第一篇:有理数的加法初中数学教案
1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;
2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;
3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;
4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;
5.本节课通过行程问题说明有理数的加法法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。教学建议
(一)重点、难点分析
本节教学的重点是依据有理数的加法法则熟练进行有理数的加法运算。难点是有理数的加法法则的理解。
(1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。
(2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。
(3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。
(二)知识结构
(三)教法建议
1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。
2.有理数的加法法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。
3.应强调加法交换律“a+b=b+a”中字母a、b的任意性。
4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。
5.可以给出一些类似“两数之和必大于任何一个加数”的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。
6.在探讨导出有理数的加法法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。
第二篇:七年级上数学教案:1.3.1有理数的加法
1.3.1有理数的加法(2)
教学目标
知识与能力
经历探索有理数加法运算律过程,理解有理数加法运算律能熟练运用律简化运算,提倡算法的多样化。
过程与方法
在具体情境中探索运算律,并提倡算法的多样化,对复杂问题能探索解决问题和有效方法,并试图寻找其它途径,并解释其合理性
情感、态度、价值观
重视过程中学生归纳,概括,描述,交流等能力考察 重点与难点
重点:合理运用运算律简化运算 难点:理解运算在实际问题中的应用 教学准备
小黑板 教学过程
一、创设情景,谈话导入
(1)回忆有理数加法法则内容,并在运算中注意什么?(由学生回答)
(2)学生练习(1)(-8)+(-9)(2)(-9)+(-8)这两个算式说明什么?
二、精讲点拨,质疑问难 1.出示三个加数的练习
(1)[7+(-8)+(-9)](2)7+[(-8)+(-9)] 这两个算式又说明了什么?(由学生回答)2.学习运算律的目的是什么?并出示例3 例3计算:16+(-25)+24+(-35)
由学生分析思考,计算,计算后在各自小组内交流说出各自的计算方法及自已的看法
3.最后教师归纳,本题的解法先把正、负数分别结合在一起相加,然后再做一次加法,计算出结果较为简单。
三、课堂活动,强化训练 1.例3 2.P23例4,引导学生分析题目,并阅读课本上两种解法思考问题
(1)“每袋标准重量90千克”与所问的问题有什么关系(2)“把标准质量与每袋的质量之差的值”得到一组新数,超过标准时用正数,不足时用负表示,从而得到的这组新数与所问问题有什么样关系。
(3)比较两种解法优缺点(四人一组讨论,组内交流,最后班内交流。)
四、延伸拓展,巩固内化
(+7)+(+)+(-5.3)+(+5)+(-7)+(+0.3)+(+9)+(+4)612 +(-15)+(-4)
61分析:通过全面观察式子的特点,发现加数中,有的互为相反数,有的几个数相加得零,这时比采用把正、负数分别相加的方法简单
(2)应用简便运算
(1)(-)+(-33)+(-0.25)+(+2)+(+)+(+33)+442111(-2)
41(2)200052311(用拆项法)199940006342小结:(1)互为相反数的两个数可以先相加(2)几个数相加得整数的可以先相加(3)同分母的分数可以先相加(4)符号相同的数可以先相加
学生自行练习,二名学生板演,教师巡视,个别辅导。4.小测验
(1)加法的运算律起到简化运算的作用,说一说你怎样使用运算律的(只要说出一种即可,多于一种每多一种运当加分)
(2)计算下列各题 ①15+(-20)+6+(-8)②(-7)+8+3+(-6)+(-5)+9 ③335(-5)+4 +(-)
3531142221④(-0.5)+2+(-9)+9.75 ⑤435323.151222123 53122
五、布置作业,当堂反馈 作业:P30 2 P31 9、10
第三篇:七年级数学教案有理数的加法
1.3.1有理数的加法
(二)教学目标:
1、使学生掌握有理数加法的运算律,并能运用加法运算律简化运算。
2、培养学生观察、比较、归纳及运算能力。
重点:有理数加法运算律及其运用。
重点:灵活运用运算律
教学过程:
一、创设情境,引入新课
1、小学时已学过的加法运算律有哪几条?
2、猜一猜:在有理数的加法中,这两条运算律仍然适用吗?
3、(1)计算30+(-20)=__________=______,-20+30=___________=_____;
(2)[8+(-5)]+(-4)=_______=______,8+[(-5)+(-4)]=_______=______。
二、讲授新课
教师:你会用文字表述加法的两条运算律吗?你会用字母表示加法的这两条运算律吗?
(学生回答省略)
师生共同归纳:加法交换律:两个数相加,交换加数的位置,和不变。即:a+b=b+a
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。即(a+b)+c=a+(b+c)
讲解例3
教师:例3中是怎样使计算简化的?这样做的根据是什么?(请两位同学起来回答)
三、巩固知识
教师:例4中用了两种方法,比较两种解法,哪种方法比较好?解法2中使用了哪些运算律?
师生共同得出:解法2比较好,因为它的运算量比较小。解法2中使用了加法交换律和加法结合律。
四、总结
本节课主要学习有理数加法运算律及其运用,主要用到的思想方法是类比思想,需要注意的是:有理数的加法运算律与小学学习的运算律相同,运用加法运算律的目的为了简化运算。解题技巧是将正数分别相加,再把负数分别相加,然后再把它们的和相加。
五、布置作业
第四篇:初中数学教案:有理数的大小比较
有理数的大小比较
教学目标:给出两个数,会比较它们的大小,会将给出的几个数,按大小顺序排列,会求
特定范围内的某些数值
教学重点:会比较两个数的大小,求某些特定范围内的数值
教学难点:比较两个数的大小的步骤的书写,求特定范围的数值
教学过程:
动手操作:画一条数轴,在上面表示-2,-5,7,3,0
[你能从中发现什么规律]
在数轴上表示的两个有理数,左边的数总比右边的数小。
正数都大于零;负数都小于零;正数大于一切负数
教师举例说明:-2,-
5探索问题:两个负数比较大小,还有没有别的方法?
[学生看书,找到解题的方法]
两个负数,绝对值大的反而小。例:比较-32和-的大小 43
[步骤教师板书]
例:求下列特定范围内的数值
1、大于-4的负整数
2、小于4的正整数
3、大于-4而小于4的所有整数
[本题可改成绝对值小于4的所有整数]
第五篇:有理数加法计算题
有理数加法计算题
1.1.75+(﹣6)+3+(﹣1)+2.
2.(﹣1.5)+4+2.75+(﹣5)
3.25.7+(﹣7.3)+(﹣13.7)+7.3.
4.5.31+(﹣102)+(+39)+(+102)+(﹣31)
6.(1)(﹣7)+(﹣4)+(+9)+(﹣5)
(2)
第1页(共3页)
.
+(﹣)+
(3)5
(4)
(﹣9)+15
(5)(﹣18)+(+53)+(﹣53.6)+(+18)+(﹣100)
7.(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)
(2)﹣0.5+(﹣3)+(﹣2.75)+(+7)
(3)1+(﹣1)++(﹣1)+(﹣3)
(4)+(﹣)+(﹣)+(﹣)+(﹣)
第2页(共3页)
(5)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5
(6)(﹣1)+(﹣6)+(﹣2.25)+
8.计算
(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7
(2)(﹣)+13+(﹣)+17.
9.(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96).
10.(﹣2)+(+5)+(﹣3)+(+1.125)+(+4)
.
第3页(共3页)