高中数学选修4-5:2.1.4证明不等式的基本方法——反证法(一)

时间:2019-05-13 03:03:08下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学选修4-5:2.1.4证明不等式的基本方法——反证法(一)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学选修4-5:2.1.4证明不等式的基本方法——反证法(一)》。

第一篇:高中数学选修4-5:2.1.4证明不等式的基本方法——反证法(一)

2.1.4证明不等式的基本方法——反证法

(一)【学习目标】

1.掌握反证法证明不等式的方法.2.掌握反证法证明不等式的方法步骤.【自主学习】

1.什么是反证法?

2.反证法证明不等式的理论依据是什么?

3.反证法证明不等式的步骤有哪些?通常什么样的问题的证明用反证法?

【自主检测】

1.实数a,b,c不全为0的条件为()

A.a,b,c均不为有B.a,b,c中至多有一个为0

C.a,b,c中至少有一个为0 D.a,b,c中至少有一个不为0

2.若a,b∈R,|a|+|b|<1,求证:方程的两根的绝对值都小1.3.已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1.求证:a,b,c,d中至少有一个是 负数.【典型例题】

ama.例1.利用反证法证明:若已知a,b,m都是正数,并且ab,则 bmb

例2.若x, y > 0,且x + y >2,则

例3.设a3b32,求证ab2.例4.设0 < a, b, c < 2,求证:(2  a)c,(2  b)a,(2  c)b不可能同时大于1

【课堂检测】

1.否定结论“至多有两个解”的说法中,正确的是()

A.有一个解B.有两个解

C.至少有三个解D.至少有两个解

2.已知a+b+c>0,ab+bc+ca>0,abc>0,求证:a,b,c>0.1y1x和中至少有一个小于2.xy

3.设二次函数f(x)x2pxq,求证:f(1),f(2),f(3)中至少有一个不小于1.2

4.设0 < a, b, c < 1,求证:(1  a)b,(1  b)c,(1  c)a,不可能同时大1于 4

【总结提升】

1.前面所讲的几种方法,属于不等式的直接证法。也就是说,直接从题设出发,经过一系列的逻辑推理,证明不等式成立。但对于一些较复杂的不等式,有时很难直接入手求证,这时可考虑采用间接证明的方法。所谓间接证明即是指不直接从正面确定论题的真实性,而是证明它的反论题为假,或转而证明它的等价命题为真,以间接地达到目的。其中,反证法是间接证明的一种基本方法。

2.反证法在于表明:若肯定命题的条件而否定其结论,就会导致矛盾。具体地说,反证法不直接证明命题“若p则q”,而是先肯定命题的条件p,并否定命题的结论q,然后通过合理的逻辑推理,而得到矛盾,从而断定原来的结论是正确的。

3.利用反证法证明不等式,一般有下面几个步骤:

第一步分清欲证不等式所涉及到的条件和结论;

第二步作出与所证不等式相反的假定;

第三步从条件和假定出发,应用证确的推理方法,推出矛盾结果;

第四步断定产生矛盾结果的原因,在于开始所作的假定不正确,于是原证不等式成立。

第二篇:高中数学选修4-5:2.1.5证明不等式的基本方法——反证法

2.1.5证明不等式的基本方法——反证法

【学习目标】

1.掌握反证法证明不等式的方法.2.掌握反证法证明不等式的方法步骤.【自主学习】

1.什么是反证法?

2.反证法证明不等式的理论依据是什么?

3.反证法证明不等式的步骤有哪些?通常什么样的问题的证明用反证法?

