第一篇:高中数学《回归分析的基本思想及其初步应用》教案1 新人教A版选修1-2
1、1回归分析的基本思想及其初步应用。
教学目标:通过典型案例,掌握回归分析的基本步骤。
教学重点:熟练掌握回归分析的步骤。
教学难点:求回归系数 a, b
教学方法:讲练。
教学过程:
一、复习引入:回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法。
二、新课:
1、回归分析的基本步骤:(1)画出两个变量的散点图。(2)求回归直线方程。
(3)用回归直线方程进行预报。
2、举例:例
1、题(略)用小黑板给出。
解:(1)作散点图,由于问题是根据身高预报体重,因此要求身高与体重的回归直线方程,取身高为自变量x。体重为因变量 y,作散点图(如图)
(2)列表求 ,ˆ0.849 b
ˆ85.712a
回归直线方程y=0.849x-85.712
对于身高172cm 女大学生,由回归方程可以预报体重为y=0.849*172-85.712=60.316(kg)预测身高为172cm 的女大学生的体重为约60。316kg
问题:身高为172cm 的女大学生的体重一定是60。316kg吗?(留下一节课学习)
例2:(提示后做练习、作业)
研究某灌溉渠道水的流速y与水深x之间的关系,测得一组数据如下:
水深xm 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 流速1.70 1.79 1.88 1.95 2.03 2.10 2.16 2.21 ym/s
(1)求y对x的回归直线方程;
(2)预测水深为1。95m 时水的流速是多少?
解:(略)
三、小结
四、作业: 例
2、预习。
用心爱心专心 1
第二篇:1.1回归分析的基本思想及其初步应用 教学设计 教案
教学准备
1.教学目标
1、能根据散点分布特点,建立不同的回归模型;了解有些非线性模型通过转化可以转化为线性回归模型
2、了解回归模型的选择,体会不同模型拟合数据的效果
2.教学重点/难点
教学重点:通过探究使学生体会有些非线性模型通过等量变换、对数变换可以转化为线性回归模型
教学难点:如何启发学生“对变量作适当的变换”(等量变换、对数变换),变非线性为线性,建立线性回归模型
3.教学用具
多媒体
4.标签
教学过程
一、复习引入
【师】问题1:你能回忆一下建立回归模型的基本步骤?
【师】提出问题,引导学生回忆建立回归模型的基本步骤(选变量、画散点图、选模型、估计参数、分析与预测)
【生】回忆、叙述建立回归模型的基本步骤 【板演/PPT】
【师】问题2.能刻画回归模型效果的类别有哪些?它们各有什么特点? 【生】回忆思考 【板演/PPT】 刻画回归效果的方式(1)残差图法
作图时纵坐标为残差,横坐标可以选为的样本编号,或身高数据,或体重的估计值等,这样作出的图形称为残差图.在残差图中,残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高.(2)残差平方和法 残差平方和,残差平方和越小,模型拟合效果越好.
(3)利用R2刻画回归效果
;R2表示解释变量对于预报变量变化的贡献率.R2越接近于1,表示回归的效果越好.二、新知介绍
(1)回归模型选择比较不同模型拟合效果
【师】我国是世界产棉大国,种植棉花是我国很多地区农民的主要经济来源,棉花种植中经常会遇到一种虫害,就是红铃虫,为有效采取防止方法,有必要对红铃虫的产卵数和温度之间的关系进行研究,如图我们搜集了红铃虫的产卵数y和温度x之间的7组观测数据如下表: 【板书/PPT】
