有理数的加法教案

时间:2019-05-13 00:58:25下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《有理数的加法教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《有理数的加法教案》。

第一篇:有理数的加法教案

《有理数的加法》说课稿

铁小英

一、教学内容分析

本节课是有理数加法的法则推导和计算,在此基础上,学生已经学过了正数和负数的认识及实际表示的意义和有理数的大小比较。本节课将在此基础上授导学生学习有理数的加法法则,解决同号、异号两数相加的计算。

二、学习者分析

七年级的学生,其思维已经明显地具备了逻辑思维性,并且学生已经在我的要求下,学会了预习、初步养成了预习的习惯,逐渐养成了合作交流的习惯。只要我们教师通过具体的问题的指引、学生小组间的合作和交流,是可以完成本节课的教学目标的。

三、教学目标

1.使学生掌握有理数加法法则,并能运用法则进行计算; 2.让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;

3.让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。

四、信息技术应用分析

由于本节课的知识点是探究有理数加法法则,要求学生掌握并会运用,所以为了节省时间和极大的提高学生的学习兴趣,选用了多媒体进行教学,把所有的内容用电子的白板展示出来。

五、教学过程

1、复习提问,引入新知

通过对小学加法及数轴知识的应用的复习,让学生既巩固了原来所学的知识,又可以引出新课。

2、出示问题情境、解决新知

在解决新知的过程中,由于学生利用已有的知识及题目提示,运用学生互相合作交流,并且由各个小组进行展示答案。

3、探索发现,归纳新知

利用学生展示的答案,学生分组进行归纳总结,得出有理数运算法则。

学生通过合作交流,养成在日常生活中和别人交流合作的好习惯。,通过展示成果培养了学生的自信心。

4、展示例题、应用新知

此环节巩固了所学知识,并且通过本环节让学生体会小组合作的乐趣,体会利用法则解决实际问题的方法。

5、达标训练,巩固新知

本环节进一步巩固了所学的知识,在互动回答是采用哪个小组举手多、举得早,让哪个小组来回答;让学生养成一种竞争意识,合作交流意识。

6、规律总结,升华新知

本环节着重总结有关有理数加法法则,让学生进行小结,逐步养成学生在解决问题时随时总结规律的习惯,并对本节课的知识进行梳理、加深和巩固。

7、作业和运用,拓展新知

通过作业学生进一步巩固所学知识,强化对知识的理解和应用,通过挑战自我来拓展学生知识面,发展学生的认识。

授课时间:2017年9月11日 授课教师:铁小英 教学内容:有理数的加法 教学目标:

1.使学生掌握有理数加法法则,并能运用法则进行计算; 2.让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;

3.让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。

重难点:会用有理数加法法则进行运算,异号两数相加的法则。教学过程:

1.回顾旧知,启发思维

展示三个问题,请同学们思考并回答。(1)有理数是怎么分类的?(2)有理数的绝对值是怎么定义的?(3)下列各组数中,哪一个数的绝对值大? 7和4;-7和4; 7和-4;-7和-4 【设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。

2.创设情境 引入课题

问题一:两个有理数相加,有多少种不同的情形? 答:正+正,负+负,正+负,正+0,负+0,0+0.【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。

问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?

请同学们举自己熟悉的例子:①西安夜间平均气温为16 摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)

师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回‚研究生‛共同研究有理数的加法运算吗?

(出示课题)

【设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣.同时肯定学生的知识准备,树立学生进一步学习的信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。

(二)分析问题探究新知

问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?

学生们各抒己见,总结法则。

1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0。

3、一个数同0相加,仍得这个数

老师总结口诀:‚同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑‛。

【设计意图】感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力

(三)运用新知深入体会 例1计算(-3)+(-9).

分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).

解:(-3)+(-9)=-12.

分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对

解题时,先确定和的符号,后计算和的绝对值.

问题四:你能尝试着使用数学语言将有理数加法法则表示出来吗?

(1)如果a>0,b>0,那么a+b=+(|a|+|b|)(2)如果a<0,b<0,那么a+b=-(|a|-|b|)(3)如果a>0,b<0,|a|>|b|,那么a+b=+(|a|-|b|)(4)如果a<0,b>0, |a|<|b|,那么a+b=-(|b|-|a|)(5)a+0=a.【设计意图】有意识培养学生使用数学表达的能力,将数学书写渗透到每一节课当中。

(四)延伸拓展敢于挑战

问题五:和一定大于加数吗?和与两个加数这三者之间的有什么大小关系?

问题六:小学学过的运算律是否适用于有理数的加法? 【设计意图】由课堂延伸到课外,不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间。

(五)归纳总结感受思想

(1)本节课所学的有理数的加法法则是什么?在应用时应注意哪些问题?

(2)本节课你学习到了哪些数学思想方法?

