第一篇:高中数学《数学归纳法》学案1 新人教A版选修2-2
数学归纳法的典型例题分析
例1 用数学归纳法证明等式
时所有自然数 都成立。
证明(1)当
(2)假设当
时,左式,右式
时等式成立,等式成立。
即
则
则
时,等式也成立。
均成立。
时等式成立时,注意分析
与的两
由(1)(2)可知,等式对
评述 在利用归纳假设论证
个等式的差别。
变到
时,等式左边增加两项,右边增加一项,而且右式的首项由
应与
合并,才能得到所证式。因而,因此在证明中,右式中的在论证之前,把
时等式的左右两边的结构先作一分析是有效的。
用心爱心专心 1
由例1可以看出,在数学归纳法证明过程中,要把握好两个关键之外:一是
系;二是
与的关系。
与 的关
例2 用数学归纳法证明
对任意自然数,证明(ⅰ)当
时,能被17整除,命题成立。
(ⅱ)设
则
时,由归纳假设,能被17整除,也能被17整除,所以
都能被17整除。
用
表示。上例中的能被17整除。
时,能被17整除。
都能被17整除。
由(ⅰ)(ⅱ)可知,对任意
评述 用数学归纳法证明整除问题,常常把
还可写成,易知它能被17整除。例3 用数学归纳法证明
…
用心爱心专心 2
证明(ⅰ)当
时,左式
右式
∵
∴
即
时,原不等式成立。
(ⅱ)假设
()时,不等式成立,即
则
时,左边
右边
要证左边 右边
只要证
只要证
只要证
而上式显然成立,所以原不等式成立。即
时,左式 右式
由(ⅰ)(ⅱ)可知,原不等式对大于1的自然数均成立。用心爱心专心 3
评述 用数学归纳法证明不等式时,应分析
与的两个不等式,找出证明的关键点(一般要利用不等式的传递性),然后再综合运用不等式的方法。如上题,关键是证明不等式
。除了分析法,还可以用比较法和放缩法来解决。
例4 在数列
中,若它的前 项和
()
1)计算,,;
2)猜想的表达式,并用数学归纳法证明你的结论。
解(1)由题意,即
∴
即
∴
即
∴
∴
(2)猜想
证明 ⅰ)
时,命题成立。
ⅱ)假设
时,命题成立,即
当
时,∴
用心爱心专心 4
又
因而
解得
即
时,命题也成立。
由ⅰ)ⅱ)可知,命题对
均成立。
用心爱心 专心5
第二篇:高中数学 数学归纳法教案 新人教A版选修4-5
第一课时4.1数学归纳法
教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写.教学重点:能用数学归纳法证明一些简单的数学命题.教学难点:数学归纳法中递推思想的理解.教学过程:
一、复习准备:
1.分析:多米诺骨牌游戏.成功的两个条件:(1)第一张牌被推倒;(2)骨牌的排列,保证前一张牌倒则后一张牌也必定倒.回顾:数学归纳法两大步:(i)归纳奠基:证明当n取第一个值n0时命题成立;(ii)归纳递推:假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.2.练习:已知f(n)1352n1,nN*,猜想f(n)的表达式,并给出证明?过程:试值f(1)1,f(2)4,„,→ 猜想f(n)n2→ 用数学归纳法证明.3.练习:是否存在常数a、b、c使得等式132435......n(n2)
对一切自然数n都成立,试证明你的结论.二、讲授新课:
1.教学数学归纳法的应用:
① 出示例1:求证11n(an2bnc)611111111,nN* 2342n12nn1n22n
分析:第1步如何写?n=k的假设如何写? 待证的目标式是什么?如何从假设出发? 关键:在假设n=k的式子上,如何同补?
