第一篇:高中数学选修4-5:42数学归纳法证明不等式 学案
4.2数学归纳法证明不等式
【学习目标】
1.会用数学归纳法证明贝努利不等式1x1nxx1,x0,nN,了解当n n
为实数时贝努利不等式也成立
2.培养使用数学归纳法证明不等式的基本技能
【自主学习】
1.使用数学归纳法独立完成贝努利不等式1x1nxx1,x0,nN的证n
明
2.自我感悟什么样的不等式易于用数学归纳法证明?
3.用数学归纳法证明不等式时要使用归纳假设进行放缩,如何放缩才能奏效,要积累经验,特别是出现二次式时要注意留心总结.4.对于两个数的大小的探究要提高警惕,一般探究要比较的丰富,才利于做出正确的猜测.【自主检测】
1.用数学归纳法证明1
12131*nnN,n1时,由n=k(k>1)时不等2n1
式成立,推证n=k+1时,左边应增加的项数是()
A.2k1B.2k1C.2kD.2k1
2.用数学归纳法证明11n1n2111nN*时,由n=k到n=k+1时,不nn2
4等式左边应添加的项是____
3.当n=1,2,3,4,5,6
时,比较2n与n2后,你提出的猜想是____
【典型例题】
111例1.用数学归纳法证明:nN,n1 111352n1
例2.设数列an满足an1an2nan1nN*
1.a12时,求a2,a3,a4并由此猜想an的一个通项公式
2a13时,证明对所有n1有1ann2
2例3.已知函数gxx22xx1,fxabaxbx,其中a、bR,a1,b1,ab,ab4对于任意的正整数n,指出fn与g2n的大小关系,并证明之
x11 +1a11a211 1an
2【课堂检测】
1.设n为正整数,fn1nN,计算知11231n
357f2,f42,f8,f163,f32,据此可以猜测得出一般性结论为()222
2n1n2n2 A.f2nB.fn2C.f2nD.以上都不对 222
n0为验证的第一个值,2.欲用数学归纳法证明对于足够大的正整数n,总有2nn3,则()A.n01B.n0为大于1小于10的某个整数C.n010D.n02
3.用数学归纳法证明111241127,n的起始值至少应取为n126
44.等比数列an的前n项和为Sn,已知对任意的正整数n,点n,Sn均在函数
ybxr(b0,b1,b、r均为常数)的图像上.(1)求r的值
(2)当b=2时,记bn2log2an1
nN*,证明对所有正整数n,不等式 b11b21b1b2bn1 bn
【总结提升】
1.数学归纳法依然是证明与正整数有关的不等式行之有效的方法.但在证明递推的依据是成立的时候常常需要放缩,故千万要注意不等式的基本性质和函数的单调性的作用.2.数学归纳法证明不等式时有时不能直接进行,常需加强命题,为此难度就比较大,且加强又不易完成.如证明1
为111223211222315nN*,n1,就可以加强2n3152nN*,n1再用数学归纳法.2n32n1
3.不过关于n的不等式的证明不一定要用数学归纳法,有时使用函数的单调性就可以;放缩也是不可忽视的方法.
第二篇:比较法证明不等式 高中数学选修2-3
1.1&1.2比较法证明不等式
陈娇
【教学目标】
1.知识与技能
掌握两个实数的大小与它们的差值的等价关系以及理解并掌握比较法的一般步骤。
2.过程与方法
掌握运用比较法证明一些简单的不等式的方法;理解、掌握不等式基本性质的导出过程,并能运用性质证明一些简单的不等式。
3.情感态度与价值观
通过数轴比较两个实数的大小关系,体会数形结合的思想;掌握数学研究的基本方法。
【教材分析】
教学重点:理解并掌握作差比较法证明不等式;
教学难点:求差后对“差式”进行适当变形,并判断其符号。
【教学过程】
第三篇:高中数学不等式证明常用方法
本科生毕业设计(论文中学证明不等式的常用方法
所在学院:数学与信息技术学院
专 业: 数学与应用数学
姓 名: 张俊
学 号: 1010510020 指导教师: 曹卫东
完成日期: 2014年04月15日)
摘 要
本文主要是对高中学习阶段不等式证明方法的概括和总结.不等式的证明方法多种多样,其中有比较法,分析法,综合法,反证法,数学归纳法,放缩法等常见的方法,另有一些学生比较不熟悉但也经常采用的方法,如构造法,向量法,求导法,换元法等等.关键词: 不等式的证明;函数的构造;极值;导数
ABSTRACT
This paper is mainly on the high school stage the inequality proof method and summarized.The inequality proof methods varied, including comparison, analysis, synthesis, reduction to absurdity, mathematical induction, scaling and other common methods, and some students are not familiar with but also the methods used, such as construction method, vector method, derivation method, method and so on.Key words:
The inequality proof;function;extreme value;derivative
目 录
1.构造函数法 ·········································1 1.1 移项法构造函数 ·································1 1.2 作差法构造函数
·····························2 1.3 换元法构造函数
·····························2 1.4 从条件特征入手构造函数
······················3 1.5 主元法构造函数 ··································3 1.6 构造形似函数 ····································4 2.比较法 ·············································4 2.1 作差比较法 ······································4 2.2 作商比较法 ······································5 3.放缩法 ············································5 4.判别式法 ············································6 5.反证法 ············································7 6.向量法 ···········································8 7.不等式证明的具体应用 ································9 参考文献 ··············································11
江苏第二师范学院2014届本科生毕业设计(论文)
众所周知,生活中存在着大量的不等量关系.不等量关系是基本的数学关系,它在数学研究与应用中起着不可忽视的作用,因此,研究不等式的方法至关重要,许多数学家在这一领域取得丰硕的成果,他们的成就举世瞩目,无可替代.不等式的证明是高中学习阶段的重要内容之一,纵观近几年的高考,不等式的证明每年都有涉及,一般都出现在最后一题,可见它的困难和重要程度,因此不等式证明的学习既是重点也是难点,无论是求最值还是求不定量的范围都需要用到不等式的证明.所以,有必要对不等式的证明方法做一个全面的,科学的,系统的总结和归纳.1.构造函数法
1.1移项法构造函数
【例1】 已知函数f(x)ln(x1)x,求证:当x1时,恒有
11ln(x1)x.x1分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数
11,从其导数入手即可证明.g(x)ln(x1)x1证:先证左边,令g(x)ln(x1)111x1, 则g(x) x1x1(x1)2(x1)2 当x(1,0)时,g(x)0;当x(0,)时,g(x)0 , 即g(x)在x(1,0)上为减函数,在x(0,)上为增函数,故函数
g(x)在(1,)上的最小值为g(x)ming(0)0, ∴当x1时,g(x)g(0)0,即ln(x1)110 x1 ∴ ln(x1)1 再证右边,f(x)1(左边得证).x11x1 x1x1 ∴ 当1x0时,f(x)0,即f(x)在x(1,0)上为增函数, 当x0时,f(x)0,即f(x)在x(0,)上为减函数, 于是函数f(x)在(1,)上的最大值为f(x)maxf(0)0, 1
江苏第二师范学院2014届本科生毕业设计(论文)
因此,当x1时f(x)f(0)0,即ln(x1)x0
∴ ln(x1)x(右边得证).综上可知,当x1时,有11ln(x1)x x1【启迪】: 如果f(a)是函数f(x)在区间上的最小(大)值,则有f(x)f(a)
(或f(x)f(a))那么要证不等式,只要求函数的最小值不超过0就可得证. 1.2作差法构造函数
【例2】 当x(0,1)时,证明:(1x)ln(1x)x.分析:本题是一个单边不等式,很难直接看出两者有什么联系,因此联想到采用作差的方法,将两个函数变为一个函数.作差法是最直接把两者结合的方法且求导