【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力。授课时间:2017年9月14日 授课教师:铁小英 教学内容:有理数的加法 教学目标:

1.使学生掌握有理数加法法则,并能运用法则进行计算; 2.让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;

3.让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。

重难点:会用有理数加法法则进行运算,异号两数相加的法则。教学过程:

一、回顾旧知,启发思维

展示三个问题,请同学们思考并回答。(1)有理数是怎么分类的?(2)有理数的绝对值是怎么定义的?(3)下列各组数中,哪一个数的绝对值大? 7和4;-7和4; 7和-4;-7和-4

二、创设情境 引入课题

问题一:两个有理数相加,有多少种不同的情形? 答:正+正,负+负,正+负,正+0,负+0,0+0.问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?

请同学们举自己熟悉的例子:①西安夜间平均气温为16 摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?

三、分析问题探究新知

问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗? 学生们各抒己见,总结法则。

1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0。

3、一个数同0相加,仍得这个数

老师总结口诀:‚同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑‛。

例1计算(-3)+(-9).

分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).

解:(-3)+(-9)=-12.

分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对

解题时,先确定和的符号,后计算和的绝对值. 课堂练习: 1.计算(口答)

(1)4+9;

(2)4+(-9);

(3)-4+9;

(4)(-4)+(-9);

(5)4+(-4);

(6)9+(-2);

(7)(-9)+2;

(8)-9+0;

2.计算

(1)5+(-22);

(2)(-1.3)+(-8)

(3)(-0.9)+1.5;

(4)2.7+(-3.5)3.用‚>‛或‚<‛填空:

(1)如果a>0,b>0,那么a+b____0;(2)如果a<0,b<0,那么a+b____0;(3)如果a>0,b<0,|a|>|b|,那么a+b____0;(4)如果a<0,b>0, |a|<|b|,那么a+b____0;问题四:你能尝试着使用数学语言将有理数加法法则表示出来吗?

(1)如果a>0,b>0,那么a+b=+(|a|+|b|)(2)如果a<0,b<0,那么a+b=-(|a|-|b|)(3)如果a>0,b<0,|a|>|b|,那么a+b=+(|a|-|b|)(4)如果a<0,b>0, |a|<|b|,那么a+b=-(|b|-|a|)(5)a+0=a.四、延伸拓展敢于挑战

问题五:和一定大于加数吗?和与两个加数这三者之间的有什么大小关系?

问题六:小学学过的运算律是否适用于有理数的加法?

五、归纳总结感受思想

(1)本节课所学的有理数的加法法则是什么?在应用时应注意哪些问题?

(2)本节课你学习到了哪些数学思想方法?

(六)布置作业(1)习题1、3(2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。

第二篇:有理数加法教案

有理数的加法

襄汾三中

伊娟丽

教学目标 :

1.使学生掌握有理数加法法则,并能运用法则进行计算;

2.在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及

教学重点和难点 :

重点:有理数加法法则. 难点:异号两数相加的法则.

教学方法:三疑三探教学 教学过程 :

一、创设情景,导入新课

1.复习引入 前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.

2.学生设疑 两个有理数相加,有多少种不同的情形? 为此,我们来看一个大家熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”.比如,赢3球记为+3,输2球记为-2.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了2球,那么全场

共赢了5球.也就是(+3)+(+2)=+5.(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)+(-1)=-3. ② 现在请同学们说出其他可能的情形. 答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是(+3)+(-2)=+1; ③

上半场输了3球,下半场赢了2球,全场输了1球,也就是(-3)+(+2)=-1; ④上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3; ⑤ 上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)+0=-2; ⑥ 上半场赢了3场,下半场输了3场,全场是平局,也就是 +3+(-3)=0. ⑦ 上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归 纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算? 这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法则: 1 .同号两数相加,取相同的符号,并把绝对值相加; 2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0; 3.一个数同0 相加,仍得这个数. 二.解疑合探例:

1、计算下列算式的结果,并说明理由:

(1)(+4)+(+7);(2)(-4)+(-7);(3)(+4)+(-7);(4)(+9)+(-4);(5)(+4)+(-4);(6)(+9)+(-2);(7)(-9)+(+2);(8)(-9)+0;(9)0+(+2); 学生逐题口答后,教师小结:

进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符 号,再计算“和”的绝对值.

解:(1)(-3)+(-9)(两个加数同号,用加法法则的第2条计算)=-(3+9)(和取负号,把绝对值相加)=-12.

下面请同学们计算下列各题:

(1)(-0.9)+(+1.5);(2)(+2.7)+(-3);(3)(-1.1)+(-2.9);

(2)全班学生书面练习,四位学生板演,教师对学生板演进行讲评.

三.质疑再探: 说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)四.运用拓展: 1.引导学生自编习题。

2、小结 这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题. 应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事.

3、作业 1.计算:

(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);(4)(+6)+(+9);

(5)67+(-73);(6)(-84)+(-59);(7)33+48;(8)(-56)+37.. 计 算 :

(1)(-0.9)+(-2.7);(2)3.8+(-8.4);(3)(-0.5)+3;

(4)3.29+1.78;(5)7+(-3.04);(6)2.9)+(-0.31);

(7)(-9.18)+6.18;(8)4.23+(-6.77);(9)(-0.78)+0. 4.用“>”或“<”号填空:

(1)如果a>0,b>0,那么a+b ______0(2)如果a<0,b<0,那么a+b ______0;(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.