小结:证n=k+1时,需从假设出发,对比目标,分析等式两边同增的项,朝目标进行变形.nn② 出示例2:求证:n为奇数时,x+y能被x+y整除.k+2k+22k2k2kk2k2k 分析要点:(凑配)x+y=x·x+y·y=x(x+y)+y·y-x·y
2kkk222kkk=x(x+y)+y(y-x)=x(x+y)+y·(y+x)(y-x).③ 出示例3:平面内有n个圆,任意两个圆都相交于两点,任何三个圆都不相交于同一点,2求证这n个圆将平面分成f(n)=n-n+2个部分.分析要点:n=k+1时,在k+1个圆中任取一个圆C,剩下的k个圆将平面分成f(k)个部分,而圆C与k个圆有2k个交点,这2k个交点将圆C分成2k段弧,每段弧将它所在的平
22面部分一分为二,故共增加了2k个平面部分.因此,f(k+1)=f(k)+2k=k-k+2+2k=(k+1)-
(k+1)+2.2.练习:
① 求证
:(11)(1)(1
131)n∈N*).2n1
② 用数学归纳法证明:
(Ⅰ)72n42n297能被264整除;
(Ⅱ)an1(a1)2n1能被a2a1整除(其中n,a为正整数)
n③ 是否存在正整数m,使得f(n)=(2n+7)·3+9对任意正整数n都能被m整除?若存在,求出最大的m值,并证明你的结论;若不存在,请说明理由.3.小结:两个步骤与一个结论,“递推基础不可少,归纳假设要用到,结论写明莫忘掉”;从n=k到n=k+1时,变形方法有乘法公式、因式分解、添拆项、配方等.三、巩固练习: 1.练习:教材501、2、5题2.作业:教材50 3、4、6题.第二课时4.2数学归纳法
教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写.教学重点:能用数学归纳法证明几个经典不等式.教学难点:理解经典不等式的证明思路.教学过程:
一、复习准备:
1222n2n(n1),nN*.1.求证:1335(2n1)(2n1)2(2n1)
2.求证:11111nn,nN*.2342
1二、讲授新课:
1.教学例题:
① 出示例1:比较n2与2n的大小,试证明你的结论.分析:试值n1,2,3,4,5,6 → 猜想结论 → 用数学归纳法证明
→ 要点:(k1)2k22k1k22kkk23kk2k2„.小结:试值→猜想→证明
11② 练习:已知数列an的各项为正数,Sn为前n项和,且Sn(an),归纳出an的公2an
式并证明你的结论.解题要点:试值n=1,2,3,4,→ 猜想an → 数学归纳法证明
③ 出示例2:证明不等式|sinn|n|sin|(nN).要点:|sin(k1)||sinkcoscosksin||sinkcos||cosksin|
|sink||sin|k|sin||sin|(k1)|sin|
④ 出示例3:证明贝努利不等式.(1x)n1nx(x1,x0,nN,n1)
*2.练习:试证明:不论正数a、b、c是等差数列还是等比数列,当n>1,n∈N且a、b、c
nnn互不相等时,均有a+c>2b.bnn解答要点:当a、b、c为等比数列时,设a=, c=bq(q>0且q≠1).∴ a+c=„.q
ancnacn*当a、b、c为等差数列时,有2b=a+c,则需证>()(n≥2且n∈N).2
2ak1ck11k+1k+1k+1k+11(a+c+a+c)>(ak+1+ck+1+ak·c+ck·a)„.当n=k+1时,24
41kkackacack+1=(a+c)(a+c)>()·()=().4222
3.小结:应用数学归纳法证明与正整数n有关的不等式;技巧:凑配、放缩.三、巩固练习:
111tan(2n))(1)....(1)1.用数学归纳法证明:(1.cos2cos4cos2ntan
11112.已知nN,n2,1.2n1n22n
3.作业:教材P543、5、8题.
第三篇:高中数学《2.2.1综合法和分析法》导学案 新人教A版选修1-2
§2.2.1综合法和分析法(二)
.2.根据问题的特点,结合分析法的思考过程、特点,选择适当的证明方法.4850
复习1:综合法是由导;
复习2:基本不等式:
二、新课导学
※ 学习探究
探究任务一:分析法
问题:
ab如何证明基本不等式(a0,b0)
2新知:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.反思:框图表示
要点:逆推证法;执果索因
※ 典型例题
例
1变式:求证
小结:证明含有根式的不等式时,用综合法比较困难,所以我们常用分析法探索证明的途径.例2 在四面体SABC中,SA面ABC,ABBC,过A作SB的垂线,垂足为E,过E作SC的垂线,垂足为F,求证AFSC.变式:设a,b,c为一个三角形的三边,s1
2(abc),且s22ab,试证s2a.小结:用题设不易切入,要注意用分析法来解决问题.※ 动手试试
练1.求证:当一个圆和一个正方形的周长相等时,圆的面积比正方形的面积大.练2.设a, b, c是的△ABC三边,S
是三角形的面积,求证:c2a2b24ab
