高中数学 1.2.2充要条件教案 新人教A版选修2-1

时间:2019-05-13 21:24:19下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学 1.2.2充要条件教案 新人教A版选修2-1》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学 1.2.2充要条件教案 新人教A版选修2-1》。

第一篇:高中数学 1.2.2充要条件教案 新人教A版选修2-1

福建省漳州市芗城中学高中数学 1.2.2充要条件教案 新人教A版选

修2-1(一)教学目标

1.知识与技能目标:

(1)正确理解充要条件的定义,了解充分而不必要条件, 必要而不充分条件, 既不充分也不必要条件的定义.

(2)正确判断充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件.(3)通过学习,使学生明白对条件的判定应该归结为判断命题的真假,. 2.过程与方法目标:在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质. 3.情感、态度与价值观:

激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.

(二)教学重点与难点

重点:

1、正确区分充要条件;

2、正确运用“条件”的定义解题 难点:正确区分充要条件.

教具准备:与教材内容相关的资料。

教学设想:在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质.

(三)教学过程 学生探究过程: 1.思考、分析

已知p:整数a是2的倍数;q:整数a是偶数.请判断: p是q的充分条件吗?p是q的必要条件吗? 分析:要判断p是否是q的充分条件,就要看p能否推出q,要判断p是否是q的必要条件,就要看q能否推出p.

易知:pq,故p是q的充分条件; 又q  p,故p是q的必要条件. 此时,我们说, p是q的充分必要条件 2.类比归纳

一般地,如果既有pq,又有qp 就记作 p  q.此时,我们说,那么p是q的充分必要条件,简称充要条件.显然,如果p是q的充要条件,那么q也是p的充要条件.概括地说,如果p  q,那么p 与 q互为充要条件.3.例题分析

例1:下列各题中,哪些p是q的充要条件?

2(1)p:b=0,q:函数f(x)=ax+bx+c是偶函数;(2)p:x > 0,y > 0,q: xy> 0;(3)p: a > b ,q: a + c > b + c;(4)p:x > 5, ,q: x > 10

22(5)p: a > b ,q: a > b

分析:要判断p是q的充要条件,就要看p能否推出q,并且看q能否推出p. 解:命题(1)和(3)中,pq,且qp,即p  q,故p 是q的充要条件; 命题(2)中,pq ,但q  p,故p 不是q的充要条件;

命题(4)中,pq,但qp,故p 不是q的充要条件; 命题(5)中,pq,且qp,故p 不是q的充要条件; 4.类比定义

一般地,若pq ,但q  p,则称p是q的充分但不必要条件; 若pq,但q  p,则称p是q的必要但不充分条件;

若pq,且q  p,则称p是q的既不充分也不必要条件. 在讨论p是q的什么条件时,就是指以下四种之一:

①若pq ,但q  p,则p是q的充分但不必要条件;

②若qp,但p  q,则p是q的必要但不充分条件;

③若pq,且qp,则p是q的充要条件;

④若p  q,且q  p,则p是q的既不充分也不必要条件. 5.巩固练习:P14 练习第 1、2题

说明:要求学生回答p是q的充分但不必要条件、或 p是q的必要但不充分条件、或p是q的充要条件、或p是q的既不充分也不必要条件.

6.例题分析

例2:已知:⊙O的半径为r,圆心O到直线l的距离为d.求证:d=r是直线l与⊙O相切的充要条件.

分析:设p:d=r,q:直线l与⊙O相切.要证p是q的充要条件,只需要分别证明充分性(pq)和必要性(qp)即可. 证明过程略.

3、设p是r的充分而不必要条件,q是r的充分条件,r成立,则s成立.s是q的充分条件,问(1)s是r的什么条件?(2)p是q的什么条件?

7.教学反思: 充要条件的判定方法

如果“若p,则q”与“ 若p则q”都是真命题,那么p就是q的充要条件,否则不是. 8.作业:P14:习题1.2A组第1(3)(2),2(3),3题

7、教学反思

8、安全教育

第二篇:高中数学排列1.2.2排列的应用教学设计新人教A版选修2-3

第三课时 1.2.2排列的应用

教学目标:

掌握解排列问题的常用方法 教学重点:

掌握解排列问题的常用方法 教学过程

一、复习引入: 1.排列的概念:

从n个不同元素中,任取m(mn)个元素(这里的被取元素各不相同)按照一定的...顺序排成一列,叫做从n个不同元素中取出m个元素的一 ...个排列...说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;

(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同 2.排列数的定义:

从n个不同元素中,任取m(mn)个元素的所有排列的个数叫做从n个元素中取出mm元素的排列数,用符号An表示

注意区别排列和排列数的不同:“一个排列”是指:从n个不同元素中,任取m个元素按照一定的顺序排成一列,不是数;“排列数”是指从n个不同元素中,任取m(mn)个元.....

m素的所有排列的个数,是一个数所以符号An只表示排列数,而不表示具体的排列

3.排列数公式及其推导:

mAnn(n1)(n2)(nm1)(m,nN,mn)

21n!(叫做n的阶乘)n全排列数:Ann(n1)(n2)

二、讲解新课:

解排列问题问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差排除采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等.

