第一篇:高中数学 循环语句1精品教案 新人教A版必修3
总第 课时《循环语句1》教案
姓名 2012年 月 日 星期
【教学目标】
1、知识与技能:
正确理解循环语句的概念,并掌握其结构的区别与联系。2.过程与方法
经历对现实生活情境的探究,认识到应用计算机解决数学问题方便简捷,促进发展学生逻辑思维能力 3.情感态度与价值观
了解条件语句在程序中起判断转折作用,在解决实际问题中起决定作用。深刻体会到循环语句在解决大量重复问题中起重要作用,减少大量繁琐的计算。【重点与难点】
重点:循环语句的步骤、结构及功能。难点:会编写程序中的循环语句。【学法与教学用具】
计算机、图形计算器 【课时】一课时 【教学过程】
1、导入
试求自然数1+2+3+„+99+100的和。
显然大家都能准确地口算出它的答案:5050。而能不能将这项计算工作交给计算机来完成呢?而要编程,还需要进一步学习基本算法语句中的另外两种:条件语句和循环语句(板出课题)2.探究新知
循环语句格式是算法中的循环结构是由循环语句来实现的。
(1)WHILE语句的一般:
其中循环体是由计算机反复执行的一组语句构成的。WHLIE后面的“条件”是用于控制计算机执行循环体或跳出循环体的。
当计算机遇到WHILE语句时,先判断条件的真假,如果条件符合,就执
专心
爱心
用心 行WHILE与WEND之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止。这时,计算机将不执行循环体,直接跳到WEND语句后,接着执行WEND之后的语句。因此,当型循环有时也称为“前测试型”循环。其对应的程序结构框图为:(如上右图)
(2)UNTIL语句的一般格式是:
其对应的程序结构框图为:(如上右图)〖思考〗:直到型循环又称为“后测试型”循环,参照其直到型循环结构对应的程序框图,说说计算机是按怎样的顺序执行UNTIL语句的?
从UNTIL型循环结构分析,计算机执行该语句时,先执行一次循环体,然后进行条件的判断,如果条件不满足,继续返回执行循环体,然后再进行条件的判断,这个过程反复进行,直到某一次条件满足时,不再执行循环体,跳到LOOP UNTIL语句后执行其他语句,是先执行循环体后进行条件判断的循环语句。〖提问〗:通过对照,大家觉得WHILE型语句与UNTIL型语句之间有什么区别呢?(让学生表达自己的感受)
区别:在WHILE语句中,是当条件满足时执行循环体,而在UNTIL语句中,是当条件不满足时执行循环体。
【布置作业】
P23习题1.2 A组 3 P24习题1.2 B组 2.【教学反思】
专心
爱心
用心 2
第二篇:高中数学《循环语句》同步练习1 新人教B版必修3
《循环语句》复习班测试题
一.选择题(40分)1.下面程序段 int k=2;while(k=0){printf(“%d”,k);k--;} 则下面描述中正确的是 C。
A)while循环执行10次 B)循环是无限循环
C)循环题语句一次也不执行 D)循环体语句执行一次 2.下列表达式中,(B)不满足“当x的值为偶数时值为真,为奇数时值为假”的要求。
A)x%2==0 B)!x%2!=0 C)(x/2*2-x)==0 D)!(x%2)
3.以下程序段的循环次数是 B。
for(i=2;i==0;)printf(“%d” , i--);
A)无限次 B)0次 C)1次 D)2次
4.下列关于break语句的叙述不正确的是(C)
A break语句可用在循环体中,它将使执行流程跳出本层循环体。
B break语句可用在switch语句中,它将使执行流程跳出当前switch语句。C break语句可用在if语句中,它将使执行流程跳出当前if语句。D break语句在一层循环体中可以多次出现。
5.下面程序的输出结果是。
main(B)
{ int x=9;
for(;x>0;x--){ if(x%3==0){
printf(“%d”,--x);
continue;}
}
}
A)741 B)852 C)963 D)875421
6.以下不是死循环的程序段是。D
A)int i=100;B)for(;;);
while(1){ i=i%100+1;if(i>100)break;
}
C)int k=0;D)int s=36;do { ++k;} while(k>=0);while(s);--s;
7.下述程序段的运行结果是 C。
用心
爱心
专心 int a=1,b=2, c=3, t;while(a
A)1,2,0 B)2,1,0 C)1,2,1 D)2,1,1