【自主检测】

1.设a,b∈R,给出下列条件:①a+b>1②a+b=2③a+b>2④>2⑤ab>1.其中能给出“a,b中至少有一个大于1”的条件是.2.已知a,b,c是互不相等的非零实数,用反证法证明下列三个方程:

0中至少有一个方程有两

个相异实根.3.已知

(1)证明:函数f(x)在(-1,+∞)上为增函数;

(2)用反证法证明方程f(x)=0没有负数根.【典型例题】

例1.若x,y都是正实数,且x+y>2,求证:

例2.已知

为-.求证 ,若a+c=0,f(x)在[-1,1]上的最大值为2,最小值中至少有一个成立.例3.若p>0,q>0,且p3+q3=2, 求证:p+q≤

2例4.设a,b,c都是奇数,求证:方程

没有整数根.【课堂检测】

1.用反证法证明质数有无限多个的过程如下:

假设______________.设全体质数为p1、p2、„、pn,令p=p1p2„pn+1.显然,p不含因数p1、p2、„、pn.故p要么是质数,要么含有______________的质因数.这表明,除质数p1、p2、„、pn之外,还有质数,因此原假设不成立.于是,质数有无限多个.

2.已知a,b,c>0,且ab+bc+ca=1.用反证法证明:a+b+c≥

3.若a,b∈N*,ab能被5整除,求证:a,b至少有一个能被5整除.4.已知数列{bn}的通项公式为bn=

4能成等差数列.

【总结提升】

1.当要证明的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰时的不等式的证明常用反证法.2.如果从正面入手证明需分多种情况进行分类讨论,而从反面进行证明,只研究一种或很少的几种情况的不等式证明常用反证法...求证:数列{bn}中的任意三项不可

§2.1.6证明不等式的基本方法——放缩法

(一)【学习目标】

3.理解放缩法证明不等式的原理.4.掌握放缩法证明不等式的方法步骤.【自主学习】

4.什么是放缩法,放缩法证明不等式的理论依据是什么? 5.放缩法证明不等式时,如何把握放大和缩小? 【自主检测】 1.求证: 

k1n

15*

(n∈N)k23

2.求证:

111*

2(n∈N)2n2n12n1

6n11

1

(n1)(2n1)49

15*

.(n∈N)

n23

3.求证:

【典型例题】

例1.已知n∈

N*求证:(1

;.(2)21

an1aa

例2.已知an2n1(nN*).求证:12...n(nN*).23a2a3an1

例3.函数f(x)=

例4.已知an=n,求证:∑

k=1

【课堂检测】 1.求证:1

n

4x14x,求证:f(1)+f(2)+„+f(n)>n+

12n1

(nN*)2

k ak

<3.

11171(n2)222

62(2n1)35(2n1)

2n3

2.已知an42,Tn,求证:T1T2T3Tn

2a1a2an

n

n

6.求证:(1)(11)(1)(1)(1)

352n1

2n1.(2)(1

1111)(1)(1)(1)2462n

12n1

4.已知函数f

x

x0,.对任意正数a,证明:1fx2.

【总结提升】

所谓放缩法就是利用不等式的传递性,对照证题目标进行合情合理的放大和缩小的过程,在使用放缩法证题时要注意放和缩的“度”,否则就不能同向传递了,此法既可以单独用来证明不等式,也可以是其他方法证题时的一个重要步骤。

第三篇:高中数学不等式证明常用方法

本科生毕业设计(论文中学证明不等式的常用方法

所在学院:数学与信息技术学院

专 业: 数学与应用数学

姓 名: 张俊

学 号: 1010510020 指导教师: 曹卫东

完成日期: 2014年04月15日)

摘 要

本文主要是对高中学习阶段不等式证明方法的概括和总结.不等式的证明方法多种多样,其中有比较法,分析法,综合法,反证法,数学归纳法,放缩法等常见的方法,另有一些学生比较不熟悉但也经常采用的方法,如构造法,向量法,求导法,换元法等等.关键词: 不等式的证明;函数的构造;极值;导数

ABSTRACT

This paper is mainly on the high school stage the inequality proof method and summarized.The inequality proof methods varied, including comparison, analysis, synthesis, reduction to absurdity, mathematical induction, scaling and other common methods, and some students are not familiar with but also the methods used, such as construction method, vector method, derivation method, method and so on.Key words:

The inequality proof;function;extreme value;derivative

目 录

1.构造函数法 ·········································1 1.1 移项法构造函数 ·································1 1.2 作差法构造函数

·····························2 1.3 换元法构造函数

·····························2 1.4 从条件特征入手构造函数

······················3 1.5 主元法构造函数 ··································3 1.6 构造形似函数 ····································4 2.比较法 ·············································4 2.1 作差比较法 ······································4 2.2 作商比较法 ······································5 3.放缩法 ············································5 4.判别式法 ············································6 5.反证法 ············································7 6.向量法 ···········································8 7.不等式证明的具体应用 ································9 参考文献 ··············································11

江苏第二师范学院2014届本科生毕业设计(论文)

众所周知,生活中存在着大量的不等量关系.不等量关系是基本的数学关系,它在数学研究与应用中起着不可忽视的作用,因此,研究不等式的方法至关重要,许多数学家在这一领域取得丰硕的成果,他们的成就举世瞩目,无可替代.不等式的证明是高中学习阶段的重要内容之一,纵观近几年的高考,不等式的证明每年都有涉及,一般都出现在最后一题,可见它的困难和重要程度,因此不等式证明的学习既是重点也是难点,无论是求最值还是求不定量的范围都需要用到不等式的证明.所以,有必要对不等式的证明方法做一个全面的,科学的,系统的总结和归纳.1.构造函数法

1.1移项法构造函数

【例1】 已知函数f(x)ln(x1)x,求证:当x1时,恒有

11ln(x1)x.x1分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数

11,从其导数入手即可证明.g(x)ln(x1)x1证:先证左边,令g(x)ln(x1)111x1, 则g(x) x1x1(x1)2(x1)2 当x(1,0)时,g(x)0;当x(0,)时,g(x)0 , 即g(x)在x(1,0)上为减函数,在x(0,)上为增函数,故函数

g(x)在(1,)上的最小值为g(x)ming(0)0, ∴当x1时,g(x)g(0)0,即ln(x1)110 x1 ∴ ln(x1)1 再证右边,f(x)1(左边得证).x11x1 x1x1 ∴ 当1x0时,f(x)0,即f(x)在x(1,0)上为增函数, 当x0时,f(x)0,即f(x)在x(0,)上为减函数, 于是函数f(x)在(1,)上的最大值为f(x)maxf(0)0, 1

江苏第二师范学院2014届本科生毕业设计(论文)

因此,当x1时f(x)f(0)0,即ln(x1)x0

∴ ln(x1)x(右边得证).综上可知,当x1时,有11ln(x1)x x1【启迪】: 如果f(a)是函数f(x)在区间上的最小(大)值,则有f(x)f(a)

(或f(x)f(a))那么要证不等式,只要求函数的最小值不超过0就可得证. 1.2作差法构造函数

【例2】 当x(0,1)时,证明:(1x)ln(1x)x.分析:本题是一个单边不等式,很难直接看出两者有什么联系,因此联想到采用作差的方法,将两个函数变为一个函数.作差法是最直接把两者结合的方法且求导

后能很容易看出两者的联系.证:做函数f(x)(1x)ln(1x)x,易得f(0)0,221x)2x,当x0时,f'(x)0

而f'(x)ln(1x)2ln(又得,f''(x)22ln(1x)222[ln(1x)x],1x1x1x 当x(0,1)时,f''(x)0

∴f'(x)在x(0,1)上递减,即f'(x)f'(0)0,即f(x)在(0,1)递减

∴f(x)f(0)0,从而原不等式得证.【启迪】: 本题先构造出一个函数并利用所设函数的导数判断函数的单调性,再根据单调

性的性质来证明原不等式如果一阶导数无法判断两个关系,可以采用二阶导数

来先判断一阶导数关系,再来判断原函数的关系.1.3换元法构造函数

122xxyy3.1xy2 【例3】 已知 ,求证:222 分析:本题看上去毫无联系,但发现xy经常出现在三角代换中.于是可以采用 换元法进行尝试,则结果显而易见.证:因为 1 其中12x2y22,所以可设xrcos,yrsin,22r22,02.1212 ∴xxyyrrsin2r(1sin2)