第三篇:《有理数加法》教案

《有理数加法》教案

通榆县第十中学——杜建军

一.教学目标

1.知识与技能

(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;

(2)在有理数加法法则的教学过程中,注意培养学生的运算能力.

2.过程与方法

通过观察,比较,归纳等得出有理数加法法则。能运用有理数加法法则解决实际问题。

3.情感态度与价值观

认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

二、教学重难点及关键:

重点:会用有理数加法法则进行运算.

难点:异号两数相加的法则.

关键:通过实例引入,循序渐进,加强法则的应用.三、教学方法

发现法、归纳法、与师生轰动紧密结合.四、教材分析

“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。

五、教学过程

(一)问题与情境

我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为4+(-2),黄队的净胜球为1+(-1),这里用到正数与负数的加法。

(二)师生共同探究有理数加法法则

前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:

足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,打平为“0”.比如,赢3球记为+3,输1球记为-1.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:

(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球.也就是

(+3)+(+1)=+4.

(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是

(-2)+(-1)=-3.

现在,请同学们说出其他可能的情形.

答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是

(+3)+(-2)=+1;

上半场输了3球,下半场赢了2球,全场输了1球,也就是

(-3)+(+2)=-1;

上半场赢了3球下半场不输不赢,全场仍赢3球,也就是

(+3)+0=+3;

上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是

(-2)+0=-2;

上半场打平,下半场也打平,全场仍是平局,也就是

0+0=0.

上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?

这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加;

2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

3.一个数同0相加,仍得这个数.

(三)应用举例 变式练习

例1 口答下列算式的结果

(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);

(5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);(8)0+0.

学生逐题口答后,师生共同得出:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

例2(教科书的例1)

解:(1)(-3)+(-9)(两个加数同号,用加法法则的第1条计算)

=-(3+9)(和取负号,把绝对值相加)

=-12.

(2)(-4.7)+3.9(两个加数异号,用加法法则的第2条计算)

=-(4.7-3.9)(和取负号,把大的绝对值减去小的绝对值)

=-0.8

例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数

下面请同学们计算下列各题以及教科书第23页练习第1与第2题

(1)(-0.9)+(+1.5);(2)(+2.7)+(-3);(3)(-1.1)+(-2.9);

学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。

(四)小结

1.本节课你学到了什么?

2.本节课你有什么感受?(由学生自己小结)

(五)作业设计

1.计算:

(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);(4)(+6)+(+9);

(5)67+(-73);(6)(-84)+(-59);(7)-33+48;(8)(-56)+37.

2.计算:

(1)(-0.9)+(-2.7);(2)3.8+(-8.4);(3)(-0.5)+3;(4)3.29+1.78;

(5)7+(-3.04);(6)(-2.9)+(-0.31)(7)(-9.18)+6.18;(8)(-0.78)+0.

3.用“>”或“<”号填空:

(1)如果a>0,b>0,那么a+b ______0;

(2)如果a<0,b<0,那么a+b ______0;

(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;

(4)如果a<0,b>0,|a|>|b|,那么a+b ______0

(六)板书设计

1.3.1有理数加法

一、加法法则

二、例1例2例31、2、3、

第四篇:有理数的加法教案

篇一:有理数的加法教案 有理数的加法

一、教学目标

1.知识与技能:掌握有理数加法法则和加法运算律;能够熟练运用有理数的加法法则和运算律进行计算,并且会运用有理数加法运算律简化运算;

2.过程与方法:经历探索有理数加法法则和运算律的过程,体会分类和归纳的思想方法; 3.情感态度与价值观:在学习探索的过程中,培养学生的观察,比较,归纳及运算的能力;

二、教学重点和难点

教学重点:有理数的加法法则以及加法运算律;

教学难点:异号两数相加的加法法则以及运算律的运用;

三、教学手段

现代课堂教学手段;

四、教学方法 启发式教学;

五、教学过程

(一)创设情境,导入新课

前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.

【问】两个有理数相加,有多少种不同的情形? 为此,我们来看一个大家熟悉的实际问题:

足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”.比如,赢3球记为+3,输2球记为-2.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:

(1)上半场赢了3球,下半场赢了2球,那么全场共赢了5球.也就是(+3)+(+2)=+5. ①(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)+(-1)=-3. ② 现在,请同学们说出其他可能的情形.

答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是(+3)+(-2)=+1; ③ 上半场输了3球,下半场赢了2球,全场输了1球,也就是(-3)+(+2)=-1; ④

上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3; ⑤

上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)+0=-2; ⑥ 上半场打平,下半场也打平,全场仍是平局,也就是 0+0=0. ⑦

上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.

【问】现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算? 这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法则: 1.同号两数相加,取相同的符号,并把绝对值相加;

2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0; 3.一个数同0相加,仍得这个数.

(二)应用举例,变式练习【例】计算下列算式的结果,并说明理由:

(1)(+4)+(+7);(2)(-4)+(-7);(3)(+4)+(-7);(4)(+4)+(-4);(5)(-9)+0;(6)0+(+2);(7)0+0; 学生逐题口答后,教师小结:

进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

全班学生书面练习,学生板演,教师对学生板演进行讲评.