解排列问题和组合问题,一定要防止“重复”与“遗漏”.

234-

第三篇:高中数学 数学归纳法教案 新人教A版选修4-5

第一课时4.1数学归纳法

教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写.教学重点:能用数学归纳法证明一些简单的数学命题.教学难点:数学归纳法中递推思想的理解.教学过程:

一、复习准备:

1.分析:多米诺骨牌游戏.成功的两个条件:(1)第一张牌被推倒;(2)骨牌的排列,保证前一张牌倒则后一张牌也必定倒.回顾:数学归纳法两大步:(i)归纳奠基:证明当n取第一个值n0时命题成立;(ii)归纳递推:假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.2.练习:已知f(n)1352n1,nN*,猜想f(n)的表达式,并给出证明?过程:试值f(1)1,f(2)4,„,→ 猜想f(n)n2→ 用数学归纳法证明.3.练习:是否存在常数a、b、c使得等式132435......n(n2)

对一切自然数n都成立,试证明你的结论.二、讲授新课:

1.教学数学归纳法的应用:

① 出示例1:求证11n(an2bnc)611111111,nN* 2342n12nn1n22n

分析:第1步如何写?n=k的假设如何写? 待证的目标式是什么?如何从假设出发? 关键:在假设n=k的式子上,如何同补?

小结:证n=k+1时,需从假设出发,对比目标,分析等式两边同增的项,朝目标进行变形.nn② 出示例2:求证:n为奇数时,x+y能被x+y整除.k+2k+22k2k2kk2k2k 分析要点:(凑配)x+y=x·x+y·y=x(x+y)+y·y-x·y

2kkk222kkk=x(x+y)+y(y-x)=x(x+y)+y·(y+x)(y-x).③ 出示例3:平面内有n个圆,任意两个圆都相交于两点,任何三个圆都不相交于同一点,2求证这n个圆将平面分成f(n)=n-n+2个部分.分析要点:n=k+1时,在k+1个圆中任取一个圆C,剩下的k个圆将平面分成f(k)个部分,而圆C与k个圆有2k个交点,这2k个交点将圆C分成2k段弧,每段弧将它所在的平

22面部分一分为二,故共增加了2k个平面部分.因此,f(k+1)=f(k)+2k=k-k+2+2k=(k+1)-

(k+1)+2.2.练习:

① 求证

:(11)(1)(1

131)n∈N*).2n1

② 用数学归纳法证明:

(Ⅰ)72n42n297能被264整除;

(Ⅱ)an1(a1)2n1能被a2a1整除(其中n,a为正整数)

n③ 是否存在正整数m,使得f(n)=(2n+7)·3+9对任意正整数n都能被m整除?若存在,求出最大的m值,并证明你的结论;若不存在,请说明理由.3.小结:两个步骤与一个结论,“递推基础不可少,归纳假设要用到,结论写明莫忘掉”;从n=k到n=k+1时,变形方法有乘法公式、因式分解、添拆项、配方等.三、巩固练习: 1.练习:教材501、2、5题2.作业:教材50 3、4、6题.第二课时4.2数学归纳法

教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写.教学重点:能用数学归纳法证明几个经典不等式.教学难点:理解经典不等式的证明思路.教学过程:

一、复习准备:

1222n2n(n1),nN*.1.求证:1335(2n1)(2n1)2(2n1)

2.求证:11111nn,nN*.2342

1二、讲授新课:

1.教学例题:

① 出示例1:比较n2与2n的大小,试证明你的结论.分析:试值n1,2,3,4,5,6 → 猜想结论 → 用数学归纳法证明

→ 要点:(k1)2k22k1k22kkk23kk2k2„.小结:试值→猜想→证明

11② 练习:已知数列an的各项为正数,Sn为前n项和,且Sn(an),归纳出an的公2an

式并证明你的结论.解题要点:试值n=1,2,3,4,→ 猜想an → 数学归纳法证明

③ 出示例2:证明不等式|sinn|n|sin|(nN).要点:|sin(k1)||sinkcoscosksin||sinkcos||cosksin|

|sink||sin|k|sin||sin|(k1)|sin|

④ 出示例3:证明贝努利不等式.(1x)n1nx(x1,x0,nN,n1)

*2.练习:试证明:不论正数a、b、c是等差数列还是等比数列,当n>1,n∈N且a、b、c

nnn互不相等时,均有a+c>2b.bnn解答要点:当a、b、c为等比数列时,设a=, c=bq(q>0且q≠1).∴ a+c=„.q

ancnacn*当a、b、c为等差数列时,有2b=a+c,则需证>()(n≥2且n∈N).2

2ak1ck11k+1k+1k+1k+11(a+c+a+c)>(ak+1+ck+1+ak·c+ck·a)„.当n=k+1时,24

41kkackacack+1=(a+c)(a+c)>()·()=().4222

3.小结:应用数学归纳法证明与正整数n有关的不等式;技巧:凑配、放缩.三、巩固练习:

111tan(2n))(1)....(1)1.用数学归纳法证明:(1.cos2cos4cos2ntan

11112.已知nN,n2,1.2n1n22n

3.作业:教材P543、5、8题.