后能很容易看出两者的联系.证:做函数f(x)(1x)ln(1x)x,易得f(0)0,221x)2x,当x0时,f'(x)0
而f'(x)ln(1x)2ln(又得,f''(x)22ln(1x)222[ln(1x)x],1x1x1x 当x(0,1)时,f''(x)0
∴f'(x)在x(0,1)上递减,即f'(x)f'(0)0,即f(x)在(0,1)递减
∴f(x)f(0)0,从而原不等式得证.【启迪】: 本题先构造出一个函数并利用所设函数的导数判断函数的单调性,再根据单调
性的性质来证明原不等式如果一阶导数无法判断两个关系,可以采用二阶导数
来先判断一阶导数关系,再来判断原函数的关系.1.3换元法构造函数
122xxyy3.1xy2 【例3】 已知 ,求证:222 分析:本题看上去毫无联系,但发现xy经常出现在三角代换中.于是可以采用 换元法进行尝试,则结果显而易见.证:因为 1 其中12x2y22,所以可设xrcos,yrsin,22r22,02.1212 ∴xxyyrrsin2r(1sin2)
江苏第二师范学院2014届本科生毕业设计(论文)
1sin2, 222121322 r(1sin2)rr 22232121 而r3,r 222122xxyy3.2【启迪】:当发现不等式题目中含有x2y2,或者别的与x,y有关的不等式,可以采用换
元法.将x,y进行替换,再找两者的关系来进行论证.1.4从条件特征入手构造函数
【例4】 若函数yf(x)在R上可导且满足不等式xf(x)f(x)恒成立,且常数
a ,b满足0ab,求证:af(a) xf(x),(x)f(x)此时可以得到F(x)的导数为xf F(x)0,所以F(x)在R上为增函数,f(a)f(b) af(a)bf(b)0ab, 得证.【启迪】:把条件进行简单的变形后,很容易发现它是一个函数积的导数,因此可以构造出 F(x),求导后即可得到证明结果.1.5主元法构造函数 【例5】 设a,b,c,dR,且满足(abc)求证:abbcca22(a2b2c2)4d,3d 分析:本题初看含有四个未知量,且题目中只含一条不等式,因此解题时必须从这条 不等式入手,对其进行变换.证:把a看成未知量进行化简,得一元二次不等式 2(bc)a(bc)24d0 22xaf(x)x2(bc)x(bc)4d 用替换,构造一个函数 a2x2前面的系数大于0,所以该抛物线开口向上 且当xa时,f(a)0.224(bc)4[(bc)4d]0 其判别式 江苏第二师范学院2014届本科生毕业设计(论文) d.同理把b,c看成未知量,可得cad,abd 叠加可得abbcca3d.化简,得bc【启迪】:有些复杂的不等式可以看成一个未知量的简单不等式,再找几个未知量之间的关系,进行证明.1.6构造形似函数 【例6】 当abe时,证明ab.分析:要证ab,只要证lnababablnba,即证明blnaalnb0, 也就是要证明blnxxlnb,因此构造函数 f(x)blnxxlnb,然后只需要证明 证:要证ab,只要证lnabaf(x)单调递减就可以了.blnb xblnba即证blnaalnb0 设f(x)blnxxlnb(xbe),则f(x) be,xb lnb1, b1f(x)0 xf(x)在(e,)上单调递减.ab f(a)f(b)故blnaalnbblnbblnb0 ba 即blnaalnb ab.【启迪】:在证明简单不等式时,可以采用求导等变换来构造出一些相似的函数,再利用函 数的单调性来证明简单不等式.2.比较法 2.1作差比较法 【例1】 若0x1,证明loga(1x)loga(1x),(a0,a1).分析:用作差法来做,则需去掉绝对值,必须要分a1和0a1两种情况来考虑 问题.证:(1)当0a1时,01x1,11x2 loga(1x)loga(1x)loga(1x)loga(1x)loga(1x) 0x1,01x 1loga(1x)0,得证.(2)当a1时,01x1,11x2 loga(1x)loga(1x)loga(1x)loga(1x)loga(1x) 0x1,01x1 22222 江苏第二师范学院2014届本科生毕业设计(论文) loga(1x)0,得证.综合(1)(2)可得loga(1x)loga(1x).【启迪】:当不等式两边的式子比较相近,或者是对数式子时可以采用作差法来尝试.2.2作商比较法 【例2】 设a,bR,且a0,b0,求证(ab)ab22aabb.分析:发现作差变形后符号很难判断,且无法化简,考虑到两边都是正数,可以作商, 判断比值和1的大小关系,从而来证明不等式.证:ab0,(ab)abab20,将不等式两边相除,ba2baa()2 baabb 得(ab)ab2aab2bbaa21.