(三)从学生原有认知结构提出问题 【问】1.叙述有理数的加法法则. 2.“有理数加法”与小学里学过的数的加法有什么区别和联系?

答:进行有理数加法运算,先要根据具体情况正确地选用法则,确定和的符号,这与小学里学过的数的加法是不同的;而计算“和”的绝对值,用的是小学里学过的加法或减法运算. 3.计算下列各题,并说明是根据哪一条运算法则?

(1)(-9.18)+6.18;(2)6.18+(-9.18);(3)(-2.37)+(-4.63); 4.计算下列各题:

(1)[8+(-5)]+(-4);(2)8+[(-5)+(-4)];(3)[(-7)+(-10)]+(-11);(4)(-7)+[(-10)+(-11)];(5)[(-22)+(-27)]+(+27);

(四)共同探索,归纳有理数运算律 通过上面练习,引导学生得出:

交换律——两个有理数相加,交换加数的位置,和不变. 用代数式表示上面一段话:a+b=b+a.

运算律式子中的字母a,b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数.

结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变. 用代数式表示上面一段话:(a+b)+c=a+(b+c). 这里a,b,c表示任意三个有理数.

(五)运用举例,变式练习

根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加. 【例】计算16+(-25)+24+(-32).

引导学生发现,在本例中,把正数与负数分别结合在一起再相加,计算就比较简便. 解:16+(-25)+24+(-32)=16+24+(-25)+(-32)(加法交换律)=[16+24]+[(-25)+(-32)](加法结合律)=40+(-57)(同号相加法则)=-17.(异号相加法则)本例先由学生在笔记本上解答,然后教师根据学生解答情况指定几名学生板演,并引导学生发现,简化加法运算一般是三种方法:首先消去互为相反数的两数(其和为0),同号结合或凑整数.

【例】1.计算:(要求注理由)(1)23+(-17)+6+(-22);(2)(-2)+3+1+(-3)+2+(-4); 2.计算:(要求注理由)(1)(-8)+10+2+(-1);(2)5+(-6)+3+9+(-4)+(-7); 3.当a=-11,b=8,c=-14时,求下列代数式的值:(1)a+b;(2)a+c;(3)a+a+a;(4)a+b+c.

利用有理数的加法解下列各题(第4~8题):

4.飞机的飞行高度是1000米,上升300米,又下降500米,这时飞 行高度是多少?

5.存折中有450元,取出80元,又存入150元以后,存折中还有多 半夜的气温是多少?

7.小吃店一周中每天的盈亏情况如下(盈余为正):

128.3元,-25.6元,-15元,27元,-7元,36.5元,98元 一周总的盈亏情况如何?

8.8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:

1.5,-3,2,-0.5,1,-2,-2,-2.5 8筐白菜的重量是多少?

(六)小结

这节课,我们从实例出发,经过比较,归纳,得出了有理数的加法法则和有理数的加法运算律,在应用有理数的加法法则时,要同时注意确定“和”的符号,计算“和”的绝对值两件事。对于有理数加法的运算律的应用,我们要注意观察,探究简便运算的特点,让计算更加快捷,简单。

(七)布置作业篇二:《有理数的加法》教学设计 《有理数的加法》教学设计

一、课程目标

(一)知识与技能目标

1、经历探索有理数加法法则的过程,理解有理数的加法法则。

2、运用有理数加法法则熟练进行整数加法运算。

(二)过程与方法目标

1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。

2、在探索过程中感受数形结合和分类讨论的数学思想。

3、渗透由特殊到一般的唯物辩证法思想

(三)情感态度与价值观目标

(1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。(2)让学生体会到数学知识来源于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。

(3)培养学生合作意识,体验成功,树立学习自信心。

二、教学重点、难点:

重点:理解和运用有理数的加法法则

难点:理解有理数加法法则,尤其是理解异号两数相加的法则

三、教学组织与教材处理:

在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价、教师评价与小组评价相结合);

行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);

省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。

信:在本节课的探究法则与运用法则中体验成功,增添学习兴趣,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)= +5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。又如以口答形式判断几组有理数加法的和的符号和在最后以“挑战老师”的形式判断一句话的正误等等)。

同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示范,其它的留给学生独立得出或合作完成。

另外利用多媒体来辅助教学,使教学内容直观形象化,使学生在比较真实的环境里面体验数学的生活性。

四、教学流程

(一)引入新知---新

师播放一段世界杯的音乐,让学生感受激情,再问“大家知道今年世界杯的冠军得主是谁?”学生回答后师给与评价,然后出示“净胜球”问题:凯旋足球队第一场比赛赢了1个球,第二场比赛输了1个球。该队这两场比赛的净胜球数是多少?学生回答后教师引导学生用数学式子表示:把赢1个球记为“+1”,输1个球记为“-1”,净胜球数应是(+1)+(-1)=0。师再问:如果该队第一场比赛输1个球,第二场比赛赢1个球.那么该队这两场比赛的净胜球数为多少?师引导学生用(-1)+(+1)=0的式子说明。