【师】 试着建立y与x之间的回归方程
【生】类比前面所学过的建立线性回归方程分步骤动手实施
【师】 教师巡视指导 【板书/PPT】 解:1)作散点图
2)通过计算器求得线性回归方程:
3)进行回归分析计算:
即这个线性回归模型中温度解释了74.64%产卵数的变化
【师】几何数据发现,我们所建立的回归模型相关指数约为74.64%,即解释变量仅能解释预报变量74.64%的变化,所占比例偏小,因此用此模型进行预报会存在较大误差。从散点图上也可以看出,样本点并没有很好的集中在一条直线附近,那么还可以通过什么样的回归模型进行预报呢? 【生】思考、交流,选择回归模型
【生】学生总结方案:方案一:建立二次函数模型y=c1x2+c2 方案二:建立指数函数模型
【师】那么,如何求出所建立的回归模型的系数呢
【生】思考、交流,观察模型,探究变换的方法并发表自己的意见。最后给出具体的方法。【板书/PPT】
令t=x2,建立与之间的线性回归方程
所以y=0.367t-202.543 因为t=x2,即y关于x的二次回归方程为y=0.367t2-202.543。
【师】如果选用指数型模型,是否也可以转化为线性模型呢?如何转化? 【生】思考、交流,教师启发学生“幂指数中的自变量如何转化为自变量的一次幂” 【板书/PPT】
建立数据转换表
根据数据得线性回归方程转化为非线性回归模型
计算相关指数R2≈0.985这个回归模型中温度解释了98.5%产卵数的变化 【师】 引导学生进行不同模型的比较,体会“虽然任意两个变量的观测数据都可以用线性回归模型来拟合,但不能保证这种模型对数据得拟合效果最好,为更好地刻画两个变量之间的关系,要根据观测数据的特点来选择回归模型” 【板书/PPT】
可以利用直观(散点图和残差图)、相关指数来确定哪一个模型的拟合效果更好。(2)运用新知,立体讲解
【师】根据刚才的例题,我们看看下面的例题 【板书/PPT】
例2某地区不同身高的未成年男性的体重平均值如下表:
试建立y与x之间的回归方程. 【师】引导学生学生动手计算 【生】学生交流计算 【板书/PPT】
解 根据上表中数据画出散点图如图所示.
由图看出,样本点分布在某条指数函数曲线y=c1e 的周围,于是令z=ln y.画出散点图如图所示.
由表中数据可得z与x之间的线性回归方程:
z=0.693+0.020x,则有y=e0.693+0.020x.【板书/PPT】
例3 为了研究某种细菌随时间x变化时,繁殖个数y的变化,收集数据如下:
(1)用天数x作解释变量,繁殖个数y作预报变量,作出这些数据的散点图;(2)描述解释变量x与预报变量y之间的关系;(3)计算相关指数.
【师】给学生足够时间完成练习【生】交流完成 【学生表达/PPT】
解①所作散点图如图所示.
②由散点图看出样本点分布在一条指数函数y=c1e 的周围,于是令z=ln y,则
由计算器得:=0.69x+1.115,则有=e0.69x+1.115.③
即解释变量天数对预报变量繁殖细菌个数解释了99.98%.随堂练习
【师】下面针对本节课所学,做几道练习题 【板书/PPT】
1.散点图在回归分析中的作用是(D)A.查找个体个数
B.比较个体数据大小关系 C.探究个体分类
D.粗略判断变量是否相关 2.变量x,y的散点图如图所示,那么x,y之间的样本相关系数r最接近的值为(C)
A.1 B.-0.5
C.0 D.0.5 3.变量x与y之间的回归方程表示(D)A.x与y之间的函数关系 B.x与y之间的不确定性关系 C.x与y之间的真实关系形式
D.x与y之间的真实关系达到最大限度的吻合
4.非线性回归分析的解题思路是通过变量置换转化为线性回归.