当ab时,()baab10, 当0ba时,b2baaa02()()1.由指数函数的单调性可知,bbbaaa0aab2()()1.10 当0ab时,,同理可得bbb2 综上所述,对于任意的正实数a,b都有(ab)ab2aabb.【启迪】:当遇到作差法无法解决的问题时可以采用作商法来证明不等式,使用作商法的前 提条件是不等式两边均要大于0,一般为指数函数的形式.3.放缩法 2n1an(nN) 【例1】 已知数列an的前n项和为sn12(1)设xn(2n1)sn,求证:数列xn为等差数列.11115..........(2)当n2时,2.222xnxnxx321n22n 分析:本题分为两小题,第一小题是考察数列的知识,是为第二小题做的铺垫,在做 第二小题时,需要采用放缩来证明,来把不等式的左边放大来比较.2n1(snsn1) 证:(1)当n2时,sn12 江苏第二师范学院2014届本科生毕业设计(论文) 化简,得(2n1)sn2(2n1)sn1 由已知条件得xn 其通项公式为xn xn是以首项为x1xn12,即xnxn12 2公差d2的等差数列,2n.1111..........(2)2222 xnxnxx1n22n11111......] [2222 4n(n1)(n2)(2n)11111......] [4n(n1)n(n1)(n1)(n2)(2n1)(2n)1111111[()()()......4n1nnn1n1n 2111111n1()]()()2n12n4n12n42n(n1)1n1 42(n1)26(n1)411 44 2(n1)6n14 令f(n)2(n1),当n2时,f(n)的值随着n的增大而增 n1 大,f(n)f(2), 111136 即4 44f(2)616322(n1)6n1111152.222..........xnxn1xn2x2n32【启迪】: 采用放缩法题目一般比较开放,且没有固定的放缩范围,一般比较灵活,且方法 较多.4.判别式法 7 【例1】 已知xyz5,xyz9,求证x,y,z都属于1, 3222 江苏第二师范学院2014届本科生毕业设计(论文) 分析:实系数一元二次方程ax2bxc0有两个不等实根、有两个相等实根、没有实根的充要条件是: b 记4ac0、b24ac0、b24ac0. b24ac,称其为方程是否有实根的判别式.同时也是与方程对应的 函数、不等式的判别式.此题含有三个未知数,所以要进行替换.222z5xyxyz9中 证:有条件可得,代入 化简可得:x 2(y5)xy25y80 xR,且方程有解,根的判别式b24ac0 2277y1,.即(y5)4(y5y8)0,解得1y,即3377 同理,替换x,y可得z1,,x1,.33 得证.【启迪】:本题看似复杂,含有三个未知量,其实只需要简单的几个步骤就解决了,因此在解决这类问题时,第一步是替换未知量,第二部把另一个未知量看成已知量,再 用根的判别式来确定范围.5.反证法 【例1】 设0a,b,c1,求证:(1a)b,(1b)c,(1c)a,不可能同时大于.分析:本题的结论为否定形式,适合用反证法来证明,假设命题不成立,从而导出矛 盾.证:假设(1a)b,(1b)c,(1c)a三个数都大于, 则有(1a)b111,(1b)c,(1c)a 444 又0a1,0b1,0c1 111(1a)b,(1b)c,(1c)a.222 7 江苏第二师范学院2014届本科生毕业设计(论文)(1a)b(1b)c(1c)a 2ab1abab(1a)b 又由基本不等式得,221bc1ca(1b)c,(1c)a, 把上面三个式子相加得(1a)b(1b)c(1c)a3 2 显然与相矛盾,所以假设不成立.(1a)b,(1b)c,(1c)a,不可能同时大于.4【启迪】:命题中出现“至少”,“都”,“同时”,“至多”等字样时,可以采用反证法, 反证的关键在于找出与命题相反的结论,然后再用假设的条件推出矛盾.6.向量法 a2b2c212.【例1】设a1,b1,c1,证明: b1c1a1 分析:本题只有一个已知条件,且结论也无法化简,因此可以想到高中最直接的方法 向量法,构造两个向量.利用向量的知识进行解决.m 证:设(a2b2c2,),n(b1,c1,a1)b1c1a1m 则na2b2c2b1c1a1 b1c1a1abc 222abc abc3cosb1c1a1a2b2c2abc3 b1c1a1a2b2c2abc b1c1a1abc33 abc3 abc3 23 江苏第二师范学院2014届本科生毕业设计(论文) a1,b1,c1.a2b2c212.两边同时平方可得 b1c1a1 得证.7.不等式证明的具体应用 1125【例1】 已知a0,b0,且ab1,求证(a)(b) ab4分析:本题是高中阶段一道普通的不等式证明题,如让学生独立完成,可得到如下解决 方法.