(二)探究新知---行

1、师:同学们今天我们借助这两个式子来探讨有理数的加法。为了更形象的说明问题,我们用 1个

表示 +1,用 1个 表示 -1,那么就表示0。

2、师:首先我们一起来计算(+2)+(+3)。教师课件演示:先出现两个带正号的球,再出现三个带正号的球,用方框框住总共有五个带正号的球,也就是说(+2)+(+3)= +5。师问:聪明的同学们能告诉我(-2)+(-3)等于多少吗?教师先让学生思考再回答,教师演示过程,并给与积极评价。在前两例的基础上再启发学生思考:(-3)+2,3+(-2),(-4)+ 4三种情形。(注:此三例关键是“正负抵消”,教师教学时引导学生观察并运用这个思想)。

3、师:同学们,其实我们还可以用数轴来表示刚才

这几道题的运算过程。课件出示数轴,并规定正负方向。师先举例说明:先向西移动2个单位,再向西移动3个 单位,则一共向西移动了5个单位。所以:(-2)+(-3)=-5。师然后让学生用数轴的方法运算(-3)+2,3+(-2),(-4)+ 4三个式子。(注:学生在表示(-3)+2的移动过程时对于+2可能不能正确表示。师应强调加法是“相继”活动的合并,教学时可让学生先想想再决定到底是从原点出发还是从-3这个点出发。对于非常正确的见解,师给与积极评价。)

(三)发现新知---省

1、教师引导学生观察刚才的五个例子:

问:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定?

师先让学生独立思考,再小组讨论。在学生发表见解时应肯定他们朴素的语言,同时教师引导学生先把他们分成三类:同号类、异号类、相反数类,再去观察他们加数与和的符号和绝对值特征。

2、师生共同得出有理数加法法则

同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并把较大的绝对值减去较小的绝对值;相反数相加,和为零。师问:一个数同0相加?师生得出仍得这个数。师引导学生记一记。

(四)运用新知---信

1、范例讲解:

例1计算下列各题: ①180+(-10); ②(-10)+(-1);③5+(-5);④ 0+(-2).教师引导学生先观察符号特征,再教师示范写出过程。解:(1)180+(-10)(异号型)=+(180-10)(取绝对值较大的数的符号,=170 并用较大的绝对值减去较小的绝对值)②(-10)+(-1)(同号型)=-(10+1)(取相同的符号,并把绝对值相加)对于③④ 小题,可以让学生口答。

2、解后思:

教师引导学生反思刚才做题时的基本思路。教师在学生回答的基础上提炼为三句话: ①确定类型、②确定符号、③确定绝对值。

3、说一说

(口答)确定下列各题中的符号,并说明理由:(1)(+5)+(+ 7);(2)(- 10)+(- 3)(3)(+ 6)+(-5)(4)(+ 3)+(-8)注:此题意在强化对有理数加法的符号判断,特别是异号的情形着重反馈矫正

4、练一练

1、计算下列各式:(1)(-25)+(-7);(2)(-13)+5;(3)(-23)+0;(4)45+(-45)。

2、土星表面的夜间平均温度为-150度,白天比夜间高27度,那么白天的平均温度是多少? 注:此两题意在对有理数加法法则的巩固和引导学生运用有理数的加法解决实际问题。第一题教师先让学生独立完成,并请四个学生演板。做完后小组之间开展互评,正误怎样?有什么值得改进的地方?对于第二题教师请男女两个同学比赛进行演板,师给与评价。

5、想一想

请根据 式子(-4)+3,举出一个恰当的生活情境;(聪明的你能举出多少种新情境?)注:此例意在引导学生关注“生活中的数学”。对于学生有创意的情境师应给与积极评价。(符合此式子的情境有很多,如:温度变化问题、足球净胜球问题、方向行走问题、收入支出问题、水位涨落问题等等)

(五)反省新知---谈一谈 我学到了什么?教师引导学生自我反省、自我评价。师生共同总结:

1、有理数的加法法则,2、运算时的基本思路。

(六)挑战老师

师说:通过今天的学习,老师认为:“ 两个有理数相加,和一定大于其中一个加数”。老师的说法正确吗?请聪明的你举例说明。

(七)超越自我

分别在右图的圆圈内填上彼此不相等的数,使得 条线上的数之和为零,你有几种填法?

(八)布置作业。

篇三:有理数的加法教案1 《有理数的加法》教案

师:在小学里,同学们已经学过数的加、减、乘、除四则运算。这些数是正整数、正分数、和零,也就是说,这些运算是在非负有理数范围内进行的。自从引进负数后,数的范围就扩大到整个有理数。那么,在有理数范围内,怎样进行四则运算呢?今天,我们来探索有理数的加法运算。(教师板书课题:有理数的加法)

请同学们思考一下,两个有理数进行加法运算时,这两个加数的符号可能有哪些情况。生1:加数都是正数或都是负数。(教师板书:同号两数相加)加数一正一负(教师板书:异号两数相加)

师:还有其他情况吗?