课堂小结 引导学生总结本节课所学
1.建立回归模型及残差图分析的基本步骤;非线性模型向线性模型的转换方法。2.不同模型拟合效果的比较方法可利用相关指数和残差分析比较 3.数形结合思想,转化的数学思想。
板书
第三篇:高中数学第一章统计案例1.1回归分析的基本思想及初步应用教学反思
回归分析的基本思想及初步应用
本单元内容是普通高中课程标准实验教科书《数学(选修1-2)》第一章统计案例1.1回归分析的基本思想及其初步应用。考虑到在《数学(必修3)》的“统计”一章中,学生已经学习了两个变量之间的相关关系,本单元在此基础上进一步介绍回归模型的基本思想及其初步应用,因此根据教材,我在教学中设计如下主要流程进行:
一、让学生回忆建立线性回归模型的基本步骤。
二、写出教材第二页的例1,和学生一起手工制作身高与体重的散点图,并引导学生讨论后猜想回归模型y=^bx+^a。
三、介绍参数b、a及相关系数r的计算公式,并指导学生运用计算器进行计算。
四、介绍残差ê的计算公式并指导学生运用计算器计算、画残差图进行模型拟合效果分析。
五、引导学生探究如果不是线性回归模型如何估计参数,讲解教材中的例2并练习。
六、指导学生作业。
具体实施下来,在教师的指导下教学目标完成了,但通过课后的教学反馈,发现教学效果并不理想,学生仅限于记住了公式,会套用公式计算,极力寻找标准答案,并没有真正达到学以致用的目的。一直以来,我们教师的任务好像只是教学,只要按照教科书、教学参考资料、考试试卷和标准答案去讲课就行了。教师是根据教学大纲和教材上规定的内容严格进行教学的,教师充当的是一个课程执行者而不是积极参与者。教师被动地、忠实地执行教学大纲,学生被动地、机械地接受知识。因此,无论对教师还是学生来说,这种教学形式,关注的是知识本身的输出输入,抱着教材是权威的观念,完成教材内容的学习就算达到教学目标,其他的则很少关注。
经过与同组教师探讨、与学生交流后,我有如下新的认识: 存在的问题:
1.本单元的内容属于新增添知识,因此,对于教学重点与难点理解不透,教法选择不适当,效果不明显。
2.教学观念没有彻底转变,还只是按照教科书、教学参考资料、标准答案去讲课,没有创造性的使用新教材。
在新课程中,从其基本理念、课程标准的设计到课程结构、内容以及课程的具体实施与评价,都以学生的全面可持续发展和个性特征为出发点,关注学生的学习过程与方法以及伴随这一过程而产生的积极情感体验和正确的价值观,关注学生的亲自参与生动的思维活动、实践与创新过程,要求学生学习“生活化的知识”、“有生命力的知识”,让学生懂得学以致用。
3.对学生的学习方法上仅限于单纯的记忆和机械的套用公式计算,没有真正关注学生的学习方法,如让学生经历数据处理的过程,以达到学以致用的目的。
4.没有形成一个完善的学习评价体系,不能对学生的学习过程作以科学的评价。例如:教材中的例2,选择指数回归模型或是二次回归模型都可以,但存在一个模型模拟效果好坏的问题,只要学生掌握如何建立回归模型,就可以不断修改模型,以使其达到最佳的模拟效果。
5.没有条件使用配套的硬件设施,如学校微机室计算机上无统计软件,无法给学生进行必要的教学演示,导致教学效果不显著。
解决方法:
1.应该鼓励学生经历数据处理的过程,培养学生对数据的直观感觉,认识统计方法的特点(如统计推断可能犯错误,估计结果的随即性),体会统计方法应用的广泛性。尽量给学生提供一定的实践活动机会,选择一个案例,要求学生亲自实践。例如:让学生上网查询从1994年到2004年中国的国内生产总值(GDP)的数据并完成以下四个问题:(1)利用电脑做GDP和年份的散点图,根据散点图猜想它们之间的关系是什么?(2)建立年份为解释变量,GDP为预报变量的回归模型,并用计算器计算相关系数、残差?(3)根据你得到的模型,预报2005年的GDP,并查阅资料,看看你的预报与实际GDP是否一样,并给予解释?(4)你认为这个模型能较好地刻画GDP和年份的关系吗?若不能的话,如何修改?通过本例可使学生根据模型对数据的拟合效果好坏,更好地选择回归模型,来更好地刻画两个变量之间的相关关系。
2.应鼓励学生使用计算器、计算机等现代技术手段来处理数据,避免学生单纯记忆和机械套用公式进行计算。
3.应创造条件,运用统计软件在电脑上画数据的散点图和残差图,便于学生选择函数模型并进行模型拟合效果分析。
4.本单元是新增添内容,无论在知识内容上还是教法上都比较新颖,需要教师之间加强教学研究,更新观念,使本单元知识能真正得以实施,而不是形式上的应付。
第四篇:高中数学 1.2.2充要条件教案 新人教A版选修2-1
福建省漳州市芗城中学高中数学 1.2.2充要条件教案 新人教A版选
修2-1(一)教学目标
1.知识与技能目标:
(1)正确理解充要条件的定义,了解充分而不必要条件, 必要而不充分条件, 既不充分也不必要条件的定义.
