【数学】1.2.2《解三角形应用举例》教案(新人教A版必修5)(含5篇)

时间:2019-05-15 03:02:24下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《【数学】1.2.2《解三角形应用举例》教案(新人教A版必修5)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《【数学】1.2.2《解三角形应用举例》教案(新人教A版必修5)》。

第一篇:【数学】1.2.2《解三角形应用举例》教案(新人教A版必修5)

知识改变命运,学习成就未来

课题: §1.2.2解三角形应用举例

知识改变命运,学习成就未来

AB = AE + h = ACsin+ h

=

asinsin + h sin()例

2、如图,在山顶铁塔上B处测得地面上一点A的俯角=5440,在塔底C处测得A处的俯角=501。已知铁塔BC部分的高为27.3 m,求出山高CD(精确到1 m)

师:根据已知条件,大家能设计出解题方案吗?(给时间给学生讨论思考)若在ABD中求CD,则关键需要求出哪条边呢? 生:需求出BD边。师:那如何求BD边呢?

生:可首先求出AB边,再根据BAD=求得。

解:在ABC中, BCA=90+,ABC =90-,BAC=-,BAD =.根据正弦定理,BCAB =

sin()sin(90)BCsin(90)BCcos 所以 AB ==

sin()sin()解RtABD中,得 BD =ABsinBAD=将测量数据代入上式,得

BCcossin

sin()27.3cos501sin5440 BD =

sin(5440501)27.3cos501sin5440 =

sin439欢迎各位老师踊跃投稿,稿酬丰厚 邮箱:zxjkw@163.com

知识改变命运,学习成就未来

≈177(m)

CD =BD-BC≈177-27.3=150(m)答:山的高度约为150米.师:有没有别的解法呢?

生:若在ACD中求CD,可先求出AC。

师:分析得很好,请大家接着思考如何求出AC? 生:同理,在ABC中,根据正弦定理求得。(解题过程略)

3、如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15的方向上,行驶5km后到达B处,测得此山顶在东偏南25的方向上,仰角为8,求此山的高度CD.师:欲求出CD,大家思考在哪个三角形中研究比较适合呢? 生:在BCD中

师:在BCD中,已知BD或BC都可求出CD,根据条件,易计算出哪条边的长? 生:BC边

解:在ABC中, A=15,C= 25-15=10,根据正弦定理,BCAB = , sinAsinCABsinA5sin15 BC == sin10sinC ≈ 7.4524(km)

CD=BCtanDBC≈BCtan8≈1047(m)答:山的高度约为1047米

Ⅲ.课堂练习

课本

知识改变命运,学习成就未来

测得塔基B的俯角为45,则塔AB的高度为多少m?

203(m)3●板书设计 ●授后记 答案:20+欢迎各位老师踊跃投稿,稿酬丰厚 邮箱:zxjkw@163.com

第二篇:【数学】1.2.4《解三角形应用举例》教案(新人教A版必修5)

知识改变命运,学习成就未来

课题: §1.2.4解三角形应用举例

授课类型:新授课

●教学目标 知识与技能:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用

过程与方法:本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型。另外本节课的证明题体现了前面所学知识的生动运用,教师要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解。只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点。情感态度与价值观:让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验 ●教学重点

推导三角形的面积公式并解决简单的相关题目 ●教学难点

利用正弦定理、余弦定理来求证简单的证明题 ●教学过程 Ⅰ.课题导入 [创设情境] 师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。在

ABC中,边BC、CA、AB上的高分别记为ha、hb、hc,那么它们如何用已知边和角表示?

生:ha=bsinC=csinB

hb=csinA=asinC hc=asinB=bsinaA

1ah,应用以上求出的高的公式如ha=bsinC代入,21可以推导出下面的三角形面积公式,S=absinC,大家能推出其它的几个公式吗?

211生:同理可得,S=bcsinA, S=acsinB 22师:根据以前学过的三角形面积公式S=师:除了知道某条边和该边上的高可求出三角形的面积外,知道哪些条件也可求出三角形的面积呢?

