第一篇:固体习题之二
一. 简述题(每题10分,共20分)
1.什么是杂化轨道,写出金刚石sp杂化的轨道波函数。2.何为声子,谈谈你对声子的认识。二. 填空题(每小题0.5分,共29分)
1.()布拉伐格子为体心立方的晶体是A.钠B.金C.氯化钠D.金刚石 2.()布拉伐格子为面心立方的晶体是A.镁B.铜C.石墨D.氯化铯 3.()布拉伐格子为简立方的晶体是A.镁B.铜C.石墨D.氯化铯
4.()银晶体的布拉伐格子是A.面心立方B.体心立方C.底心立方D.简立方 5.()金刚石的布拉伐格子是A.面心立方B.体心立方C.底心立方D.简立方 6.()硅晶体的布拉伐格子是A.面心立方B.体心立方C.底心立方D.简立方 7.()氯化钠晶体的布拉伐格子是A.面心立方B.体心立方C.底心立方D.简立方 8.()氯化铯晶体的布拉伐格子是A.面心立方B.体心立方C.底心立方D.简立方 9.()晶格振动的能量量子称为A.极化子 B.激子 C.声子 D.光子
10.()ZnS晶体的布拉伐格子是A.面心立方B.体心立方C.底心立方D.简立方 11.()下列晶体的晶格为简单晶格的是A.硅B.冰C.银D.金刚石
12.()下列晶体的晶格为复式晶格的是A.钠 B.金 C.铜 D.磷化镓13.()晶格常数为格,原胞体积等于A.B.C.D.的简立方晶
313.()含有N个初基原胞的铜晶体,晶格振动的声学波支数为A.0 B.1 C.2 D.3 14.()晶格常数为a的体心立方晶格,原胞体积等于A.2aB.aC.a/2 D.a/4
3315.()晶格常数为16.()晶格常数为17.()晶格常数为18.()晶格常数为19.()晶格常数为20.()晶格常数为21.()晶格常数为22.()晶格常数为24.()晶格常数为的面心立方晶格,原胞体积等于A.2aB.aC.a/2 D.a/4
33的CsCl晶体的原胞体积等于A.2aB.aC.a/2 D.a/4 3 3
33的NaCl晶体的原胞体积等于A.2aB.aC.a/2 D.a/4 的Cu晶体的原胞体积等于A.2aB.aC.a/2 D.a/4 3 3 3 3
333
333的Na晶体的原胞体积等于A.2aB.aC.a/2 D.a/4 的Au晶体的原胞体积等于A.2aB.aC.a/2 D.a/4 的金刚石晶体的原胞体积等于A.2aB.aC.a/2 D.a/4
3的Cu晶体的单胞体积等于A.2aB.aC.a/2 D.a/4
323.()含有N个初基原胞的铜晶体,晶格振动的光学波支数为A.0 B.1 C.2 D.3 的Ge晶体的单胞体积等于A.2aB.aC.a/2 D.a/4
325.()含有N个初基原胞的铜晶体,晶格振动的总格波支数为A.0 B.1 C.2 D.3 26.()晶体铜的配位数是A.12 B.8 C.6 D.4 27.()金属钠晶体的配位数是A.12 B.8 C.6 D.4 28.()金刚石的配位数是A.12 B.8 C.6 D.4 29.()面心立方密集的致密度是A.0.76 B.0.74 C.0.68 D.0.62 30.()体心立方密集的致密度是A.0.76 B.0.74 C.0.68 D.0.62 31.()晶体的布拉伐格子共有几种?A.12 B.13 C.14 D.15 32.()立方晶系的布拉伐格子共有几种?A.1 B.2 C.3 D.4 33.()四方晶系的布拉伐格子共有几种?A.1 B.2 C.3 D.4 34.()正交晶系的布拉伐格子共有几种?A.1 B.2 C.3 D.4 35.()含有N个初基原胞的铜晶体,不同的波矢总数为A.3N B.2N C.N D.N/2 36.()晶体共有几个晶系?A.4 B.5 C.6 D.7 37.()不属于14种布拉伐格子的格子是A.面心立方 B.体心立方 C.底心立方 D.简立方 38.()不属于14种布拉伐格子的格子是A.底心单斜 B.体心四方 C.底心四方 D.简单四方 39.()不属于14种布拉伐格子的格子是A.体心四方 B.体心立方 C.面心四方 D.面心立方 40.()不属于14种布拉伐格子的格子是A.简单三斜 B.底心三斜 C.简单单斜 D.底心单斜
41.()不属于14种布拉伐格子的格子是A.底心正交 B.底心单斜 C.面心正交 D.面心四方 42.()描述晶体宏观对称性的基本对称元素有A.8个 B.48个 C.230个 D.320个 43.()晶体点群有A.230种 B.320种 C.48种 D.32种
44.()含有N个初基原胞的金刚石晶体,晶格振动的声学波支数为A.0 B.1 C.2 D.3 45.()有N个初基原胞的二维简单正方形晶格,晶体中的声子有多少种可能的量子态A.N B.2N C.N/2 D.N2 46.()对于体积为V的NaCl晶体,设原胞体积为Ω,则该晶体包含的晶格振动总模式数为A.V/Ω B.2V/Ω C.4V/Ω D.6V/Ω