(2)正确判断充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件.(3)通过学习,使学生明白对条件的判定应该归结为判断命题的真假,. 2.过程与方法目标:在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质. 3.情感、态度与价值观:
激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.
(二)教学重点与难点
重点:
1、正确区分充要条件;
2、正确运用“条件”的定义解题 难点:正确区分充要条件.
教具准备:与教材内容相关的资料。
教学设想:在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质.
(三)教学过程 学生探究过程: 1.思考、分析
已知p:整数a是2的倍数;q:整数a是偶数.请判断: p是q的充分条件吗?p是q的必要条件吗? 分析:要判断p是否是q的充分条件,就要看p能否推出q,要判断p是否是q的必要条件,就要看q能否推出p.
易知:pq,故p是q的充分条件; 又q p,故p是q的必要条件. 此时,我们说, p是q的充分必要条件 2.类比归纳
一般地,如果既有pq,又有qp 就记作 p q.此时,我们说,那么p是q的充分必要条件,简称充要条件.显然,如果p是q的充要条件,那么q也是p的充要条件.概括地说,如果p q,那么p 与 q互为充要条件.3.例题分析
例1:下列各题中,哪些p是q的充要条件?
2(1)p:b=0,q:函数f(x)=ax+bx+c是偶函数;(2)p:x > 0,y > 0,q: xy> 0;(3)p: a > b ,q: a + c > b + c;(4)p:x > 5, ,q: x > 10
22(5)p: a > b ,q: a > b
分析:要判断p是q的充要条件,就要看p能否推出q,并且看q能否推出p. 解:命题(1)和(3)中,pq,且qp,即p q,故p 是q的充要条件; 命题(2)中,pq ,但q p,故p 不是q的充要条件;
命题(4)中,pq,但qp,故p 不是q的充要条件; 命题(5)中,pq,且qp,故p 不是q的充要条件; 4.类比定义
一般地,若pq ,但q p,则称p是q的充分但不必要条件; 若pq,但q p,则称p是q的必要但不充分条件;
若pq,且q p,则称p是q的既不充分也不必要条件. 在讨论p是q的什么条件时,就是指以下四种之一:
①若pq ,但q p,则p是q的充分但不必要条件;
②若qp,但p q,则p是q的必要但不充分条件;
③若pq,且qp,则p是q的充要条件;
④若p q,且q p,则p是q的既不充分也不必要条件. 5.巩固练习:P14 练习第 1、2题
说明:要求学生回答p是q的充分但不必要条件、或 p是q的必要但不充分条件、或p是q的充要条件、或p是q的既不充分也不必要条件.
6.例题分析
例2:已知:⊙O的半径为r,圆心O到直线l的距离为d.求证:d=r是直线l与⊙O相切的充要条件.
分析:设p:d=r,q:直线l与⊙O相切.要证p是q的充要条件,只需要分别证明充分性(pq)和必要性(qp)即可. 证明过程略.
例
3、设p是r的充分而不必要条件,q是r的充分条件,r成立,则s成立.s是q的充分条件,问(1)s是r的什么条件?(2)p是q的什么条件?
7.教学反思: 充要条件的判定方法
如果“若p,则q”与“ 若p则q”都是真命题,那么p就是q的充要条件,否则不是. 8.作业:P14:习题1.2A组第1(3)(2),2(3),3题
7、教学反思
8、安全教育
第五篇:高中数学 数学归纳法教案 新人教A版选修4-5
第一课时4.1数学归纳法
教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写.教学重点:能用数学归纳法证明一些简单的数学命题.教学难点:数学归纳法中递推思想的理解.教学过程:
一、复习准备:
1.分析:多米诺骨牌游戏.成功的两个条件:(1)第一张牌被推倒;(2)骨牌的排列,保证前一张牌倒则后一张牌也必定倒.回顾:数学归纳法两大步:(i)归纳奠基:证明当n取第一个值n0时命题成立;(ii)归纳递推:假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.2.练习:已知f(n)1352n1,nN*,猜想f(n)的表达式,并给出证明?过程:试值f(1)1,f(2)4,„,→ 猜想f(n)n2→ 用数学归纳法证明.3.练习:是否存在常数a、b、c使得等式132435......n(n2)
对一切自然数n都成立,试证明你的结论.二、讲授新课:
1.教学数学归纳法的应用:
① 出示例1:求证11n(an2bnc)611111111,nN* 2342n12nn1n22n
分析:第1步如何写?n=k的假设如何写? 待证的目标式是什么?如何从假设出发? 关键:在假设n=k的式子上,如何同补?