解法一:分析法 1125(a)(b) 要证,ab4222 只要证4ab4ab25ab40, 即证4ab233ab80,1ab或ab8.即因为a0,b0,ab1,所以ab8不成立.1ab 又因为1ab2ab,所以.得证.解法二:作差比较法 ab1,a0,b0 ab2ab,ab 41125a21b2125 (a)(b)ab4ab44a2b233ab8(14ab)(8ab)0 4ab4ab1125 (a)(b).ab4 解法三:三角代换法 ab1,a 0,b0 江苏第二师范学院2014届本科生毕业设计(论文) 故设asin,bcos,0, 21122)(cos)则原式(sin22sincossin4cos42sin2cos22 4sin22(4sin2)216 24sin222 sin214sin2413.1122.(4sin2)1625,24sin241125 (a)(b).ab422本题归纳与小结:本题一共采用了3种不同的方法,第一种是从问题入手,对问题进行一步 步的剖析,有逆向思维的方式,是把问题具体化,把所要证明的问题转化 为所学的知识,或者已知条件.只要分析的过程合理,一般过渡的结论很 容易得到.第二种方法也是根据问题入手,不同的是它把问题直接改变为 一道运算式,这样就把问题变为运算式结果与零比较大小,因为题目所给的数字往往让在解题时无从下手,无法想出这个数字从何而来,一但转化 为零后,解题时只需要考虑对算式的变形,最后只需判断算式的正负号.第三种方法使用范围比较小,它一般具有特殊的条件如ab1, a2b21这种情况下会考虑三角代换,采用三角代换最需要注意的是 角的范围,一般学生在采用代换时往往忘记角的范围,从而无法确定三角 函数值的范围,容易产生多解或错解.这种方法好处在于已经知道了三角 值的范围,且三角函数含有多种变形方式可以对式子进行更好的化简.并 且利用三角值的确定性能很快的得到所求式子的范围.本题三种方法均 可采用,根据学生个人的掌握程度来选择方法.本论文主要对高中不等式的常用证明方法进行简单的总结,使中学生在证明不等式时有法可依,能尽快的找到适合的方法,主要介绍构造法,作差法,放缩法,判别式法,反证法,向量法这些常用的方法.江苏第二师范学院2014届本科生毕业设计(论文) 参考文献 [1]雷小平.证明不等式的常用方法.太原科技[A],2002(1):54~55 [2]丁海军.证明不等式的常用方法.自然科学版[J],2009:55~57 [3]曹军芳.高中数学中不等式证明的常用方法.佳木斯教育学院报[A],2014(1):220~221 [4]孔凡哲.证明不等式正确性的几种常用方法.武汉教育学院报,1995(3):31~33 [5]刘志雄.谈不等式证明的常用方法.重庆师专学报,1999(4):101~103 [6]徐志科.王彦博.利用导数证明不等式的几种方法.自然科学版[A],2013(7):7~8 [7]李天荣.曹玉秀.中学数学不等式的证明方法.临沧师范高等专科学校学报,2013(2):88~90 [8]严万金.浅谈中学数学不等式的证明的常见技巧及方法策略.数学教育[A],2012(2):64 [9]封平平.不等式证明方法初探.新课程学习[J],2012:72~73 [10]黄俊峰.袁方程.证明不等式中的常用方法.数学教学研究[J],2012(8):28~30 [11]程勋跃.不等式证明的方法与技巧.课程教育研究[A],2012:60~61 [12]孙桂枝.不等式证明方法集萃.数学学习与研究[J],2012:81~82 [13]甘志国.例谈常用方法证明不等式.理科考试研究[J],2012:13~15 [14]何振光.不等式证明的常用方法.教与学[J],2012:92 [15]李占光.廖仲春.刘福保.高中数学中不等式的证明方法归纳.长沙民政职业技术学院学报 [A],2012(4):108~109 §2.1.3不等式的的证明(3)学案姓名☆学习目标: 1.理解并掌握反证法、换元法与放缩法; 2.☻知识情景: 1.不等式证明的基本方法:10.比差法与比商法(两正数时). 20.综合法和分析法. 30.反证法、换元法、放缩法 2.综合法:从①已知条件、②不等式的性质、③基本不等式等出发,通过逻辑推理, 推导出所要证明的结论.这种证明方法叫做综合法.又叫由导法.用综合法证明不等式的逻辑关系:AB1B2BnB 3.分析法:从要证的结论出发, 逐步寻求使它成立的充分条件, 直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法.这是一种执索.BB1B2BnA用分析法证明不等式的逻辑关系: 结(步步寻求不等式已 论成立的充分条件)知 ☻新知建构: 1.