江苏第二师范学院2014届本科生毕业设计(论文)

1sin2, 222121322 r(1sin2)rr 22232121 而r3,r 222122xxyy3.2【启迪】:当发现不等式题目中含有x2y2,或者别的与x,y有关的不等式,可以采用换

元法.将x,y进行替换,再找两者的关系来进行论证.1.4从条件特征入手构造函数

【例4】 若函数yf(x)在R上可导且满足不等式xf(x)f(x)恒成立,且常数

a ,b满足0ab,求证:af(a)

xf(x),(x)f(x)此时可以得到F(x)的导数为xf F(x)0,所以F(x)在R上为增函数,f(a)f(b)

af(a)bf(b)0ab, 得证.【启迪】:把条件进行简单的变形后,很容易发现它是一个函数积的导数,因此可以构造出

F(x),求导后即可得到证明结果.1.5主元法构造函数

【例5】 设a,b,c,dR,且满足(abc)求证:abbcca22(a2b2c2)4d,3d

分析:本题初看含有四个未知量,且题目中只含一条不等式,因此解题时必须从这条

不等式入手,对其进行变换.证:把a看成未知量进行化简,得一元二次不等式

2(bc)a(bc)24d0

22xaf(x)x2(bc)x(bc)4d

用替换,构造一个函数 a2x2前面的系数大于0,所以该抛物线开口向上

且当xa时,f(a)0.224(bc)4[(bc)4d]0

其判别式 

江苏第二师范学院2014届本科生毕业设计(论文)

d.同理把b,c看成未知量,可得cad,abd

叠加可得abbcca3d.化简,得bc【启迪】:有些复杂的不等式可以看成一个未知量的简单不等式,再找几个未知量之间的关系,进行证明.1.6构造形似函数

【例6】 当abe时,证明ab.分析:要证ab,只要证lnababablnba,即证明blnaalnb0, 也就是要证明blnxxlnb,因此构造函数

f(x)blnxxlnb,然后只需要证明 证:要证ab,只要证lnabaf(x)单调递减就可以了.blnb xblnba即证blnaalnb0

设f(x)blnxxlnb(xbe),则f(x) be,xb lnb1, b1f(x)0 xf(x)在(e,)上单调递减.ab

f(a)f(b)故blnaalnbblnbblnb0

ba 即blnaalnb ab.【启迪】:在证明简单不等式时,可以采用求导等变换来构造出一些相似的函数,再利用函

数的单调性来证明简单不等式.2.比较法

2.1作差比较法

【例1】 若0x1,证明loga(1x)loga(1x),(a0,a1).分析:用作差法来做,则需去掉绝对值,必须要分a1和0a1两种情况来考虑

问题.证:(1)当0a1时,01x1,11x2

loga(1x)loga(1x)loga(1x)loga(1x)loga(1x)

0x1,01x

1loga(1x)0,得证.(2)当a1时,01x1,11x2

 loga(1x)loga(1x)loga(1x)loga(1x)loga(1x)

0x1,01x1

22222 江苏第二师范学院2014届本科生毕业设计(论文)

loga(1x)0,得证.综合(1)(2)可得loga(1x)loga(1x).【启迪】:当不等式两边的式子比较相近,或者是对数式子时可以采用作差法来尝试.2.2作商比较法