47.()晶体没有下列哪一种对称轴A.3度对称轴 B.4度对称轴 C.5度对称轴 D.6度对称轴 48.()晶格常数为49.()晶格常数为的一维单原子链,倒格子基矢的大小为A.的一维双原子链,倒格子基矢的大小为A.B.B.C.C.D.D.50.()对于一维单原子链晶格振动的频带宽度,若最近邻原子之间的力常数β增大为4β,则晶格振动的频带宽度变为原来的A.2倍 B.4倍 C.16倍 D.不变
51.()一个二维简单正交晶格的倒格子原胞的形状是A.长方形 B.正六边形 C.圆 D.圆球 52.()体心立方的倒格子是A.二维正方形 B.面心立方 C.体心立方 D.简立方 53.()面心立方的倒格子是A.二维正方形 B.面心立方 C.体心立方 D.简立方
54.()三维晶格的原胞体积与倒格子的原胞体积之积等于A.(2π)B.(2π)C.(2π)D.(2π)55.()若简立方晶格的晶格常数增大一倍,则简约布里渊区的体积变为A.1/2倍 B.1/8倍 C.2倍 D.8倍 56.()由N个原子组成的一维单原子链,简约布里渊区中的分立波矢取值有A.N个 B.2N个 C.N/2个 D.N2个
21057.()有N个初基原胞的二维简单正方形晶格,简约布里渊区中的分立波矢状态有A.N种 B.2N种 C.N/2种 D.N2种
58.()N个基元构成的钠晶体,其相邻两原子之间的相互作用能为u,只计最近邻相互作用,则钠晶体总的相互作用能U为 A.Nu,B.2Nu,C.4 Nu,D.8 Nu
三、计算证明题(任选3题,每题17分,共51分,多做加分)
1.假设某晶体的晶胞是一边长为a的立方体,其八个顶角上为A种原子,六个面心上为B种原子,体心上为C种原子。说明这种单晶所属的晶系,布拉伐格子,每个原胞中的包含的A、B、C原子数;每个晶胞中的包含的A、B、C原子数;求正格子空间原胞(Primitive cell)的体积和简约布里渊区的体积。
2.对于含有N个原胞的金属铜、金属镁、金刚石、单晶硅、二维石墨层晶体、一维三原子晶格,分别写出:(1)原胞内原子数;(2)格波支数;(3)声学波支数;(4)光学波支数;(5)每支格波的独立振动模数目;(6)独立振动模的总数。
3.原子质量为m,原子间距为a的一维单原子链,设原子间力常数为, 在最近邻近似和最近邻近似下
(1)写出晶格振动的运动方程;(2)求出格波色散关系并画出示意图;(3)分析并确定波矢的独立取值范围;(4)分析并确定波矢的具体分立取值。、体心立方(bcc)和面心立方(fcc)三种结构,在这三4.将半径为R的刚性球分别排成简单立方(sc)种结构的间隙中分别填入半径为rp、rb和rf的小刚球,试分别求出rp/R、rb/R和rf/R的最大值。
提示:每一种晶体结构中都有多种不同的间隙位置,要比较不同间隙位置的填充情况。5.晶格常数为a的简单二维密排晶格的基矢可以表为
a1ai13
aja2ai22 2
(1)求出其倒格子基矢b1和b2, 证明倒格子仍为二维密排格子;
(2)求出其倒格子原胞的面积b。
6.由N个原子(或离子)所组成的晶体的体积V可以写为V=Nv = Nr,其中v为平均一个原子(或离子)所占的体积,r为最近邻原子(或离子)间的距离,是依赖于晶体结构的常数,试求下列各种晶体结构的值:(1)sc结构(2)fcc结构(3)bcc结构(4)金刚石结构(5)NaCl结构。7.设两原子间的相互作用能可表示为 ur
3rmrn
其中,第一项为吸引能;第二项为排斥能;、、n和m均为大于零的常数。证明,要使这个两原子系统处于稳定平衡状态,必须满足n > m。8.设晶体的总相互作用能可表示为
UrABn mrr其中,A、B、m和n均为大于零的常数,r为最近邻原子间的距离。根据平衡条件求:(1)平衡时,晶体中最近邻原子的间距r0和晶体的相互作用能U0;
(2)设晶体的体积可表为V=Nr,其中N为晶体的原子总数,为体积因子。若平衡时
晶体的体积为V0,证明:平衡时晶体的体积压缩模量K为
3mnU0 K9V0。
第二篇:固体习题之一
固体物理学习题
1.求sc晶格中沿a1,a2,a3,a1,a2,a3,以及面对角线,体对角线方向,和a12.设两原子间的相互作用能可表示为
11a2a3 方向的晶列指数。23rr
其中,第一项为吸引能;第二项为排斥能;、、n和m均为大于零的常数。证明,要使这个两原子系统处于稳定平衡状态,必须满足n > m。
3.原子质量为m,原子间距为a的一维单原子链,设原子间力常数为, 在最近邻近似和最近邻近似下
(1)写出晶格振动的运动方程;(2)求出格波色散关系并画出示意图;(3)分析并确定波矢的独立取值范围;(4)分析并确定波矢的具体分立取值。4.*设晶体的总相互作用能可表示为 urmnUrABrmrn