第四篇:高中数学《1.2.1排列》教案4 新人教A版选修2-3

高中新课程数学(新课标人教A版)选修2-3《1.2.1排列》

教案4

例5.(1)7位同学站成一排,共有多少种不同的排法?

解:问题可以看作:7个元素的全排列A77=5040.

(2)7位同学站成两排(前3后4),共有多少种不同的排法?

解:根据分步计数原理:7×6×5×4×3×2×1=7!=5040.

(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?

解:问题可以看作:余下的6个元素的全排列——A66=720.

(4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?

解:根据分步计数原理:第一步 甲、乙站在两端有A22种;

第二步 余下的5名同学进行全排列有A55种,所以,共有A22A55=240(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?

解法1(直接法):第一步从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有A5种方法;第二步从余下的5位同学中选5位进行排列(全排列)有A5种方法,所以

25一共有A5A5=240025

解法2:(排除法)若甲站在排头有A6种方法;若乙站在排尾有A6种方法;若甲站在排头且乙站在排尾则有A5种方法,所以,甲不能站在排头,乙不能排在排尾的排法共有A7-2A6+A5=2400种.

说明:对于“在”与“不在”的问题,常常使用“直接法”或“排除法”,对某些特殊元素可例6.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定665765不能排在第二个节目的位置上,则共有多少种不同的排法?

15解法一:(从特殊位置考虑)A9A9136080;

56解法二:(从特殊元素考虑)若选:5A9;若不选:A9,56则共有5A9A9136080种;

65解法三:(间接法)A10A9136080

第五篇:高中数学:2.2.1《综合法和分析法》教案(新人教A版选修2-2)

数学:2.2.1《综合法和分析法》教案

教学目标:

(一)知识与技能:

结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。

(二)过程与方法:培养学生的辨析能力和分析问题和解决问题的能力;

(三)情感、态度与价值观:

通过学生的参与,激发学生学习数学的兴趣。

第一课时2.2.1综合法和分析法

(一)教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.教学重点:会用综合法证明问题;了解综合法的思考过程.教学难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法.教学过程:

一、复习准备:

114”,试请此结论推广猜想.aa11112.... n2)(答案:若a1,a2.......anR,且a1a2....an1,则a1a2an1112.已知a,b,cR,abc1,求证:9.abc先完成证明 → 讨论:证明过程有什么特点? 1.已知 “若a1,a2R,且a1a21,则

二、讲授新课:

1.教学例题:

① 出示例1:已知a, b, c是不全相等的正数,求证:a(b2 + c2)+ b(c2 + a2)+ c(a2 + b2)> 6abc.分析:运用什么知识来解决?(基本不等式)→板演证明过程(注意等号的处理)→ 讨论:证明形式的特点

② 提出综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立.框图表示:要点:顺推证法;由因导果.③ 练习:已知a,b,c是全不相等的正实数,求证

④ 出示例2:在△ABC中,三个内角A、B、C的对边分别为a、b、c,且A、B、C成等差数列,a、b、c成等比数列.求证:为△ABC等边三角形.分析:从哪些已知,可以得到什么结论? 如何转化三角形中边角关系?

→ 板演证明过程→ 讨论:证明过程的特点.→ 小结:文字语言转化为符号语言;边角关系的转化;挖掘题中的隐含条件(内角和)

2.练习:

① A,B

为锐角,且tanAtanBbcaacbabc3.abctanAtanBAB60.(提示:算3tan(AB))

② 已知abc, 求证:

3.小结:综合法是从已知的P出发,得到一系列的结论Q1,Q2,,直到最后的结论是Q.运用综合法可以解决不等式、数列、三角、几何、数论等相关证明问题.三、巩固练习:

1.求证:对于任意角θ,cos4sin4cos2.(教材P100 练习1题)

(两人板演 → 订正 → 小结:运用三角公式进行三角变换、思维过程)

2.ABC的三个内角A,B,C成等差数列,求证:

3.作业:教材P102A组 2、3题.第二课时2.2.1综合法和分析法

(二)教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.教学重点:会用分析法证明问题;了解分析法的思考过程.教学难点:根据问题的特点,选择适当的证明方法.教学过程:

一、复习准备:

1.提问:基本不等式的形式?