【例2】 设a,bR,且a0,b0,求证(ab)ab22aabb.分析:发现作差变形后符号很难判断,且无法化简,考虑到两边都是正数,可以作商, 判断比值和1的大小关系,从而来证明不等式.证:ab0,(ab)abab20,将不等式两边相除,ba2baa()2 baabb 得(ab)ab2aab2bbaa21.当ab时,()baab10, 当0ba时,b2baaa02()()1.由指数函数的单调性可知,bbbaaa0aab2()()1.10 当0ab时,,同理可得bbb2 综上所述,对于任意的正实数a,b都有(ab)ab2aabb.【启迪】:当遇到作差法无法解决的问题时可以采用作商法来证明不等式,使用作商法的前

提条件是不等式两边均要大于0,一般为指数函数的形式.3.放缩法

2n1an(nN)

【例1】 已知数列an的前n项和为sn12(1)设xn(2n1)sn,求证:数列xn为等差数列.11115..........(2)当n2时,2.222xnxnxx321n22n 分析:本题分为两小题,第一小题是考察数列的知识,是为第二小题做的铺垫,在做

第二小题时,需要采用放缩来证明,来把不等式的左边放大来比较.2n1(snsn1)

证:(1)当n2时,sn12

江苏第二师范学院2014届本科生毕业设计(论文)

化简,得(2n1)sn2(2n1)sn1

由已知条件得xn 其通项公式为xn xn是以首项为x1xn12,即xnxn12

2公差d2的等差数列,2n.1111..........(2)2222 xnxnxx1n22n11111......] [2222 4n(n1)(n2)(2n)11111......] [4n(n1)n(n1)(n1)(n2)(2n1)(2n)1111111[()()()......4n1nnn1n1n

2111111n1()]()()2n12n4n12n42n(n1)1n1  42(n1)26(n1)411 44

2(n1)6n14 令f(n)2(n1),当n2时,f(n)的值随着n的增大而增

n1 大,f(n)f(2), 111136 即4 44f(2)616322(n1)6n1111152.222..........xnxn1xn2x2n32【启迪】: 采用放缩法题目一般比较开放,且没有固定的放缩范围,一般比较灵活,且方法

较多.4.判别式法

7 【例1】 已知xyz5,xyz9,求证x,y,z都属于1,

3222

江苏第二师范学院2014届本科生毕业设计(论文)

分析:实系数一元二次方程ax2bxc0有两个不等实根、有两个相等实根、没有实根的充要条件是: b 记4ac0、b24ac0、b24ac0.

b24ac,称其为方程是否有实根的判别式.同时也是与方程对应的

函数、不等式的判别式.此题含有三个未知数,所以要进行替换.222z5xyxyz9中

证:有条件可得,代入 化简可得:x 2(y5)xy25y80

xR,且方程有解,根的判别式b24ac0

2277y1,.即(y5)4(y5y8)0,解得1y,即3377 同理,替换x,y可得z1,,x1,.33 得证.【启迪】:本题看似复杂,含有三个未知量,其实只需要简单的几个步骤就解决了,因此在解决这类问题时,第一步是替换未知量,第二部把另一个未知量看成已知量,再

用根的判别式来确定范围.5.反证法 【例1】 设0a,b,c1,求证:(1a)b,(1b)c,(1c)a,不可能同时大于.分析:本题的结论为否定形式,适合用反证法来证明,假设命题不成立,从而导出矛

盾.证:假设(1a)b,(1b)c,(1c)a三个数都大于, 则有(1a)b111,(1b)c,(1c)a 444 又0a1,0b1,0c1

111(1a)b,(1b)c,(1c)a.222 7

江苏第二师范学院2014届本科生毕业设计(论文)(1a)b(1b)c(1c)a 

2ab1abab(1a)b 又由基本不等式得,221bc1ca(1b)c,(1c)a, 把上面三个式子相加得(1a)b(1b)c(1c)a3  2 显然与相矛盾,所以假设不成立.(1a)b,(1b)c,(1c)a,不可能同时大于.4【启迪】:命题中出现“至少”,“都”,“同时”,“至多”等字样时,可以采用反证法, 反证的关键在于找出与命题相反的结论,然后再用假设的条件推出矛盾.6.向量法

a2b2c212.【例1】设a1,b1,c1,证明:

b1c1a1 分析:本题只有一个已知条件,且结论也无法化简,因此可以想到高中最直接的方法

向量法,构造两个向量.利用向量的知识进行解决.m 证:设(a2b2c2,),n(b1,c1,a1)b1c1a1m 则na2b2c2b1c1a1 b1c1a1abc