其中,A、B、m和n均为大于零的常数,r为最近邻原子间的距离。根据平衡条件求:(1)平衡时,晶体中最近邻原子的间距r0和晶体的相互作用能U0;
(2)设晶体的体积可表为V=Nr,其中N为晶体的原子总数,为体积因子。若平衡时
晶体的体积为V0,证明:平衡时晶体的体积压缩模量K为 3K mnU09V0。
5.画出sc的(100),(110),(111),(121),(231)晶面。6.证明晶面指数的两个定义等价。
7.证明,对于立方晶系,晶向hkl与晶面(hkl)正交。8.证明:
1)、正基矢与倒基矢的关系 aibj2ij2 02)、正格矢与倒格矢的关系 Rlh2m(m为整数)3)、两种点阵原胞间的关系(2)
34)、正格子与倒格子互为对方的倒格子(倒格子的倒格子是正格子)
5)、倒格矢hh1b1h2b2h3b3与正格子晶面族(h1h2h3)正交.9.说明半导体硅单晶的晶体结构,布拉伐格子,所属晶系,每个晶胞(Conventional unit cell)中的硅原子数;如果晶格常数为a,求正格子空间原胞(Primitive cell)的体积和第一布里渊区的体积。
10.说明氯化钠单晶的晶体结构,布拉伐格子,所属晶系,每个晶胞中包含的原子数;如果晶格常数为a,求正格子空间原胞(Primitive cell)的体积和第一布里渊区的体积。11.求NaCl晶体中一个原胞的平均相互作用势能。12.求一维NaCl晶体的马德隆常数。
13.求NaCl晶体的马德隆常数,仅计算至次次近邻。
314.用H原子的波函数(Rn,l, Yl,m)表示出Px, Py, Pz 轨道波函数;写出金刚石中C原子的四个sp杂化轨道波函数。15.问题:证明(2.4-5)可以等价地写成如下形式:
r(1)uij0rij126r02,r0为两原子体系的平衡距离。rij(2)uijrij122rij6,(约化单位:能/,长度/r0)16.写出Lennard-Jones势。
17.计算一位单原子晶格中格波速度(相速度)vp,证明在长波极限(q0),晶格中传播的格波就象在连续介质中传播一样。
18.计算布里渊区边界处格波的群速度,并对结果进行讨论。19.一维双原子晶格,对长声学波(q0,-0),证明: 1)aq2aYqqqv,它与连续介质的色散关系(=kv)一致,这是-支被称为声学mMmM2a波的原因。2)B1A表明,在长波限,两种原子振幅相同;又相邻原子的位相aq0,故长波限声学波与连续机械波类似。这是-支被称为声学波的又一原因。20.一维双原子晶格,对长光学波(q0),证明:
2Cons.mM说明这结果的物理意义。mMBm1MA21.求三维晶格的波矢空间q点的分布密度。22.证明声子无真实物理动量。
23.一维单原子晶格中两个声子q1和q2发生碰撞后形成第三个声子q3,求q3的大小: 1)q1q2;6a2)q1q22.3a24.(2013-11-27改造)二维正方格子,原胞基矢a1aiaj,a2aj,求:
1)倒基矢b1,b2;
2)写出倒易空间中任意倒格点的位置矢量Kh的表达式; 3)画出第一布里渊区;
4)写出倒易空间中声子波矢q的表达式;
5)画出倒易空间中声子波矢q(点)的分布示意图 6)设两个声子q1,q2相撞后变成q3,求q3:
(1)q10.15b10.2b2,(2)q10.3b10.2b2,q20.1b10.2b2 ; q20.3b10.6b2.二维正方格子,原胞基矢a1aiaj,a2aj,求:
1、q10.15b10.2b2,2、q10.3b10.2b2,解: q20.1b10.2b2 q20.3b10.6b2。
(1)由正基矢与倒基矢的关系aibj2ij可得:
b12ˆ2ˆˆi,b2(ij)aa2ˆm2ˆ[(m1m2)ij]
a(2)倒易空间中任意倒格点的位置矢量可表示为
Gmm1b1m2b1(3)如图:
(4)
(a): 当q10.15b10.2b2,q20.1b10.2b2时,q1q20.25b10.4b22ˆ0.4ˆ(0.15ij)位于第一布里渊区内,所以,a2ˆ0.4ˆq3q1q20.25b10.4b2(0.15ij)a(b): 当q10.3b10.2b2,q20.3b10.6b2时,2ˆ0.8ˆ(0.2ij)位于第一布里渊区外,所以,a q1q20.6b10.8b2q3q1q2G1,10.6b10.8b2b1b20.4b10.2b22ˆ2ˆˆ2ˆ2ˆ0.4i0.2(ij)0.2i0.2jaaaa25.求一个振动模的平均声子占有数。
26.对于cq2,求振动模式密度g():(a)三维情况;(b)二维情况;(c)一维情况。27.什么是固体热容量的爱因斯坦模型,什么是固体热容量的德拜模型?