2.讨论:如何证明基本不等式

二、讲授新课:

1.教学例题:

① 出示例

1

讨论:能用综合法证明吗? → 如何从结论出发,寻找结论成立的充分条件?→ 板演证明过程(注意格式)

→ 再讨论:能用综合法证明吗?→ 比较:两种证法

② 提出分析法:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.框图表示:

2114.abbcac113.abbcabc(讨论 → 板演 → 分析思维特点:从结论出发,一步步探求结论成立的充分条件)ab(a0,b0).2要点:逆推证法;执果索因.1223133③ 练习:设x > 0,y > 0,证明不等式:(xy)(xy).先讨论方法 → 分别运用分析法、综合法证明.④ 出示例2:见教材P97.讨论:如何寻找证明思路?(从结论出发,逐步反推)⑤ 出示例3:见教材P99.讨论:如何寻找证明思路?(从结论与已知出发,逐步探求)

2.练习:证明:通过水管放水,当流速相等时,如果水管截面(指横截面)的周长相等,那么截面的圆的水管比截面是正方形的水管流量大.ll,截面积为()2,周长为l22ll2l2l2的正方形边长为,截面积为(),问题只需证:()>().442

43.小结:分析法由要证明的结论Q思考,一步步探求得到Q所需要的已知P1,P2,,直到提示:设截面周长为l,则周长为l的圆的半径为

所有的已知P都成立;

比较好的证法是:用分析法去思考,寻找证题途径,用综合法进行书写;或者联合使用分析法与综合法,即从“欲知”想“需知”(分析),从“已知”推“可知”(综合),双管齐下,两面夹击,逐步缩小条件与结论之间的距离,找到沟通已知条件和结论的途径.(框图示意)

三、巩固练习:

1.设a, b, c是的△ABC三边,S

是三角形的面积,求证:c2a2b24ab.略证:正弦、余弦定理代入得:2abcosC4absinC,即证:2cosC

CCcosC2,即证:sin(C

2.作业:教材P100 练习2、3题.第三课时2.2.2反证法

教学要求:结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.教学重点:会用反证法证明问题;了解反证法的思考过程.教学难点:根据问题的特点,选择适当的证明方法.教学过程:

一、复习准备:

1.讨论:三枚正面朝上的硬币,每次翻转2枚,你能使三枚反面都朝上吗?(原因:偶次)

2.提出问题:平面几何中,我们知道这样一个命题:“过在同一直线上的三点A、B、C不能作圆”.讨论如何证明这个命题?

3.给出证法:先假设可以作一个⊙O过A、B、C三点,则O在AB的中垂线l上,O又在BC的中垂线m上,即O是l与m的交点。

但 ∵A、B、C共线,∴l∥m(矛盾)

∴ 过在同一直线上的三点A、B、C不能作圆.二、讲授新课:

1.教学反证法概念及步骤:

① 练习:仿照以上方法,证明:如果a>b>0,那么a

② 提出反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.证明基本步骤:假设原命题的结论不成立 → 从假设出发,经推理论证得到矛盾 → 矛盾的原因是假设不成立,从而原命题的结论成立

应用关键:在正确的推理下得出矛盾(与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等).方法实质:反证法是利用互为逆否的命题具有等价性来进行证明的,即由一个命题与其逆否命题同真假,通过证明一个命题的逆否命题的正确,从而肯定原命题真实.注:结合准备题分析以上知识.2.教学例题:

6)1(成立).① 出示例1:求证圆的两条不是直径的相交弦不能互相平分.分析:如何否定结论? → 如何从假设出发进行推理? → 得到怎样的矛盾?

与教材不同的证法:反设AB、CD被P平分,∵P不是圆心,连结OP,则由垂径定理:OPAB,OPCD,则过P有两条直线与OP垂直(矛盾),∴不被P平分.② 出示例2:

.(同上分析 → 板演证明,提示:有理数可表示为m/n)

m/n(m,n为互质正整数),从而:(m/n)23,m23n2,可见m是3的倍数.设m=3p(p是正整数),则 3n2m29p2,可见n 也是3的倍数.这样,m, n就不是互质的正整数(矛盾).m/n.③ 练习:如果a1为无理数,求证a是无理数.提示:假设a为有理数,则a可表示为p/q(p,q为整数),即ap/q.由a1(pq)/q,则a1也是有理数,这与已知矛盾.∴ a是无理数.3.小结:反证法是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.注意证明步骤和适应范围(“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征的问题)

三、巩固练习: 1.练习:教材P1021、2题2.作业:教材P102A组4题.

下载高中数学 1.2.2充要条件教案 新人教A版选修2-1word格式文档
下载高中数学 1.2.2充要条件教案 新人教A版选修2-1.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