生:如能知道三角形的任意两边以及它们夹角的正弦即可求解 Ⅱ.讲授新课 [范例讲解] 例

1、在ABC中,根据下列条件,求三角形的面积S(精确到0.1cm2)(1)已知a=14.8cm,c=23.5cm,B=148.5;欢迎各位老师踊跃投稿,稿酬丰厚 邮箱:zxjkw@163.com

知识改变命运,学习成就未来

(2)已知B=62.7,C=65.8,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm

分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。解:(1)应用S=

S=1acsinB,得 2114.823.5sin148.5≈90.9(cm2)2b = c

sinCsinBsinB(2)根据正弦定理,c = bsinC

S = 11bcsinA = b2sinCsinA 22sinBA = 180-(B + C)= 180-(62.7+ 65.8)=51.5

sin65.8sin51.51S = 3.16≈4.0(cm2)sin62.72(3)根据余弦定理的推论,得

c2a2b2cosB =

2ca38.7241.4227.32

=

238.741.≈0.7697 sinB = 1cos2B≈10.76972≈0.6384 应用S=S ≈1acsinB,得 2141.438.70.6384≈511.4(cm2)2例

2、如图,在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm2)?

师:你能把这一实际问题化归为一道数学题目吗?

生:本题可转化为已知三角形的三边,求角的问题,再利用三角形的面积公式求解。由学生解答,老师巡视并对学生解答进行讲评小结。解:设a=68m,b=88m,c=127m,根据余弦定理的推论,欢迎各位老师踊跃投稿,稿酬丰厚 邮箱:zxjkw@163.com

知识改变命运,学习成就未来

c2a2b2cosB=

2ca127268288

2=≈0.7532 212768sinB=10.753220.6578 1acsinB 21 S ≈681270.6578≈2840.38(m2)

2应用S=答:这个区域的面积是2840.38m2。例

3、在ABC中,求证:

a2b2sin2Asin2B;(1)c2sin2C(2)a2+b2+c2=2(bccosA+cacosB+abcosC)

分析:这是一道关于三角形边角关系恒等式的证明问题,观察式子左右两边的特点,联想到用正弦定理来证明

证明:(1)根据正弦定理,可设

a = b = c = k sinAsinBsinC显然 k0,所以

a2b2k2sin2Ak2sin2B 左边= c2k2sin2Csin2Asin2B ==右边 2sinC(2)根据余弦定理的推论,b2c2a2a2b2c2c2a2b2 右边=2(bc+ca+ab)

2bc2ca2ab

=(b2+c2-a2)+(c2+a2-b2)+(a2+b2-c2)

=a2+b2+c2=左边

变式练习1:已知在ABC中,B=30,b=6,c=63,求a及ABC的面积S 提示:解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数。答案:a=6,S=93;a=12,S=183

欢迎各位老师踊跃投稿,稿酬丰厚 邮箱:zxjkw@163.com

知识改变命运,学习成就未来

变式练习2:判断满足下列条件的三角形形状,(1)acosA = bcosB(2)sinC =sinAsinB

cosAcosB提示:利用正弦定理或余弦定理,“化边为角”或“化角为边”(1)师:大家尝试分别用两个定理进行证明。

生1:(余弦定理)得

b2c2a2c2a2b2a=b

2bc2cac2(a2b2)a4b4=(a2b2)(a2b2)a2b2或c2a2b2

根据边的关系易得是等腰三角形或直角三角形

生2:(正弦定理)得 sinAcosA=sinBcosB, sin2A=sin2B, 2A=2B, A=B 根据边的关系易得是等腰三角形

师:根据该同学的做法,得到的只有一种情况,而

第三篇:解三角形应用举例教案(推荐)

解三角形应用举例教案

●教学目标

知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语

过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题。对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正

情感态度与价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力 ●教学重点

实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 ●教学难点

根据题意建立数学模型,画出示意图 ●教学过程 Ⅰ.课题导入

1、[复习旧知] 复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?

2、[设置情境]

请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。Ⅱ.讲授新课

(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解

[例题讲解]

(2)例

1、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,BAC=51,ACB=75。求A、B两点的距离(精确到0.1m)

启发提问1:ABC中,根据已知的边和对应角,运用哪个定理比较适当?

启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边。解:根据正弦定理,得

ABsinACB =

ACsinABC

AB = ACsinACB

sinABC = 55sinACB

sinABC =

55sin75 sin(1805175)= 55sin75

sin54 ≈ 65.7(m)答:A、B两点间的距离为65.7米

变式练习:两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东30,灯塔B在观察站C南偏东60,则A、B之间的距离为多少?