小结:证n=k+1时,需从假设出发,对比目标,分析等式两边同增的项,朝目标进行变形.nn② 出示例2:求证:n为奇数时,x+y能被x+y整除.k+2k+22k2k2kk2k2k 分析要点:(凑配)x+y=x·x+y·y=x(x+y)+y·y-x·y
2kkk222kkk=x(x+y)+y(y-x)=x(x+y)+y·(y+x)(y-x).③ 出示例3:平面内有n个圆,任意两个圆都相交于两点,任何三个圆都不相交于同一点,2求证这n个圆将平面分成f(n)=n-n+2个部分.分析要点:n=k+1时,在k+1个圆中任取一个圆C,剩下的k个圆将平面分成f(k)个部分,而圆C与k个圆有2k个交点,这2k个交点将圆C分成2k段弧,每段弧将它所在的平
22面部分一分为二,故共增加了2k个平面部分.因此,f(k+1)=f(k)+2k=k-k+2+2k=(k+1)-
(k+1)+2.2.练习:
① 求证
:(11)(1)(1
131)n∈N*).2n1
② 用数学归纳法证明:
(Ⅰ)72n42n297能被264整除;
(Ⅱ)an1(a1)2n1能被a2a1整除(其中n,a为正整数)
n③ 是否存在正整数m,使得f(n)=(2n+7)·3+9对任意正整数n都能被m整除?若存在,求出最大的m值,并证明你的结论;若不存在,请说明理由.3.小结:两个步骤与一个结论,“递推基础不可少,归纳假设要用到,结论写明莫忘掉”;从n=k到n=k+1时,变形方法有乘法公式、因式分解、添拆项、配方等.三、巩固练习: 1.练习:教材501、2、5题2.作业:教材50 3、4、6题.第二课时4.2数学归纳法
教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写.教学重点:能用数学归纳法证明几个经典不等式.教学难点:理解经典不等式的证明思路.教学过程:
一、复习准备:
1222n2n(n1),nN*.1.求证:1335(2n1)(2n1)2(2n1)
2.求证:11111nn,nN*.2342
1二、讲授新课:
1.教学例题:
① 出示例1:比较n2与2n的大小,试证明你的结论.分析:试值n1,2,3,4,5,6 → 猜想结论 → 用数学归纳法证明
→ 要点:(k1)2k22k1k22kkk23kk2k2„.小结:试值→猜想→证明
11② 练习:已知数列an的各项为正数,Sn为前n项和,且Sn(an),归纳出an的公2an
式并证明你的结论.解题要点:试值n=1,2,3,4,→ 猜想an → 数学归纳法证明
③ 出示例2:证明不等式|sinn|n|sin|(nN).要点:|sin(k1)||sinkcoscosksin||sinkcos||cosksin|
|sink||sin|k|sin||sin|(k1)|sin|
④ 出示例3:证明贝努利不等式.(1x)n1nx(x1,x0,nN,n1)
*2.练习:试证明:不论正数a、b、c是等差数列还是等比数列,当n>1,n∈N且a、b、c
nnn互不相等时,均有a+c>2b.bnn解答要点:当a、b、c为等比数列时,设a=, c=bq(q>0且q≠1).∴ a+c=„.q
ancnacn*当a、b、c为等差数列时,有2b=a+c,则需证>()(n≥2且n∈N).2
2ak1ck11k+1k+1k+1k+11(a+c+a+c)>(ak+1+ck+1+ak·c+ck·a)„.当n=k+1时,24
41kkackacack+1=(a+c)(a+c)>()·()=().4222
3.小结:应用数学归纳法证明与正整数n有关的不等式;技巧:凑配、放缩.三、巩固练习:
111tan(2n))(1)....(1)1.用数学归纳法证明:(1.cos2cos4cos2ntan
11112.已知nN,n2,1.2n1n22n
3.作业:教材P543、5、8题.