生2:正数与零,负数与零,或者两个都是零

师:同学们回答得很好。现在让我们一起来看一个具体问题:某人从一点出发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少? ① 先向东走了5米,再向东走3米,结果怎样?

生3:向东走了8米 师:如果规定向东为正,向西为负,同学们能不能用一个数学式子来表示? 生4:表示为(+5)+(+3)=+8(教师板书)师:我们可以画出示意图。(教师用投影仪显示图1)②先向西走了5米,再向西走了3米,结果如何? 生5:向西走了8米。可以表示为:(-5)+(-3)=-8 [教师板书](教师用投影仪显示图2)

③ 向东走了5米,再向西走了3米,结果呢? 生6:向东走了2米。可以表示为:(+5)+(-3)=+2 [教师板(教师用投影仪显示图3)

④先向西走了5米,再向东走了3米,结果呢? 生7:向西走了2米。可以表示为:(-5)+(+3)=-2(教师板)(教师用投影仪显示图4)

⑤先向东走5米,再向西走5米,结果呢? 生8:回到原地位置。可以表示为:(+5)+(-5)=0(教师板书)(教师用投影仪显示图5)

⑥先向西走5米,再向东走5米,结果呢? 生9:仍回到原地位置。可以表示为:(-5)+(+5)=0 [教师板书](教师用投影仪显示图6)

师:同学们开动脑筋,完成上面这组问题完成得非常好,我非常高兴,请同学们独立完成下面一组有理数加法的具体问题,用数学式子表示出来。(教师用投影仪显示下面内容): 从河岸现在水位线开始,规定上升为正,下降为负:

①上升8cm,再上升6cm,结果怎样? ②下降8cm,再下降6cm,结果怎样?

③上升6cm,再下降8cm,结果怎样? ④下降6cm,再上升8cm,结果怎⑤上升8cm,再下降8cm,结果怎样? ⑥下降8cm,再上升0cm,结果怎样? 师:下面同学们分组讨论,互相订正。教师公布正确答案:

①上升14cm。[教师板书(+8)+(+6)=+14] ②下降14cm。[教师板书(-8)+(-6)=-14] ③下降2cm。[教师板书(+6)+(-8)=-2] ④上升2cm。[教师板书(-6)+(+8)=+2] ⑤回到原水位线。[教师板书(+8)+(-8)=0] ⑥在原水位下线下8cm。[教师板书(-8)+0=-8] 师:通过以上两组题目,从两个有理数相加的过程中你发现了什么?请同学们发表演自己的观点,与本组同学交流。

小组1:我们这一小组同学发现了正数加正数结果是正数,负数加负数结果是负数,也就是说:同号两数相加,符号不变。

师:其他小组还有没有新的发现什么?

小组2:我们发现符号不同的两个有理数相加,结果的符号与最前面加数的符号一样。师:这一小组的看法是否正确呢?

小组3:不正确。因为(+6)+(-8)=-2,(-6)+(+8)=+2,结果和符号与第一个加数的符号不一样。应改为:符号不同的两个有理数相加,结果的符号决定于加数中较大的数的符号。

小组4:这句话也不对,如(+3)+(-5)=-2 中,和的符号是负的,但+3比 -5大,应改为:和的符号与绝对值大的加数符号一样。师:还有没有不同意见?

小组5:我们这一小组有不同意见。符号不同的两个数相加还有一种可能是相反数的情况,结果为0与每个的数的符号都不一样。师:观察仔细,很好。

师:刚才同学们只是发现了两个有理数相加,结果的符号问题,结果除了符号部分外,另一部分称为结果的什么? 众生:结果的绝对值

师:结果的绝对值与加数绝对值又有何关系呢?

小组5:同号两数相加和的绝对值等于加数绝对值的和,异号两数相加和的绝对值等于较大绝对值减去较小绝对值。

师:请同学归纳,总结出有理数的加法规律。

小组6:同号两数相加,符号不变,并把绝对值相加;异号两数相加取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值。

小组7:不对,异号两数相加应分两种情况。⑴绝对值不等的异号两数相加;⑵绝对值相等的异号两数相加。

师:很好!同学们已经感受到两个有理数相加的情况与小学加法要复杂一些,是否还有没有考虑到的情况呢?

小组8:有,一个数同0相加,仍是这个数。师:全班同学共同说出有理数的加法法则。教(板书):有理数加法法则:

①同号两数相加,取加数的符号,并把绝对值相加;

②异号两数相加,如果绝对值相等和为0;如果绝对值不等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; ③一个数同0相加,仍是这个数。

(点评:学生学习知识是一个动态的过程。学生认知的效果,完全取决于学生是否以积极的心态参与认知活动。因此本节课在教学设计上有如下闪光点:

1.通过回顾已具备的部分知识与技能,让学生产生一个暂时成功感和满足感,达到一个暂时的心理平衡。

2.以提问的形式展现新矛盾、新问题,挑起学生引起心理的不平衡。旨在诱发学生好强、好胜的天性,将学生的注意力导向下一个环节。

3.再次以提问的形式,渗透分类的思想,将学生的思维导向分类探索的境地。旨在让学生的思维能圆润地过度到探索新知情境之中。4.分类展示生活情境,放手让全体学生感受并探索,从而构建加法法则。)

第五篇:《有理数的加法》参考教案

1.4 有理数的加减

第一课时 有理数的加法

教学目标:

1.使学生理解有理数加法的意义,掌握有理数加法法则,能准确地进行有理数的加法运算.