老师指导学生画图,建立数学模型。解略:2a km 例

2、如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法。

分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题。首先需要构造三角形,所以需要确定C、D两点。根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC和BC,再利用余弦定理可以计算出AB的距离。

解:测量者可以在河岸边选定两点C、D,测得CD=a,并且在C、D两点分别测得BCA=, ACD=,CDB=,BDA =,在ADC和BDC中,应用正弦定理得

AC = BC =

asin()= asin()

sin[180()]sin()asin = asin sin[180()]sin()计算出AC和BC后,再在ABC中,应用余弦定理计算出AB两点间的距离 AB =

AC2BC22ACBCcos

分组讨论:还没有其它的方法呢?师生一起对不同方法进行对比、分析。

变式训练:若在河岸选取相距40米的C、D两点,测得BCA=60,ACD=30,CDB=45,BDA =60

略解:将题中各已知量代入例2推出的公式,得AB=20

评注:可见,在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式。学生阅读课本4页,了解测量中基线的概念,并找到生活中的相应例子。Ⅲ.课堂练习

课本第13页练习第1、2题 Ⅳ.课时小结

解斜三角形应用题的一般步骤:

(1)分析:理解题意,分清已知与未知,画出示意图

(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型

(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解

(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解 Ⅴ.课后作业

课本第19页第1、2、3题

第四篇:高中数学 1.2应用举例教案教案 新人教A版必修5

课题: §1.2解三角形应用举例

●教学目标 知识与技能:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用 过程与方法:本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型。另外本节课的证明题体现了前面所学知识的生动运用,教师要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解。只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点。

情感态度与价值观:让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验 ●教学重点

推导三角形的面积公式并解决简单的相关题目 ●教学难点

利用正弦定理、余弦定理来求证简单的证明题 ●教学过程 Ⅰ.课题导入 [创设情境] 师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。在

ABC中,边BC、CA、AB上的高分别记为ha、hb、hc,那么它们如何用已知边和角表示?

生:ha=bsinC=csinB hb=csinA=asinC hc=asinB=bsinaA 师:根据以前学过的三角形面积公式S=下面的三角形面积公式,S=

1ah,应用以上求出的高的公式如ha=bsinC代入,可以推导出21absinC,大家能推出其它的几个公式吗? 211生:同理可得,S=bcsinA, S=acsinB 22师:除了知道某条边和该边上的高可求出三角形的面积外,知道哪些条件也可求出三角形的面积呢?

生:如能知道三角形的任意两边以及它们夹角的正弦即可求解 Ⅱ.讲授新课 [范例讲解] 例

1、在ABC中,根据下列条件,求三角形的面积S(精确到0.1cm2)(1)已知a=14.8cm,c=23.5cm,B=148.5;(2)已知B=62.7,C=65.8,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm

用心

爱心

专心

分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。解:(1)应用S= S=1acsinB,得 2114.823.5sin148.5≈90.9(cm2)2c sinC(2)根据正弦定理,b = sinB c = bsinC

sinBS = 11bcsinA = b2sinCsinA 22sinBA = 180-(B + C)= 180-(62.7+ 65.8)=51.5

sin65.8sin51.5122 S = 3.16≈4.0(cm)sin62.72(3)根据余弦定理的推论,得

c2a2b2cosB =

2ca38.7241.4227.32 =

238.741.4 ≈0.7697 sinB = 1cos2B≈10.76972≈0.6384 应用S=S ≈1acsinB,得 2141.438.70.6384≈511.4(cm2)2例

2、如图,在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm2)? 师:你能把这一实际问题化归为一道数学题目吗?

生:本题可转化为已知三角形的三边,求角的问题,再利用三角形的面积公式求解。由学生解答,老师巡视并对学生解答进行讲评小结。解:设a=68m,b=88m,c=127m,根据余弦定理的推论,c2a2b2cosB=

2ca1272682882 =≈0.7532 212768sinB=10.753220.6578

用心

爱心

专心

1acsinB 21 S ≈681270.6578≈2840.38(m2)2应用S=答:这个区域的面积是2840.38m2。例

3、在ABC中,求证:

a2b2sin2Asin2B;(1)22csinC(2)a2+b2+c2=2(bccosA+cacosB+abcosC)

分析:这是一道关于三角形边角关系恒等式的证明问题,观察式子左右两边的特点,联想到用正弦定理来证明

证明:(1)根据正弦定理,可设

a = b = c = k sinAsinBsinC显然 k0,所以

a2b2k2sin2Ak2sin2B 左边= 222cksinCsin2Asin2B ==右边

sin2C(2)根据余弦定理的推论,b2c2a2a2b2c2c2a2b2 右边=2(bc+ca+ab)