222abc abc3cosb1c1a1a2b2c2abc3

b1c1a1a2b2c2abc  b1c1a1abc33 abc3

abc3 23

江苏第二师范学院2014届本科生毕业设计(论文)

a1,b1,c1.a2b2c212.两边同时平方可得

b1c1a1 得证.7.不等式证明的具体应用

1125【例1】 已知a0,b0,且ab1,求证(a)(b)

ab4分析:本题是高中阶段一道普通的不等式证明题,如让学生独立完成,可得到如下解决

方法.解法一:分析法

1125(a)(b) 要证,ab4222 只要证4ab4ab25ab40, 即证4ab233ab80,1ab或ab8.即因为a0,b0,ab1,所以ab8不成立.1ab 又因为1ab2ab,所以.得证.解法二:作差比较法

ab1,a0,b0 ab2ab,ab

41125a21b2125 (a)(b)ab4ab44a2b233ab8(14ab)(8ab)0

4ab4ab1125 (a)(b).ab4

解法三:三角代换法

ab1,a

0,b0

江苏第二师范学院2014届本科生毕业设计(论文)

 故设asin,bcos,0,

21122)(cos)则原式(sin22sincossin4cos42sin2cos22 

4sin22(4sin2)216  24sin222  sin214sin2413.1122.(4sin2)1625,24sin241125 (a)(b).ab422本题归纳与小结:本题一共采用了3种不同的方法,第一种是从问题入手,对问题进行一步

步的剖析,有逆向思维的方式,是把问题具体化,把所要证明的问题转化

为所学的知识,或者已知条件.只要分析的过程合理,一般过渡的结论很

容易得到.第二种方法也是根据问题入手,不同的是它把问题直接改变为

一道运算式,这样就把问题变为运算式结果与零比较大小,因为题目所给的数字往往让在解题时无从下手,无法想出这个数字从何而来,一但转化

为零后,解题时只需要考虑对算式的变形,最后只需判断算式的正负号.第三种方法使用范围比较小,它一般具有特殊的条件如ab1, a2b21这种情况下会考虑三角代换,采用三角代换最需要注意的是

角的范围,一般学生在采用代换时往往忘记角的范围,从而无法确定三角

函数值的范围,容易产生多解或错解.这种方法好处在于已经知道了三角

值的范围,且三角函数含有多种变形方式可以对式子进行更好的化简.并

且利用三角值的确定性能很快的得到所求式子的范围.本题三种方法均

可采用,根据学生个人的掌握程度来选择方法.本论文主要对高中不等式的常用证明方法进行简单的总结,使中学生在证明不等式时有法可依,能尽快的找到适合的方法,主要介绍构造法,作差法,放缩法,判别式法,反证法,向量法这些常用的方法.江苏第二师范学院2014届本科生毕业设计(论文)