三、总结提升
※ 学习小结
分析法由要证明的结论Q思考,一步步探求得到Q所需要的已知P1,P2,,直到所有的已知P都成立.※ 知识拓展
证明过程中分析法和综合法的区别:
在综合法中,每个推理都必须是正确的,每个推论都应是前面一个论断的必然结果,因此语气必须是肯定的.分析法中,首先结论成立,依据假定寻找结论成立的条件,这样从结论一直到已知条件.※ 自我评价 你完成本节导学案的情况为().A.很好B.较好C.一般D.较差
※ 当堂检测(时量:5分钟 满分:10分)计分:
1.,其中最合理的是
A.综合法B.分析法C.反证法D.归纳法
ba2.不等式①x233x;②2,其中恒成立的是 ab
A.①B.②C.①②D.都不正确
3.已知yx0,且xy1,那么
xyxyA.xy2xyB.2xyxy 22
xyxyC.x2xyyD.x2xyy 22
2224.若a,b,cR,则abcabbcac.5.将a千克的白糖加水配制成b千克的糖水(ba0),则其浓度为;若再加入m千克的白糖(m0),糖水更甜了,根据这一生活常识提炼出一个常见的不等式:.1.已知ab0,(ab)2ab(ab)2
求证
:.8a28b
2.设a,bR,且ab,求证:a3b3a2bab2
第四篇:高中数学《2.2.1综合法和分析法》导学案2_新人教A版选修1-2
§2.2.1综合法和分析法(3)
学习目标:1.能结合已经学过的数学示例,了解综合法和分析法的思考过程和特点;
2.学会用综合法和分析法证明实际问题,并理解分析法和综合法之间的内在联系;3.养成勤于观察、认真思考的数学品质.复习1:综合法是由导;2:分析法是由索.新课导学:综合法和分析法的综合运用
问题:已知,k
2(kZ),且sincos2sin,sincossin
2, 求证:1tan21tan21tan2
2(1tan2).新知:用P表示已知条件、定义、定理、公理等,用Q表示要证明的结论,则上述过程可用框图表示为:
试试:已知tansina,tansinb,求证:(a2b2)216ab.反思:在解决一些复杂、技巧性强的题目时,我们可以把综合法和分析法结合使用.例1: 已知A,B都是锐角,且AB
2,(1tanA)(1tanB)2,求证:AB45
变式:已知
1tan
2tan
1,求证:3sin24cos2.小结:牢固掌握基础知识是灵活应用两种方法证明问题的前提,本例中,三角公式发挥着重要作用.例2 在四面体PABC中,PDABC,ACBC,D是AB的中点,求证:ABPC.变式:如果a,b0,则lgablgalgb
2
2.总结提升:学习小结
综合法是“由因导果”,而分析法是“执果索因”,它们是截然相反的两种证明方法,分析法便于我们去寻找思路,而综合法便于过程的叙述,两种方法各有所长,在解决问题的问题中,综合运用,效果会更好,综合法与分析法因其在解决问题中的作用巨大而受命题者的青睐,在历年的高考中均有体现,成为高考的重点和热点之一
.小结:本题可以单独使用综合法或分析法进行证明.※ 动手试试
练1.设实数a,b,c成等比数列,非零实数x,y分别为a与b,b与c的等差中项,求证
axc
y
2.练2.已知AB54,且A,Bk
(kZ),求证:(1tanA)(1tanB)2.三、总结提升 ※ 学习小结
1.直接证明包括综合法和分析法.2.比较好的证法是:用分析法去思考,寻找证题途径,用综合法进行书写;或者联合使用分析法与综合法,即从“欲知”想“需知”(分析),从“已知”推“可知”(综合),双管齐下,两面夹击,逐步缩小条件与结论之间的距离,找到沟通已知条件和结论的途径
.※ 知识拓展
综合法是“由因导果”,而分析法是“执果索因”,它们是截然相反的两种证明方法,分析法便于我们去寻找思路,而综合法便于过程的叙述,两种方法各有所长,在解决问题的问题中,综合运用,效果会更好,综合法与分析法因其在解决问题中的作用巨大而受命题者的青睐,在历年的高考中均有体现,成为高考的重点和热点之一.※ 自我评价 你完成本节导学案的情况为().A.很好B.较好C.一般D.较差
※ 当堂检测(时量:5分钟 满分:10分)计分: 1.给出下列函数①yxx3,②yxsinxcosx,③ysinxcosx,④y2x2x,其中是偶函数的有().A.1个B.2个C.3 个D.4个
2.m、n是不同的直线,,,是不同的平面,有以下四个命题().①////// ;②
m//m③mm//n
m// ;④
nm//
其中为真命题的是()A.①④B.①③C.②③D.②④
3.下列结论中,错用基本不等式做依据的是().A.a,b均为负数,则abb
a
2B
2 C.lgxlogx102
D.aR,(1a)(1
1a)
44.设α、β、r是互不重合的平面,m,n是互不重合的直线,给出四个命题: ①若m⊥α,m⊥β,则α∥β②若α⊥r,β⊥r,则α∥β
③若m⊥α,m∥β,则α⊥β④若m∥α,n⊥α,则m⊥n 其中真命题是.5.已知p:2x31,q:x(x3)0, 则p是q的条件.1.已知a,b,cR,a,b,c互不相等且abc
1.