2bc2ca2ab

=(b2+c2-a2)+(c2+a2-b2)+(a2+b2-c2)=a2+b2+c2=左边

变式练习1:已知在ABC中,B=30,b=6,c=63,求a及ABC的面积S 提示:解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数。答案:a=6,S=93;a=12,S=183

变式练习2:判断满足下列条件的三角形形状,(1)acosA = bcosB(2)sinC =sinAsinB

cosAcosB提示:利用正弦定理或余弦定理,“化边为角”或“化角为边”

用心

爱心

专心

(1)师:大家尝试分别用两个定理进行证明。

生1:(余弦定理)得

b2c2a2c2a2b2a=b

2bc2cac2(a2b2)a4b4=(a2b2)(a2b2)a2b2或c2a2b2

根据边的关系易得是等腰三角形或直角三角形

生2:(正弦定理)得 sinAcosA=sinBcosB, sin2A=sin2B, 2A=2B, A=B 根据边的关系易得是等腰三角形

师:根据该同学的做法,得到的只有一种情况,而第一位同学的做法有两种,请大家思考,谁的正确呢? 生:第一位同学的正确。第二位同学遗漏了另一种情况,因为sin2A=sin2B,有可能推出2A与2B两个角互补,即2A+2B=180,A+B=90

(2)(解略)直角三角形

Ⅲ.课堂练习

课本第21页练习第1、2题 Ⅳ.课时小结

利用正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系,从而确定三角形的形状。特别是有些条件既可用正弦定理也可用余弦定理甚至可以两者混用。

Ⅴ.课后作业

课本第23页练习第12、14、15题 ●板书设计 ●授后记

用心

爱心

专心 4

第五篇:高中数学 2.3.4解三角形应用举例(第四课时)教案 北师大版必修5

2.3.4解三角形应用举例(第四课时)教学目标:

(a)知识和技能:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用

(b)过程与方法:本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型。另外本节课的证明题体现了前面所学知识的生动运用,教师要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解。只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点。

(c)情感与价值:让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验 教学重点:推导三角形的面积公式并解决简单的相关题目 教学难点:利用正弦定理、余弦定理来求证简单的证明题

学法:正弦定理和余弦定理的运用除了记住正确的公式之外,贵在活用,体会公式变形的技巧以及公式的常规变形方向,并进一步推出新的三角形面积公式。同时解有关三角形的题目还要注意讨论最终解是否符合规律,防止丢解或增解,养成检验的习惯。直角板、投影仪

教学设想:设置情境:师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。在ABC中,边BC、CA、AB上的高分别记为ha、hb、hc,那么它们如何用已知边和角表示?

生:ha=bsinC=csinB hb=csinA=asinC hc=asinB=bsinaA 师:根据以前学过的三角形面积公式S=以推导出下面的三角形面积公式,S=同理可得,S=

1ah,应用以上求出的高的公式如ha=bsinC代入,可21absinC,大家能推出其它的几个公式吗? 生:211bcsinA, S=acsinB 22师:除了知道某条边和该边上的高可求出三角形的面积外,知道哪些条件也可求出三角形的面积呢?

生:如能知道三角形的任意两边以及它们夹角的正弦即可求解

1、新课讲授 例

1、在ABC中,根据下列条件,求三角形的面积S(精确到0.1cm2)

(1)已知a=14.8cm,c=23.5cm,B=148.5;(2)已知B=62.7,C=65.8,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm 分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。解:(1)应用S=11acsinB,得 S=14.823.5sin148.5≈90.9(cm2)22用心

爱心

专心

又因为BDC=45,所以DAC=180-(75+ 45+ 30)=30,所以AD=DC=3。在BCD中,CBD=180-(75+ 45)=60,623sin75BDDC所以 =,BD = =

2sin75sin60sin60在ABD中,AB2=AD2+ BD2-2ADBDcos75= 5, 所以得AB=5 1)S1ABD=2 ADBDsin75=3234 同理,所以四边形ABCD的面积S=6334

用心

爱心

专心 33BCD= 4(S

下载【数学】1.2.2《解三角形应用举例》教案(新人教A版必修5)(含5篇)word格式文档
下载【数学】1.2.2《解三角形应用举例》教案(新人教A版必修5)(含5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