参考文献

[1]雷小平.证明不等式的常用方法.太原科技[A],2002(1):54~55 [2]丁海军.证明不等式的常用方法.自然科学版[J],2009:55~57 [3]曹军芳.高中数学中不等式证明的常用方法.佳木斯教育学院报[A],2014(1):220~221 [4]孔凡哲.证明不等式正确性的几种常用方法.武汉教育学院报,1995(3):31~33 [5]刘志雄.谈不等式证明的常用方法.重庆师专学报,1999(4):101~103 [6]徐志科.王彦博.利用导数证明不等式的几种方法.自然科学版[A],2013(7):7~8 [7]李天荣.曹玉秀.中学数学不等式的证明方法.临沧师范高等专科学校学报,2013(2):88~90 [8]严万金.浅谈中学数学不等式的证明的常见技巧及方法策略.数学教育[A],2012(2):64 [9]封平平.不等式证明方法初探.新课程学习[J],2012:72~73 [10]黄俊峰.袁方程.证明不等式中的常用方法.数学教学研究[J],2012(8):28~30 [11]程勋跃.不等式证明的方法与技巧.课程教育研究[A],2012:60~61 [12]孙桂枝.不等式证明方法集萃.数学学习与研究[J],2012:81~82 [13]甘志国.例谈常用方法证明不等式.理科考试研究[J],2012:13~15 [14]何振光.不等式证明的常用方法.教与学[J],2012:92 [15]李占光.廖仲春.刘福保.高中数学中不等式的证明方法归纳.长沙民政职业技术学院学报

[A],2012(4):108~109

第四篇:证明不等式的基本方法—反证法与放缩法

§4.2.3证明不等式的基本方法—反证法与放缩法

【学习目标】

能熟练运用反证法与放缩法来证明不等式。

【新知探究】

1.反证法的一般步骤:反设——推理——导出矛盾(得出结论);

2.放缩法:欲证AB,可通过适当放大或缩小,借助一个或多个中间量使得,要注意放缩的适度,BB1,B1B2...A(或AA1,A1A2...B)

常用的方法是:①舍去或加上一些项;②将分子或分母放大(或缩小).





1n21n(n1);1

n21n(n1)

【自我检测】

1.设a,b是两个实数,给出下列条件:①a+b>1; ②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1,其中能推出:“a、b中至少有一个实数大于1”的条件是____________.2.A1

nN)的大小关系是.

【典型例题】

例1.已知x,y0,且xy2,求证:

变式训练:若a,b,c都是小于1的正数,求证:(1a)b,(1b)c,(1c)a不可能同时大于

–“学海无涯苦作舟,书山有路勤为径” 1x1y中至少一个小于2。,yx1

4例2.已知实数a,b,c,abc0,abbcca0,abc0,求证:a0,b0,c0.变式训练:课本P29页,习题2.3第4题 例3.已知a,b,cR,求证1aabdb

bcac

cbdd

dac2.变式训练:

xy

1xy

32设x0、y0,A例4.求证:1

122,B1n2x1xy1y,则A、B大小关系为________。2(nN)

例5.已知f(x)x2pxq,求证:|f(1)|,|f(2)|,|f(3)|中至少有一个不少于 12。

–“天下事,必作于细”

第五篇:用反证法证明不等式

用反证法证明不等式

一、反证法的含义

反证法是指“证明某个命题时,先假设它的结论的否定成立,然后从这个假设出发,根据命题的条件和已知的真命题,经过推理,得出与已知事实(条件、公理、定义、定理、法则、公式等)相矛盾的结果.这样,就证明了结论的否定不成立,从而间接地肯定了原命题的结论成立.”这种证明的方法,叫做反证法.

二、反证法的严密性

数学证明方法可分为直接证法和间接证法,从原命题所给的条件出发,根据已有的公理、定义、法则、公式,通过一系列的推理,一直推到所要证明的命题的结论,这种证法叫做直接证法.有些命题不易用直接证法去证明,这时可通过证明它的等价命题真,从而断定原命题真,这种证法叫做间接证法.数学中常用的间接证法有反证法.

既然反证法是间接证法,那么反证法也是通过证明原命题的等价命题从而证明原命题的.

三、反证法证题的步骤

用反证法证题一般分为三个步骤:

1、假设命题的结论不成立;

2、从这个结论出发,经过推理论证,得出矛盾;

3、由矛盾判定假设不正确,从而肯定命题的结论正确.

即:提出假设——推出矛盾——肯定结论.