2.通过有理数加法的教学,体现化归的意识、数形结合和分类的思想方法,培养学生观察、比较和概括的思维能力.

3.在传授知识、培养能力的同时,注意培养学生勇于探索的精神. 教学重点:有理数的加法法则,能准确地进行有理数的加法运算. 教学难点:异号两数相加的法则. 教学教学程序 设计: 一.类比联想 提出问题

通过引导学生回忆小学算术运算的学习过程,类比联想到在认识了有理数之后,必然要首先学习有理数的加法.

又通过提问,复习具有相反意义的量和用负数表示的量的实际意义,并通过实际问题,提出质疑导入新课.

具体问题是:在下列问题中用负数表示量的实际意义是什么?(1)某人第一次前进了5米,接着按同一方向又向前进了3米;(2)某地气温第一天上升了3℃,第二天上升了-1℃;(3)某汽车先向东走4千米,再向东走-2千米。紧接着,回答:

(1)某人两次一共前进了多少米?

(2)某地气温两天一共上升了多少度?(3)某汽车两次一共向东走了多少千米?

组织学生展开讨论,在此基础上指出:这三个问题都是求物体两次向同一方向运动的和的问题,同小学一样,可以用加法来做。但是,这些数中出现了负有理数,怎样进行有理数的加法运算呢?引出课题.

在刚才的教学中,通过复习,加强了铺垫,刻意去引导学生回忆和复习前面学过的有关知识和方法,在旧知识的复习中找到新知识的生长点。这样,既了解了学生的认知基础,带领学生做好学习新课的知识准备,又使学生认识到本课

学习的重要性,引起学生的注意,激发他们的求知个欲望,让每个学生都进行积极的思维参与.

二.直观演示 归纳法则

用6个实例讲两个有理数相加的问题:

(1)向东走5米,再向东走3米,两次一共向东走了多少米?(2)向西走5米,再向西走3米,两次一共向东走了多少米?(3)向东走5米,再向西走5米,两次一共向东走了多少米?(4)向东走5米,再向西走3米,两次一共向东走了多少米?(5)向东走3米,再向西走5米,两次一共向东走了多少米?(6)向西走5米,再向东走0米,两次一共向东走了多少米?

点拨:“一共”的含义是什么?通过小学的学习知道,就是两个数相加. 探究:若设向东为正,向西为负,你能写出算式吗?(1)(+5)+(+3)=+8;(2)(-5)+(-3)=-8;(3)(+5)+(-5)=0;(4)(+5)+(-3)=+2;(5)(+3)+(-5)=-2;(6)(-5)+(+0)=-5;

以上六个问题的设置运用了数学中分类的思想方法,因为两数相加,按符号异同划分为三大类。这样自然就把问题归结为三种情况:问题(1)和(2)是同号两数相加的情况;问题(3)、(4)、(5)是异号两数相加的情况;问题(6)有是有一个加数为零的情况.

这6个问题,都借助于数轴,先规定了向东为正,向西为负,通过电教手段具体演示验证两次运动的结果,由在数轴上表示结果的点所处的方向,确定和的符号,由表示结果的点与原点的距离,确定和的绝对值。引导学生认真观察,积极思考,通过分类、观察,最后师生共同归纳总结出有理数的加法法则. 有理数的加法法则:

1.同号两数相加,取与加数相同的符号,并把绝对值相加.

2.异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的的加数的符号,并用较大的绝对值减去较小的绝对值. 3.一个数与零相加,仍得这个数.

归纳出法则之后,进一步启发诱导学生分析法则特点,并总结规律:两个有理数相加所得的“和”由符号和绝对值两部分组成,计算“和”的绝对值,实质上是

进行算术数的加减,因此,有理数的加法运算,贯穿一个化归思想,即把有理数的加法运算化归为算术数的加减运算. 一般步骤为:

(1)根据有理数的加法法则确定和的符号;(2)根据有理数的加法法则进行绝对值的加减运算.

前面已经分析过,异号两数相加的法则是学生学习的难点。因此,我抓住突破难点的关键,一是借助于数轴的直观演示,引导学生认真观察、积极思考,自己归纳法则;二是引导学生分析法则特点,总结规律,在此基础上加以记忆,从而使难点化解,并在化解难点的过程中培养学生的思维能力.

总结出法则之后,可进一步提问:在算术里,两个不都是零的数相加,和一定大于加数,那么,对于两个有理数,相加后和还一定大于加数吗?

提出问题后,让学生去思考、去分析,最终要让学生明白:在有理数运算中,算术中的某些结论不一定再成立,即对于两个有理数,相加的和不一定大于加数,这是有理数的加法与算术运算的一个很大的区别.