反证法:利用反证法证明不等式,一般有下面几个步骤: 第一步分清欲证不等式所涉及到的条件和结论; 第二步作出与所证不等式相反的假定; 第三步从条件和假定出发,应用证确的推理方法,推出矛盾结果; 第四步断定产生矛盾结果的原因,在于开始所作的假定不正确,于是原证不等式成立.例1已知a + b + c > 0,ab + bc + ca > 0,abc > 0,求证:a, b, c > 0.2.换元法:一般由代数式的整体换元、三角换元,换元时要注意等价性.常用的换元有三角换元有: 1.已知xya,可设,; 022 220.已知x2y21,可设,0r1); 22xy30.已知a2b21,可设,.例2 设实数x,y满足x2(y1)21,当xyc0时,c的取值范围是()A.1,)B.(1]C.1,)D.(1] 例3 已知x2y2 1,求证:yax 3.放缩法:“放”和“缩”的方向与“放”和“缩”的量的大小 由题目分析、多次尝试得出,要注意放缩的适度.a21a,n(n1)n,0a111 2n(n1)nn(n1)bm0aam bbm ④利用基本不等式,如:lg3lg5(⑤利用函数的单调性)2lg4; ⑥利用函数的有界性:如:sinx≤1xR; ⑦绝对值不等式:ab≤a b≤ab; 2nkN,k 1,*2kN,k1 * ⑨应用贝努利不等式:(1x)1nxn(n1)2xxn1nx.12 例4当 n > 2 时,求证:logn(n1)log(n1)n 例5求证:1 11113.112123123n 例6 若a, b, c, dR+,求证:1 abcd2 abdbcacdbdac §2.1.3不等式的证明(3)练习姓名 11、设二次函数f(x)x2pxq,求证:f(1),f(2),f(3)中至少有一个不小于.212、设0 < a, b, c < 1,求证:(1 a)b,(1 b)c,(1 c)a,不可能同时大于 43、已知ab0,求证:a(nN且n1).4、若x, y > 0,且x + y >2,则 1y1x和中至少有一个小于2。xy5、已知 1≤x2y2≤2,求证:≤x2xyy2≤3 26、设f(x)x2x13,xa1,求证:f(x)f(a)2a1; 7、求证:1 8、求证 x11 x2x13ab1aba1ab1b.9、设n为大于1的自然数,求证 11111.n1n2n32n210、若n是自然数,求证 11112.122232n 2311111222(n≥2) 11、求证:2n12nn12、求证:21nN * 高二数学学案选修4-5第二讲 §2.1.2综合法与分析法——问题导读 设计:赵连强审核:贾胜如 ☆学习目标:1.理解并掌握综合法与分析法; 2.会利用综合法和分析法证明不等式 ☻知识情景: 1.基本不等式: 0221.如果a,bR, 那么ab2ab.当且仅当ab时, 等号成立.2.如果a,bR,那么0 3.如果a,b,cR0abc,那么3ab当且仅当ab时, 等号成立.2, 当且仅当abc时, 等号成立.2.均值不等式:如果a,bR,那么 2abab的大小关系是: ab 22常用推论:1.a0;a0;a 2.12(a0);aab2(ab0);ba acb3.(a,b,cR).bac 3.不等式证明的基本方法:1.比差法与比商法(两正数时). 2.综合法和分析法. 3.反证法、换元法、放缩法 ☆案例学习: 综合法:从①已知条件、②不等式的性质、③基本不等式等出发,通过逻辑推理, 推导出所要证明的结论.这种证明方法叫做综合法.又叫由导法.用综合法证明不等式的逻辑关系:AB1B2BnB 证明不等式的基本方法——综合法和分析法 1 00 0 导读检测 1、已知x0,y0,xy,求证1 1xy 4xy.2、已知ab0, 求证aba.例题讲解 例1 已知a,b,c0,且不全相等,求证:a(b2c2)b(c2a2)c(a2b2)6abc 例2 已知a1,a2,,anR,且a1a2an1,求证:(1a1)(1a2)(1an n)2 BB1B2BnA 用分析法证明不等式的逻辑关系: 结(步步寻求不等式已 论成立的充分条件)知 课堂检测 1.求证 2.已知a,b,c0,求证:a2b2b2c2c2a2 abcabc 3.证明:(a2b2)(c2d2)(acbd)2.4.设a0,b0,分别用综合法与分析法求证: a3b3a2bab2.综合法与分析法——问题解决 1.已知x0,y0,xy,求证114.xyxy 2.a,b,c是互不相等的正数,且abc1.求证:(1ab)(1bc)(1ca)27. 3.已知a0,b0.求证:(1)(ab)(ab)4.(2)(ab)(ab)(ab)8ab.4.已知a,b,c,d都是正数。求证: (1) 11223333abcdabcdabcd;(2)abcd.24第四篇:数学选修4-5学案 §2.1.3不等式的证明
第五篇:选修4-5学案§2.1.2不等式的证明综合法...