28.利用晶格振动的量子理论,导出爱因思坦模型的定容热容CV的表示式,并进一步证明:(1)TE时,CV过渡到杜隆-柏替定律。(2)TE时,此模型不正确。
29.利用晶格振动的量子理论,导出德拜模型的定容热容CV的表示式,并进一步证明(1)TD时,CV过渡到杜隆-柏替定律。(2)TD时,此模型严格正确。
30.求一维单原子链的振动模式密度g()。31.求德拜模型的振动模式密度g()
32.计算一定模式(振动模)下原子的振幅与该模式中声子占有数的关系,并对结果进行讨论,说明T=0时也有振动。33.一边长为L的单价原子立方体金属块,由N个原子组成,将价电子视为自由电子。(1)求自由电子气的能级密度的表
0达式。(2)求T=0K时,电子气的费米能EF的表达式及电子的平均动能。
34.使用自由电子气模型证明绝对0K下k空间费米球的半径为kF=(3πn), n为电子密度。
35.设有二价金属原子构成的晶体,试证明自由电子费米球与第一布里渊区边界相交(提示:倒格子空间离原点与最近的倒格子间连线的垂直平分面围成的区域位第一布里渊区,也称简约布里渊区)
解:(1)∵T=0时低于费米能EF0的能及全部被电子占据,而电子是费米子,每个状态只允许一个电子占据
00(EFEF)∴f(E) 01(EE)FF21/3在能级间隔E—E+dE中的电子数dN=f(E)ρ(E)dE ∴NdN0EF01(E)dE320EF0203CEdECEF2
3其中C4V(2m)带入上式得:
h232324V(2m)02N(E)F23h设n为电子密度,则n=N/V 3224V(2m)02(EF)∴nV23h32∴E(3n2)3
2m0F2∴T=0时费米球面半径k0F02mEF(3n)
213得证。
(2)二价金属原子构成的晶体,其布拉伐格子为体心立方(bcc),其倒格子为面心立方(fcc)在bcc中a、b、c为晶胞基矢,则a=ai, b=bj, c=ck 原胞基矢:
a1=a(-i +j +k),a2=a(+i-j +k),a3=a(+i +j +k)5 24a2a3(jk)13aa则fcc中,244b1(jk)2aab1∴在具有体心立方结构的二价金属原子的一个晶胞中,有4个电子 ∴电子密度n=4/a,代入自由电子费米球面半径k
30F02mEF(3n)得
213面心立方原胞和Wigner-Seitz原胞
面心立方原胞和Wigner-Seitz原胞
0kF
(12)a(12)4.91b124.76aa2aa(12)226.28b1a2aa1231231230kF∵0kF
∴自由电子费米球与第一布里渊区边界相交。
36.由泡利不相容原理,金属中费米面附近的自由电子容易被激发,费米能级以下的很低能级上的电子很难被激发,通常被称为费米冻结。用此物理图像,估算在室温下金属中一个自由电子的比热。
解:电子的热容主要来自金属中费米面附近的自由电子的贡献。在室温T0时,能够发生跃迁的电子数为:
N'0EF03EFkBT2dNC0EF03EFkBT29kTEdENB0
4EF(N为自由电子总数)∵每个电子具有的能量为3kBT 2327(kBT)2∴N’个可发生跃迁的电子总能量EN'kBT N028EF2TE27kB∴CVN0
T4EF∴金属中一个自由电子的比热
2CV27kBT C'V0N4EF36-1.(2015加)证明对金属自由电子气的热容量有贡献的电子数约为总自由电子数目的1%。
36-2.(2015加)根据金属热电子发射的电流密度的查孙-杜师曼公式:j=AT2e-W/kBT,证明两块金属I和II的接触电势差是,VVI VII(WI WII)/e
36-3.(2015加)一个电子具有的固有磁矩叫什么,用什么符号表示。电子气磁化率的经典理论叫什么(哪位科学家的贡献),与温度是什么关系?对吗?电子气磁化率的量子理论叫什么(哪位科学家的贡献),与温度是什么关系?对吗?
37.(20分)六角晶体的原胞基矢是
3131aij,cck。aaij,b2222 7(2015-6-29说明:以上有误,应该为a13131)aiaj,a2aiaj,a3ck,相应地以下求解也要改。
22求其倒格矢。
解:原胞体积a(bc)
(32ai12j)[(312ai2j)ck]
(32ai12j)(312acj2ci)
32ac由倒格子基矢的定义
a*2(bc)
23(32ai12j)ck2ac 43ac(32acj12ci)
23a(i3aj)b*2(ca)
23ck(312ai2j)2ac 43ac(32acj12ci)23a(i3aj)c*2(ab)
228 3ac2433 (akak)43ac42kc∴倒格矢Ghhb1kb2lb3
(h,k,l为整数)222h(i3aj)k(i3aj)lkc3a3a
22(hk)i2(hk)jlkc3a38.证明布洛赫定理
39.一电子在如图所示的周期势场V(x)V(xna)中运动,这里,V(x)2(3131aij)(aij)2222V000xc。
cxa求:
1)、将V(x)的展为傅立叶级数,并计算展开系数Vm;
k2)、计算Hk0L(0)*kV(0)k(0)*(0)VVkdx?; dxk0L3)、写出一般微扰理论的二级修正本征能量和一级修正波函数。说明为什么一般微扰理论不适于描述晶格周期场中电子km的状态; amm(1),利用简并微扰的态kaa4)、对本题周期势场V(x)中运动的单电子,设是一小量(1),对于接近理论求其本征能量表达式;
5)、对0的情况,求电子能量表达式E; 6)、求第一能带宽度和第二带隙Eg。解:
1)于是,V(x)Venni2nxai2anx1,其中,VnV(x)edx
a0a* 9 利用Gnnb2n,Vn可以写为 aVnV0iiGnc1aiGnx*V(x)edxe1 [] 0aaGn1aim2aeV()dVma0k2)Hk03)一级微扰修正的波函数:
2)a [] 2(kkm)a(kkmkHk(0)k(0)(0)EkEk2m)xak(k0)(k1)(k0)'k1ikxVm1i(k =e'2e2mLL22mk(k)2ma
2mixVm1ikxa e1'2e.2m2Lm2k(k)2ma二级微扰修正的能量为:
(0)(2)E(k)EkEkk V'22m22m2mk(k)2ma22Vm2表示对m0的所有整数求和。
mm(2)二级微扰修正的能量Ek在k处发散。显然,这结果没有意义。换句话说,上述计算结果在k处没有意义,aamm不适于描述晶格周期场中电子的状态。出现这种情况的原因是,当k时,存在另一状态k,有矩阵元
aammmkVm0,且这两个状态的能量相等。即态k和态k是能量简并的。[行波k=与其(布拉格)Hkaaam/反射波k=-的迭加形成驻波。]由量子力学知,对于能量简并问题,需用简并微扰来求解(上述计算利用了非简并a微扰理论)。[]
4)设是一小量(1),对于接近kmm(1)的态,kaa 10 与之能量相近,且有作用的态是 kk2mm2mm(1)(1)
aaaa0)(0)按简并微扰论,我们把能量为Ek(为方便记为E)的电子态写成(k和k的线性迭加: 0)(0)a(kbk(1)
2d2由波动方程: V(x)E(x)0(2)22mdx2d2000VEk 并考虑到: kk22mdx2d2000VkEkk 22mdx000得 a(EkEV)0kb(EkEV)k0
上式分别乘以k(0)*和k并积分,可得(0)*0*(EkE)aVmb0(3)0Vma(EkE)b0其中用到: k|V|kk|(VV)|kk|V|k0 和
kVm k|V|kk|V|kk|(VV)|kk|V|kHkVm是周期场V(x)的傅立叶展开式中第m 个参数.(3)式有解的条件是
(EkE)Vm解之得, 0Vm0*(EkE)0
(4)
1200E{(EkEk)[(Ek0Ek0)24Vm]2}
(5)[]
21(Ek0Ek0)m005).对0,表示k(或k)很接近的情况,此时有EkEkVm。对展开(5)式到一级得,aVm 11 Ek0Ek0100EEkEk2Vm24Vm2
(6)222km021VTm(1)EkVV其中2m2ma Ek0VTm(1)2这里Tm表示km的自由电子态的电子动能: a2k22m2Tm()
2m2ma可得,2Tm2VTVT(1)mmmVmE(7)[]
VTV2T(2Tm1)mmmVm6)0时,EVTmVm,(8)
原来能量都等于VTm的两个状态,k其间的能量差称为“禁带宽度”
mm和k,由于它们的相互作用很强,变成两个能量不同的状态E和E,aaEg2Vm
(9)
禁带发生在波矢kmmm和k处,即k(m=1,2,3…)处,禁带宽度等于周期性势能的展开式中,波矢为aaaGmm2的付里叶分量Vm的绝对值的两倍. a第一能带宽度E1EVVT1V1VT1V1,第二带隙Eg2V2 []
40.利用紧束缚方法求简单立方晶格中,1)自由原子S态sr形成的能带函数E(k),计算E(),E(X),E(R),并求带宽。(10分)2)画出第一布里渊区中的能带图E(kx)。(10分) 12 3)求电子在带顶和带底及状态k(2a,2a,2a**)的有效质量m*xx,myy,mzz(10分)
解:
n,niK公式 EKiJ0J1Rn,RmeRs
m因为 sr球对称,偶宇称,所以srr,所以 JR,RJ1nm10(对6个最近邻格点的交叠积分相同)
取Rn0则SC的6个最近邻坐标Rm为 a,0,0,a,0,0,0,a,0,0,a,0,0,0,a 0,0,an,n所以 EKsJ0J1expiKam1im2jm3k m sJ02J1cosakxcosakycosakz(5分)
点,K0,0,0;
E0,0,0sJ06J1
K,0,0 X点,a EX,0,0sJ02J1 aR点: K,
aaa 13 ERa,a,aSJ06J1 由于 J10,1cos1,所以E和ER分别是带I的带底(能量)和带顶(能量),带宽为:
ERE12J1。(5分)
(10分)
由 EKsJ02J1cosakxcosakycosakz容易求出电子的有效质量为,2m*xx2a2Jcos1(kxa),12m*yy2a2Jcos1(kya)1
(5分)
2m*zz2a2Jcos1(kza)1所以,22带底:m*()m*()m*1xxyyyy()2a2Jcos(0),12a2J1带
顶
22带顶:m*(R)m*(R)m*(1xxyyyyR)2a2Jcos(a)2J,1a2a1 14
:k(m*xx(2a,2a,2a)处:)m*yy(2a)m*yy(2a2a2)2aJ12cos1(2a
a),(5分)
第三篇:黄昆版《固体物理学》课后习题答案(解析版)
《固体物理学》习题解答
黄昆
原著
韩汝琦改编
(陈志远解答,仅供参考)
第一章
晶体结构
1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n和小球体积V所得到的小球总体积nV与晶体原胞体积Vc之比,即:晶体原胞的空间利用率,(1)对于简立方结构:(见教材P2图1-1)
a=2r,V=,Vc=a3,n=1
∴
(2)对于体心立方:晶胞的体对角线BG=