四、反证法的分类

反证法中有归谬法和穷举法两种.

原命题的结论的否定只有一种情况,只要把这种情况推翻,就可以肯定原命题结论成立,这种反证法叫做归谬法;如果原命题的结论的否定不止一种情况,那么就必须把这几种情况一一否定,才能肯定原命题结论成立,这种反证法叫做穷举法.

五、反证法中常见的矛盾形式

(1)与已知条件即题设矛盾;

(2)与假设即反设矛盾;

(3)与已知的定义、公理和定理矛盾,即得出一个恒假命题;`

(4)自相矛盾.

六、反证法的适用范围

(1)已知条件很少或由已知条件能推得的结论很少;

(2)命题的结论以否定形式出现时;

(3)命题的结论以“至多”、“至少”的形式出现时;

(4)命题的结论以“唯一”的形式出现;

(5)命题的结论以“无限”的形式出现时;

(6)关于存在性命题;

(7)某些定理的逆定理.

总之,正难则反,直接的东西较少、较抽象、较困难时,其反面常会较多、较具体、较容易.

反证法有进也用于整个命题论证过程的某个局部环节上.

七、用反证法证明不等式举例

例 已知、、、,且

.求证:、、、中至少有一个是负数.选题意图:本题考查利用反证法证明不等式.证明:假设、、、都是非负数,∵

这与已知

.矛盾.,.∴、、、中至少有一个是负数.

下载高中数学选修4-5:2.1.4证明不等式的基本方法——反证法(一)word格式文档
下载高中数学选修4-5:2.1.4证明不等式的基本方法——反证法(一).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    比较法证明不等式 高中数学选修2-3

    1.1&1.2比较法证明不等式陈娇【教学目标】1. 知识与技能掌握两个实数的大小与它们的差值的等价关系以及理解并掌握比较法的一般步骤。2. 过程与方法掌握运用比较法证明一些......

    证明不等式的基本方法一5则范文

    证明不等式的基本方法一------ 比较法教学目的:以不等式的等价命题为依据,揭示不等式的常用证明方法之一——比较法,要求学生能教熟练地运用教学重点:比较法的应用教学难点:常见......

    证明不等式的基本方法

    证明不等式的基本方法一、比较法(1)作差比较法3322【例1】已知a,b都是正数,且ab,求证:ababab【1-1】 已知ab,求证:a3b3ab(ab)【1-2】已知ab,求证:a46a2b2b44ab(a2b2)(2)作商比较法a......

    高中数学不等式证明的常用方法经典例题

    关于不等式证明的常用方法比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述如果作差以后的式子可以整理为关于某一个......

    高中数学选修4-5:证明不等式的基本方法——放缩法(二) 学案(优秀范文5篇)

    2.1.7证明不等式的基本方法——放缩法(二)【学习目标】1. 掌握放缩法证明不等式的方法.2. 掌握放缩法证明不等式的方法步骤.3. 理解放缩法证明不等式的常用技巧.【自主学习】1......

    专题:不等式的证明——反证法[小编整理]

    专题:不等式的证明问题 ——反证法 反证法证明不等式  方法介绍: 从否定结论出发,经过逻辑推理导出矛盾,证实否定的结论是错误的,从而肯定原结论是正确的。 规律点拨: ① 必须先否......

    证明基本不等式的方法(5篇范文)

    2.2 证明不等式的基本方法——分析法与综合法●教学目标:1、理解综合法与分析法证明不等式的原理和思维特点.2、理解综合法与分析法的实质,熟练掌握分析法证明不等式的方法与......

    选修4-5不等式的证明方法及习题

    不等式的证明方法一、比较法1. 求证:x2 + 3 > 3x2. 已知a, b, m都是正数,并且a < b,求证:ambmab变式:若a > b,结果会怎样?若没有“a < b”这个条件,应如何判断? 3. 已知a, b都是正数,......