1a11bc
.2.已知a,b,c,d都是实数,且a2b21,c2d21,求证:|acbc|1.
第五篇:高中数学 1.2.2充要条件教案 新人教A版选修2-1
福建省漳州市芗城中学高中数学 1.2.2充要条件教案 新人教A版选
修2-1(一)教学目标
1.知识与技能目标:
(1)正确理解充要条件的定义,了解充分而不必要条件, 必要而不充分条件, 既不充分也不必要条件的定义.
(2)正确判断充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件.(3)通过学习,使学生明白对条件的判定应该归结为判断命题的真假,. 2.过程与方法目标:在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质. 3.情感、态度与价值观:
激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.
(二)教学重点与难点
重点:
1、正确区分充要条件;
2、正确运用“条件”的定义解题 难点:正确区分充要条件.
教具准备:与教材内容相关的资料。
教学设想:在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质.
(三)教学过程 学生探究过程: 1.思考、分析
已知p:整数a是2的倍数;q:整数a是偶数.请判断: p是q的充分条件吗?p是q的必要条件吗? 分析:要判断p是否是q的充分条件,就要看p能否推出q,要判断p是否是q的必要条件,就要看q能否推出p.
易知:pq,故p是q的充分条件; 又q p,故p是q的必要条件. 此时,我们说, p是q的充分必要条件 2.类比归纳
一般地,如果既有pq,又有qp 就记作 p q.此时,我们说,那么p是q的充分必要条件,简称充要条件.显然,如果p是q的充要条件,那么q也是p的充要条件.概括地说,如果p q,那么p 与 q互为充要条件.3.例题分析
例1:下列各题中,哪些p是q的充要条件?
2(1)p:b=0,q:函数f(x)=ax+bx+c是偶函数;(2)p:x > 0,y > 0,q: xy> 0;(3)p: a > b ,q: a + c > b + c;(4)p:x > 5, ,q: x > 10
22(5)p: a > b ,q: a > b
分析:要判断p是q的充要条件,就要看p能否推出q,并且看q能否推出p. 解:命题(1)和(3)中,pq,且qp,即p q,故p 是q的充要条件; 命题(2)中,pq ,但q p,故p 不是q的充要条件;
命题(4)中,pq,但qp,故p 不是q的充要条件; 命题(5)中,pq,且qp,故p 不是q的充要条件; 4.类比定义
一般地,若pq ,但q p,则称p是q的充分但不必要条件; 若pq,但q p,则称p是q的必要但不充分条件;
若pq,且q p,则称p是q的既不充分也不必要条件. 在讨论p是q的什么条件时,就是指以下四种之一:
①若pq ,但q p,则p是q的充分但不必要条件;
②若qp,但p q,则p是q的必要但不充分条件;
③若pq,且qp,则p是q的充要条件;
④若p q,且q p,则p是q的既不充分也不必要条件. 5.巩固练习:P14 练习第 1、2题
说明:要求学生回答p是q的充分但不必要条件、或 p是q的必要但不充分条件、或p是q的充要条件、或p是q的既不充分也不必要条件.
6.例题分析
例2:已知:⊙O的半径为r,圆心O到直线l的距离为d.求证:d=r是直线l与⊙O相切的充要条件.
分析:设p:d=r,q:直线l与⊙O相切.要证p是q的充要条件,只需要分别证明充分性(pq)和必要性(qp)即可. 证明过程略.
例
3、设p是r的充分而不必要条件,q是r的充分条件,r成立,则s成立.s是q的充分条件,问(1)s是r的什么条件?(2)p是q的什么条件?
7.教学反思: 充要条件的判定方法
如果“若p,则q”与“ 若p则q”都是真命题,那么p就是q的充要条件,否则不是. 8.作业:P14:习题1.2A组第1(3)(2),2(3),3题
7、教学反思
8、安全教育