n=2,Vc=a3
∴
(3)对于面心立方:晶胞面对角线BC=
n=4,Vc=a3
(4)对于六角密排:a=2r晶胞面积:S=6=
晶胞的体积:V=
n=12=6个
(5)对于金刚石结构,晶胞的体对角线BG=
n=8,Vc=a3
1.2、试证:六方密排堆积结构中
证明:在六角密堆积结构中,第一层硬球A、B、O的中心联线形成一个边长a=2r的正三角形,第二层硬球N位于球ABO所围间隙的正上方并与这三个球相切,于是:
NA=NB=NO=a=2R.即图中NABO构成一个正四面体。…
1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):
由倒格子基矢的定义:,同理可得:即面心立方的倒格子基矢与体心立方的正格基矢相同。
所以,面心立方的倒格子是体心立方。
(2)体心立方的正格子基矢(固体物理学原胞基矢):
由倒格子基矢的定义:,同理可得:即体心立方的倒格子基矢与面心立方的正格基矢相同。
所以,体心立方的倒格子是面心立方。
1.5、证明倒格子矢量垂直于密勒指数为的晶面系。
证明:
因为,利用,容易证明
所以,倒格子矢量垂直于密勒指数为的晶面系。
1.6、对于简单立方晶格,证明密勒指数为的晶面系,面间距满足:,其中为立方边长;并说明面指数简单的晶面,其面密度较大,容易解理。
解:简单立方晶格:,由倒格子基矢的定义:,倒格子基矢:
倒格子矢量:,晶面族的面间距:
面指数越简单的晶面,其晶面的间距越大,晶面上格点的密度越大,单位表面的能量越小,这样的晶面越容易解理。
第二章
固体结合2.1、两种一价离子组成的一维晶格的马德隆常数()和库仑相互作用能,设离子的总数为。
<解>
设想一个由正负两种离子相间排列的无限长的离子键,取任一负离子作参考离子(这样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号),用r表示相邻离子间的距离,于是有
前边的因子2是因为存在着两个相等距离的离子,一个在参考离子左面,一个在其右面,故对一边求和后要乘2,马德隆常数为
当X=1时,有
2.3、若一晶体的相互作用能可以表示为
试求:(1)平衡间距;
(2)结合能(单个原子的);
(3)体弹性模量;
(4)若取,计算及的值。
解:(1)求平衡间距r0
由,有:
结合能:设想把分散的原子(离子或分子)结合成为晶体,将有一定的能量释放出来,这个能量称为结合能(用w表示)
(2)求结合能w(单个原子的)
题中标明单个原子是为了使问题简化,说明组成晶体的基本单元是单个原子,而非原子团、离子基团,或其它复杂的基元。
显然结合能就是平衡时,晶体的势能,即Umin
即:
(可代入r0值,也可不代入)
(3)体弹性模量
由体弹性模量公式:
(4)m
=
2,n
=
10,w
=
4eV,求α、β
①
②
将,代入①②
(1)平衡间距r0的计算
晶体内能
平衡条件,(2)单个原子的结合能,(3)体弹性模量
晶体的体积,A为常数,N为原胞数目
晶体内能
由平衡条件,得
体弹性模量
(4)若取,,第三章
固格振动与晶体的热学性质
3.2、讨论N个原胞的一维双原子链(相邻原子间距为a),其2N个格波解,当=
时与一维单原子链的结果一一对应。
解:质量为的原子位于2n-1,2n+1,2n+3
……;质量为的原子位于2n,2n+2,2n+4
……。
牛顿运动方程
N个原胞,有2N个独立的方程
设方程的解,代回方程中得到
A、B有非零解,则
两种不同的格波的色散关系
一个q对应有两支格波:一支声学波和一支光学波.总的格波数目为2N.当时,两种色散关系如图所示:
长波极限情况下,与一维单原子晶格格波的色散关系一致.3.3、考虑一双子链的晶格振动,链上最近邻原子间的力常数交错地为和,两种原子质量相等,且最近邻原子间距为。试求在处的,并粗略画出色散关系曲线。此问题模拟如这样的双原子分子晶体。
答:(1)
浅色标记的原子位于2n-1,2n+1,2n+3
……;深色标记原子位于2n,2n+2,2n+4
……。
第2n个原子和第2n+1个原子的运动方程:
体系N个原胞,有2N个独立的方程
方程的解:,令,将解代入上述方程得:
A、B有非零的解,系数行列式满足:
因为、,令得到
两种色散关系:
当时,当时,(2)色散关系图:
3.7、设三维晶格的光学振动在q=0附近的长波极限有
求证:;.<解>
依据,并带入上边结果有
3.8、有N个相同原子组成的面积为S的二维晶格,在德拜近似下计算比热,并论述在低温极限比热正比与。
证明:在到间的独立振动模式对应于平面中半径到间圆环的面积,且则,第四章
能带理论
4.1、根据状态简并微扰结果,求出与及相应的波函数及?,并说明它们的特性.说明它们都代表驻波,并比较两个电子云分布说明能隙的来源(假设=)。
<解>令,简并微扰波函数为
取
带入上式,其中
V(x)<0,从上式得到B=
-A,于是
=
取,=
由教材可知,及均为驻波.
在驻波状态下,电子的平均速度为零.产生驻波因为电子波矢时,电子波的波长,恰好满足布拉格发射条件,这时电子波发生全反射,并与反射波形成驻波由于两驻波的电子分布不同,所以对应不同代入能量。
4.2、写出一维近自由电子近似,第n个能带(n=1,2,3)中,简约波数的0级波函数。
<解>
第一能带:
第二能带:
第三能带:
4.3、电子在周期场中的势能.
0,其中d=4b,是常数.试画出此势能曲线,求其平均值及此晶体的第一个和第二个禁带度.
<解>(I)题设势能曲线如下图所示.