三.应用迁移 巩固提高

为了解决从掌握知识到运用知识的转化,使知识教学和智能培养结合起来,设计了例题和练习题,选题遵循由浅入深,循序渐进的原则. 类型:同号、异号、0与一个数相加的三种情况的有理数相加 例1:计算下列各题:

(1)(+7)+(+6)

(2)(-5)+(-9)11(3)()

(4)(-10.5)+(+21.5)23分析:先确定符号,在进行绝对值加减运算.

解:(2)(-5)+(-9)(两个加数同号,用加法法则的第1条计算)=-(5+9)(和取负号,把绝对值相加)=-14. 例2:计算(1)(-7.5)+(+7.5);(2)(-3.5)+0.解:(1)(-7.5)+(+7.5)=0

(2)(-3.5)+0=-3.5 通过此两例,训练学生对法则的理解和直接应用,进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

变式题1: 填空(口答,并说明理由)(1)(-4)+(-7)=_____()

(2)(+4)+(-7)=_____()(3)7+(-4)=_____()

(4)4+(-4)=_____()(5)9+(-2)=_____()

(6)(-9)+2 =_____()(7)(-9)+0 =_____()

(8)0+(-3)=_____()变式题2: 今年,我国南方部分地区发生了严重的洪涝灾害。某地水库的水位在某天当中每一次上升了a厘米,第二次上升了b厘米,问:(1)两次一共上升了多少厘米?(2)计算当a、b为下列各数时的值:

① a= 4 , b=3 ② a= -3 , b= 7 ③ a= 5 , b= -5 ④ a= 4, b= -1 ⑤ a = 3 , b=0(3)说出以上运算结果的实际意义 四.总结反思

拓展升华

为了使学生对所学知识有一个完整而深刻的印象,利用提问形式,从以下三方面小结。学生先回答,进而教师归纳总结,体现学生为主体,教师为主导的教学思想.

(1)本节所学习的主要内容有哪些?

(2)有理数的加法法则在应用时应注意的哪些问题?(确定“和”的符号,计算“和”的绝对值两件事)(3)本节课涉及的数学思想方法主要有哪些? 五.作业

课本第19页练习1~5题. 补充: 1.计算:

(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);(4)(+6)+(+9);(5)67+(-73);(6)(-84)+(-59);(7)33+48;(8)(-56)+37. 2.计算:

(1)(-0.9)+(-2.7);(2)3.8+(-8.4);(3)(-0.5)+3;(4)3.29+1.78;(5)7+(-3.04);(6)(-2.9)+(-0.31);(7)(-9.18)+6.18;(8)4.23+(-6.77);(9)(-0.78)+0. 3*.用“>”或“<”号填空:

(1)如果a>0,b>0,那么a+b ______0;(2)如果a<0,b<0,那么a+b ______0;

(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;(4)如果a<0,b>0,|a|>|b|,那么a+b ______0. 4*.分别根据下列条件,利用|a|与|b|表示a与b的和:(1)a>0,b>0;

(2)a<0,b<0;(3)a>0,b<0,|a|>|b|;(4)a>0,b<0,|a|<|b|.

下载有理数的加法教案word格式文档
下载有理数的加法教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    有理数加法教案1

    有理数加法教案1 一、学习目标: 1.使学生理解有理数加法的意义, 2. 掌握有理数加法法则,并能准确地进行有理数的加法运算。 3.通过有理数加法的教学,体现化归的意识、数形结合......

    有理数的加法教案

    课题:2. 4.1有理数的加法(1) 【教学目标】 1. 通过学习,能感受到数学知识来源于生活又可应用于实际生活,激发学习的兴趣。 2.通过探索,能归纳总结出有理数加法法则,理解有理数加法......

    有理数的加法教案[最终定稿]

    《有理数的加法(一)》教案 郑州市第七十八中学杜惠芬 一、教材分析: (一)本节课地位和作用 有理数的加法是小学算术加法运算的拓展,是初中数学运算中最重要,最基础的内容之一。熟练......

    有理数的加法教案(集锦11篇)

    篇1:有理数的加法教案1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法......

    §2.1 有理数的加法教案

    §2.1 有理数的加法教案 以下是查字典数学网为您推荐的 2.1 有理数的加法教案,希望本篇文章对您学习有所帮助。 2.1 有理数的加法教案 教学目标:1.会进行有理数加法运算,理解......

    有理数的加法教案(推荐5篇)

    有理数的加法 一、教学目标 1.知识与技能:掌握有理数加法法则和加法运算律;能够熟练运用有理数的加法法则和运算律进行计算,并且会运用有理数加法运算律简化运算; 2.过程与方法:......

    有理数的加法(一)教案

    第二章 有理数及其运算 4.有理数的加法(一) 时间:2017、09、14 备课组:数学组 一、学习目标: 1.经历探索有理数加法法则的过程,理解有理数的加法法则; 2.能熟练进行整数加法运算; 3.......

    《有理数的加法》教案(xiexiebang推荐)

    1.3.1 有理数的加法(第一课时) 一、教材分析 有理数的加法是小学算术加法运算的拓展,是初中数学运算最重要,最基础的内容之一。熟练掌握有理数的加法运算是学习有理数其它运算的......