗透生活中处处都有数学的思想;其次,在教学过程中通过学生的探究和讨论,归纳总结图形平移的方法即一选点、二移点(注意方向和格数)、三连线,并会在方格纸上画出简单图形平移后的图形,在画图中体会到图形平移前后一变(位置变了),二没变(大小没变、形状没变)的特点;其三是巩固提高,在知道了平移的方法的基础上引导学生两次平移,进而画出图形,熟悉和巩固图形平移的画法。从感知到探究再到深化一步一步来组织教学,从而突出了重点、突破了难点。
在教学中,我采取了自主探索与合作交流的学习方式,自始自终让学生参与到学习中来,真正实现了“学生是主体”,教师是主导”的教学理念。有收获也有不足,对学生的评价较少,还是讲的有点多,可以放手更多给学生,给更多学生学生展示的机会,等等。在实施教学的过程中,我还发现了学生在学习数学方面存在很多问题。在今后的教学中,我将根据学生特点,采取有效的教学手段,努力提高教学成绩。
第五篇:用坐标表示平移(优质课教案)
用坐标表示平移
教学目标:
1.掌握点的坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程.
2.经历探索点坐标变化与点平移的关系,图形各个点坐标变化与图形平移的关系的过程,发展学生的形象思维能力和数形结合意识。
教学重难点:
教学重点:掌握坐标变化与图形平移的关系. 教学难点:探索坐标变化与图形平移的关系.
学情分析:
1、知识掌握上,七年级学生刚刚学习直角坐标系,对直角坐标系及坐标的理解不一定很深刻,许多学生容易造成知识混乱,所以应全面系统的去讲述。
2、由于七年级学生的理解能力、思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
3、心理上,学生对数学课的兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。
教法:
根据所学知识直观性的特点,我将采用多媒体教学,以学生的自主探究、合作交流为主,教师的点播为辅。
教学过程:
一、知识回顾:
什么叫做平移?
把一个图形整体沿某一个方向移动一定的距离,图形的这种移动,叫做平移。
平移后得到的新图形与原图形有什么关系?
新图形中的每一点都是由原图形中的某一点移动后得到的。
二、观察发现
(1)在方格纸上画出点A的坐标,然后按照下面的提示进行平移,观察平移后点的坐标变化:
点A(-3,-2)向右平移5个单位长度;(2,-2)点A(-3,-2)向右平移7个单位长度;(4.-2)
总结:若将点A(-3,-2)向右平移a(a>0)个单位长度,得到的点的坐标为?(-3+a,-2)
横纵坐标发生了什么变化?
向右平移,纵坐标不变,横坐标加。(2)在方格纸上画出点A的坐标,然后按照下面的提示进行平移,观察平移后点的坐标变化:
点A(3,-2)向左平移5个单位长度;(-2,-2)点A(3,-2)向左平移7个单位长度;(-4,-2)总结:若将点A(-3,-2)向左平移a(a>0)个单位长度,得到的点的坐标为?(3-a,-2)
横纵坐标发生了什么变化?
向左平移,纵坐标不变,横坐标减。
(3)在方格纸上画出点A的坐标,然后按照下面的提示进行平移,观察平移后点的坐标变化:
点A(3,-1)向上平移3个单位长度;(3,2)点A(3,-1)向上平移5个单位长度;(3,4)
总结:若将点A(3,-1)向上平移b(b>0)个单位长度,得到的点的坐标为?(3,-1+b)
横纵坐标发生了什么变化?
向上平移,横坐标不变,纵坐标加。
(4)在方格纸上画出点A的坐标,然后按照下面的提示进行平移,观察平移后点的坐标变化:
点A(3,4)向下平移3个单位长度;(3,1)点A(3,4)向下平移5个单位长度;(3,-1)总结:若将点A(-3,-2)向左平移b(b>0)个单位长度,得到的点的坐标为?(3,4-b)
横纵坐标发生了什么变化?
向左平移,横坐标不变,纵坐标减。
三、想一想,议一议:
如果一个点的坐标可以表示为 P(x,y),把这点向右(向左)平移a个单位,向上(向下)平移b个单位,你能把上述坐标的变化规律表示出来吗? 把你的结论和其他同学进行交流。
小组之间交流后,找一位同学来回答。
(1)左、右平移:
原图形上的点(x,y),向右平移a个单位,(x+a,y)原图形上的点(x,y),向左平移a个单位,(x-a,y)(2)上、下平移:
原图形上的点(x,y),向上平移b个单位,(x,y+b)原图形上的点(x,y),向下平移b个单位,(x,y-b)
四、比比,看谁的反应快:
在平面直角坐标系中,有一点P(-4,2),若将P:(1)向左平移2个单位长度,所得点的坐标为______;(2)向右平移3个单位长度,所得点的坐标为______;(3)向下平移4个单位长度,所得点的坐标为______;(4)向上平移3个单位长度,所得点的坐标为______;
五、议一议 在平面直角坐标系中,有一点(1,3),要使它平移到点(-2,-2),应怎样平移?说出平移的路线。
点沿斜线方向平移,可以通过点的左右和上下平移共同来完成。以上过程可以先向左平移3个单位长度再向下平移5个单位长度来完成。
六、小小提升
已知点A(3,2),将点A先向右平移2个单位长度,再向上平移5个单位长度,得到A′,则A′的坐标为________ 分析:横纵坐标都发生了变化。
七、学为我用
1、点P(2,-1)向左平移3个单位长度得点Q的坐标为:.2、点P(2,-1)向上平移2个单位长度得点Q的坐标为:.3、点P(2,-1)向右平移3个单位长度,再向下平移2个单位长度得点Q的坐标为:。
八、逆向说理
之前我们是根据平移过程写出平移之后的点的坐标,那么你能够根据两个点的坐标,描述一下他们是经过怎么样的平移过程得到的呢?
1.把点M(1,2)平移后得到点N(1,-2)
则平移的过程是:向下平移4个单位。2.把点M(-3,1)平移后得到点N(-1,4)
则平移的过程是:先向右平移2个单位,再向上平移3个单位。
九、规律总结:
上下左右平移:
原图形上的点(x,y)向右平移a个单位,向上平移b个单位(x+a,y+b)
原图形上的点(x,y)向左平移a个单位,向下平移b个单位(x-a,y-b)
十、步步高升:
1.将点P(0,-2)向左平移2个单位,再向上平移4个单位得点Q(x,y),则 xy= 2.将点P(m,1)向右平移5个单位长度,得到点Q(3,1),得点P坐标为
3.将点P(m+1,n-2)向上平移3个单位长 度,得到点Q(2,1-n),则点A(m,n)坐标为
4、线段CD是由线段AB平移得到的, 点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标为________。
十一、课堂小结
这节课你掌握了哪些知识? 小组之间交流,找代表起来回答。
十二、布置作业
课本78页习题7.2 第2、3、4、9、10题。