(2)势能的平均值:由图可见,是个以为周期的周期函数,所以
题设,故积分上限应为,但由于在区间内,故只需在区间内积分.这时,于是。
(3),势能在[-2b,2b]区间是个偶函数,可以展开成傅立叶级数
利用积分公式得
第二个禁带宽度代入上式
再次利用积分公式有
4.4、解:我们求解面心立方,同学们做体心立方。
(1)如只计及最近邻的相互作用,按照紧束缚近似的结果,晶体中S态电子的能量可表示成:
在面心立方中,有12个最近邻,若取,则这12个最近邻的坐标是:
①
②
③
由于S态波函数是球对称的,在各个方向重叠积分相同,因此有相同的值,简单表示为J1=。又由于s态波函数为偶宇称,即
∴在近邻重叠积分中,波函数的贡献为正
∴J1>0。
于是,把近邻格矢代入表达式得到:
=
+
=
=
(2)对于体心立方:有8个最近邻,这8个最近邻的坐标是:
4.7、有一一维单原子链,间距为a,总长度为Na。求(1)用紧束缚近似求出原子s态能级对应的能带E(k)函数。(2)求出其能态密度函数的表达式。(3)如果每个原子s态只有一个电子,求等于T=0K的费米能级及处的能态密度。
<解>
(2),(3),第五章
晶体中电子在电场和磁场中的运动
5.1、设有一维晶体的电子能带可写成,其中为晶格常数,是电子的质量。
试求(1)能带宽度;
(2)电子在波矢k状态的速度;
(3)带顶和带底的电子有效质量。
解:(1)
=[-coska+(2cos2ka-1)]
=[(coska-2)2-1]
当ka=(2n+1)p时,n=0,±1,±2…
当ka=2np时,能带宽度=
(2)
(3)
当时,带底,当时,带顶,—
END
—
第四篇:固体废弃物管理制度
固体废弃物管理制度
固体废弃物管理制度1
1 目的
规范固体废弃物的控制,减少固体废弃物的产生和对环境造成的污染。
2 适用范围
适用于长春燃气(珲春)有限公司范围内产生的固体废弃物的管理控制。
3 职责
3.1 行政部和安环部负责废弃物存放和处理的监督、检查和指导。
3.2 各部门负责本本部门的生产、办公和生活过程中产生的固体废弃物的分类、收集等工作。
4 管理规定
4.1 固体废弃物分类
4.1.1 危险固体废弃物:指列入国家危险废弃物名录,在生产、办公和生活活动中所产生的危险固体废弃物,主要有废旧日光灯管、废电池、墨盒;废弃油杂质、擦油布、更换下来的含油零件、废旧电瓶;施工中的废弃涂料、沥清、油漆;绿化工作中的残留农药及其容器等。
4.1.2 不可回收利用的一般固体废弃物:指在工程施工、生活中产生的不可回收的固体废弃物,主要有建筑垃圾、食堂产生的`食物垃圾及生活垃圾等。
4.1.3 可回收利用的一般固体废弃物:指在生产、办公活动中产生的可回收的固体废弃物,主要有生产和设备维修产生的废编制袋、回收粉尘、金属零件、废纸箱、废木箱、玻璃瓶罐、废塑料、废纸等。
4.2 固体废弃物的收集和存放
4.2.1各部门应按照废弃物分类,设置临时放置点、废物箱,并分别设置明显标识。
4.2.2 废弃物产生后,应按不同类别和相应要求及时放置到临时存放场所或废物箱。临时的存放场所,应具备防泄漏、防飞扬等设施或措施。
4.2.2.1危险固体废弃物的收集及存放
a)产生废油的部门应将废弃油装入指定的油桶。
b)过滤器更换下来的滤芯应放在密闭的箱内。
c)施工时产生的废旧涂料、残余油漆、废沥清余料等固废应要求承包方收集、存放在指定的有害废弃物场所。
e)废弃灯管、擦油布、废电池、废弃电瓶等应放入有害废弃物存放箱、专用存放设施内或交给购买产品的单位,统一管理。
4.2.2.2一般固体废弃物存放
a)生产中产生的粉尘直接回收至成品包装;产生的废编织袋、废纸箱、废瓶罐、废纸、金属边角料等放入一般可回收废弃物指定区域或存放箱。
b)已经报废不能使用的设备放入报废设备区。
c)不可回收的废弃物放入不可回收垃圾区域或垃圾桶内。
4.3 固体废弃物的处理
4.3.1 危险固体废弃物的处理
a)废弃沥清、涂料、油漆由仓管部负责在提出处理要求。在施工结束后,对废弃物的处理情况进行监督检查,确保各部门按照规定予以处理。
b)废弃油漆、更换下来的含油物品等易燃物,废旧灯管、墨盒、擦油布、废电池、废弃电瓶等其它有害废物,由办公室联系有处理能力的合法机构进行处理(参见4.3.3)。
4.3.2一般固体废弃物的处理
一般固体废弃物的处理应优先考虑资源的再利用,减少对环境的污染。可回收的废弃物由各单位安排人员整理,再转卖给物资回收部门;不可回收的废弃物与生活垃圾等,由环卫部门或受委托单位统一运送到垃圾场处理。
4.3.3委托处理
a)在生产、办公和生活过程中产生的固体废弃物,可回收利用和一般固体废弃物可由各单位自行委托当地环卫部门处置,危险固体废弃物由管理处办公室委托专业的单位统一进行处置。
b)行政部应与被委托单位签订委托处理固体废弃物协议,明确双方职责和在运输、利用及处置过程中的要求和注意事项。
4.3.4 固体废弃物的处理记录
各单位固体废弃物的处理情况应记录在《固体废弃物清单》中。
4.4行政部和安环部应每季度检查一次各单位固体废弃物的存放和处置情况,并记录检查结果。
5 相关文件
5.1《中华人民共和国固体废物污染环境防治法》
固体废弃物管理制度2
为了防治运营公司固体废弃物、废液污染环境,保障职工身体健康,促进本企业的发展,运营部负责对固体废弃物、废液污染环境的防治,执行减少固体废弃物、废液的产生、充分合理利用固体废弃物、废液的原则。
其它部门应将固体废弃物、废液污染环境工作纳入环境保护规划,并采取有利于固体废弃物、废液污染环境防治的经济、技术政策和措施。
本公司任何个人都有保护环境的`义务,并有权对造成固体废弃物、废液污染环境的行为进行检举。
凡在工作、生产过程中产生的固体废弃物、废液按有毒有害、无毒无害和可回收利用等三类定点投放,由行管部门统一处理。
废日光灯管、热水瓶胆、废墨盒、废色带、不可降解塑料等有毒有害固体废弃物投放在公司内设置的有毒有害收集容器里,各类废电池交行管部同一登记处理(凡需领用新电池,必须以旧换新)。
格栅垃圾及处理出的污泥要在指定的地点倾倒,不得随意仍撒或者堆放,同时应及时清运,并积极开展合理利用和无害化处理(集体清运到垃圾填埋厂处理)。
化验室化验后的废液及设备检修中产生的废油,不得随意倾倒,应集中定点存放,统一处理。
固体废弃物管理制度3
一、目的
依据《中华人民共和国固体废弃物污染环境防治法》。为加强公司危险废弃物安全管理,防止危险废弃物丢失(或随意丢弃)造成环境污染特制定本制度,相关部门严格按此制度执行。
二、职责
1. 由质量安全环保部负责联系具有处置危险固体废弃物资质单位,对危险固体废弃物进行处理。
2. 由生产车间负责厂区内危险固体废弃物的收集、包装、运输。
3. 由库管员负责危险固体废弃物的储存。
4. 由质量安全环保部负责平时的监督检查。
三、内容
定义:危险废物是指列入国家危险废物名录或根据国家规定的危险废物鉴定标准和鉴定方法认定的具有危险废物特性的废物。
公司按《中华人民共和国固体废弃物污染环境防治法》要求,统一存放在回收车间北侧库房中,由质量安全环保部专人管理,并由有资质单位处理。
1. 安全环保部负责人与资质的`单位签定处置协议。
2. 生产车间产生的固体危险废弃物,由产生废弃物的岗位员工负责收集、包装、填写危险固体废弃物记录表。
3. 生产车间值班课长,定期对产生的固体废弃物的数量、包装是否符合要求进行确认,确认无误后签字,运送到专门储存的库房。
4. 库房管理员负责危险固体废弃物的接收,并建立危险固体废弃台账。台账中写清送入库房中,危险固体废弃物的种类,数量、入库时间、出库时间等相关详细信息。
5. 安全环保部负责对储存危险固体废弃物库房进行检查,检查频率不少于每月一次并签字确认。
6. 一旦发生危险固体废弃物丢失现象,及时对丢失的危险废弃物进行查找回收,在公司查到不到的情况下,报相关部门协同查找,直到找到为止。公司负责对相关责任人进行培训、教育并做出相应处理。
固体废弃物管理制度4
一 总 则
第一条 为了防治危险废物污染环境,保障员工健康,促进经济和社会的可持续发展,依据《中华人民共和共固体废物污染环境防治法》,结合公司实际情况,制定本制度。
第二条 本制度适用公司区域内危险废物的生产、收藏、存储、转移、利用、处置等活动。
第三条 公司对危险废物污染环境实行预防为主,全过程管理和污染单位承担责任的原则。
二 具体管理要求
第四条 积极推广清洁生产,避免或者减少危险废物的产生,鼓励对危险废物的合理利用,实行对危险废物的无害化处理。
第五条 各单位应当加强对危险废物污染环境工作的重视,在各自的职责范围内负责危险废物污染环境防治的监督管理工作。
第六条 生产危险废物的单位,必须每月5日前向厂主管部门申报登记危险废物的产生的种类、数量、流向、贮存、利用、处置等有关资料。
第七条 危险废物的收集、贮存、利用、处置活动必须遵守国家相关规定。
第八条 禁止向环境倾倒、堆置危险废物。
第九条 危险废物的收集、贮存、转移应当使用符合行业标准的`容器和包装物。
第十条 危险废物的容器和包装物以及收集、贮存、转移、处置危险废物的设施、场所,必须设置危险废物识别标志。
第十一条 危险废物的贮存时间不得超过一年,法律、法规另行规定的除外。
第十二条 生产危险废物的单位,委托外单位处置危险废物时,需提供处置单位相关资质(危险废物经营许可证),并到厂主管部门备案。
三 附则
第十三条 本制度解释权归公司。
第五篇:固体废弃物管理制度
固体废弃物管理制度
为加强风景区固体废弃物管理,保护和改善环境,保障人民身体健康,根据《中华人民共和国环境保护法》、《中华人民共和国固体废物污染环境防治法》,结合景区实际,制定本办法。
一、本办法适用于景区范围内所有单位、个人。
二、景区内固体物污染环境的防治工作实施统一监督管理。
三、禁止任何单位或者个人向河流等法律、法规规定禁止倾倒、堆放废弃物的地点倾倒、堆放固体废物。
四、景区主管部门对收集、贮存、运输、处置固体废物的设施、设备和场所,应当加强管理和维护,保证其正常运行和使用。
五、一次性医疗用品、敷料及废弃的各种护理用具要实行专人管理,袋装收集,封闭容器存放,定期消毒。存放废弃物的容器上应标注“医疗废物”字样。
六、不得将医疗废物裸露;从医疗废物中捡拾废品;将医疗废物混入居民生活垃圾、建筑垃圾等其他废弃物中;将医疗废物埋入地下或排入城市排水管道中;任意处置医疗废物。
七、使用后的一次性医疗器具和容易致人损伤的医疗废物,应当消毒并作毁形处理;能够焚烧的,应当及时焚烧;不能焚烧的,消毒后集中填埋。
八、禁止转让、买卖医疗废物。