8.能正确表示“当x的取值在[1,10]和[200,210]范围内为真,否则为假”的表达式是。C
A)(x>=1)&&(x<=10)&&(x>=200)&&(x<=210)
B)(x>=1)| |(x<=10)| |(x>=200)| |(x<=210)
C)(x>=1)&&(x<=10)| |(x>=200)&&(x<=210)
D)(x>=1)| |(x<=10)&&(x>=200)| |(x<=210)
9.下述语句执行后,变量k的值是。B int k=1;while(k++<10);
A)10 B)11 C)9 D)无限循环,值不定
10.设:int a=1,b=2,c=3,d=4,m=2,n=2;执行(m=c>b)||(n=c>d)后n的值为。C A)1 B)3 C)2 D)4
11.下面for循环语句(B)。
int i,k;
for(i=0, k=-1;k=1;i++, k++)
printf(“***”);
A)判断循环结束的条件非法 B)是无限循环
C)只循环一次 D)一次也不循环
12.语句while(!E);括号中的表达式!E等价于 C。
A)E==0 B)E!=1 C)E!=0 D)E==1
13.下面 B 是错误的if语句(设int x,a,b;)
A)if(a=b)x++;B)if(a=
C)if(a-b)x++;D)if(x)x++;
14.执行语句for(i=1;i++<4;);后变量i的值是 C。
A)3 B)4 C)5 D)不定
15.以下程序段。C x=-1;do
{ x=x*x;} while(!x);
A)是死循环 B)循环执行2次 C)循环执行1次 D)有语法错误
16.下面程序的功能是在输入的一批正数中求最大者,输入0结束循环,选择 B 填
用心
爱心
专心 空。main(){ int a,max=0;
scanf(“%d”,&a);
while(【 】){
if(max scanf(“%d”,&a); } printf(“%d”,max);} A)a==0 B)a C)!a==1 D)!a 17.以下不是死循环的语句是。A A)for(y=9,x=1;x>++y;x=i++)i=x; B)for(;;x++=i); C)while(1){ x++;} D)for(i=10;;i--)sum+=i; 18.下面程序段的运行结果是。D x=y=0;while(x<4)y++,x+=++y;printf(“%d,%d”,y,x); A)20,7 B)6,12 C)20,8 D)4,6 19.以下for循环的执行次数是 C。for(x=0,y=0;(y=123)&&(x<4);x++); A)无限循环 B)循环次数不定 C)4次 D)3次 20.以下程序输出结果是 B。main(){ int x=1,y=0,a=0,b=0; switch(x){ case 1:switch(y){ case 0 : a++;break; case 1 : b++;break; } case 2:a++;b++;break; case 3:a++;b++;} printf(“a=%d,b=%d”,a,b);} A)a=1,b=0 B)a=2,b=1 C)a=1,b=1 D)a=2,b=2 用心 爱心 专心 二.填空题(10分) 1.C语言三个基本结构语句分别是 顺序 语句,选择 语句和 循环 语句。 2.至少执行一次循环体的循环语句是 do while ; 3.将条件“y能被4整除但不能被100整除,或y能被400整除”写成逻辑表达式 ___ y%4==0&&y%100!=0||y%400==0 __________ 4.计算下列分段函数的 if 语句是_ __。y= 1 x>0 y= 0 x=0 y=-1 x<0 5.程序段 for(a=1,i=-1;-1 { a++;printf(“%2d”,a);}; printf(“%2d”,i); 的运行结果是。 三.判断题(10分)1.在while循环中允许使用嵌套循环,但只能是嵌套while循环。【x 】 2.在实际编程中,do-while循环完全可以用for循环替换。【 x】 3.continue语句只能用于三个循环语句中。【x】 4.在不得已的情况下(例如提高程序运行效率),才使用goto语句。【 v】 5.语句标号与C语言标识符的语法规定是完全一样的。【v】 6.for循环的三个表达式可以任意省略,while,do-while也是如此。【 x】 7.多个case可以执行相同的程序段。【 v】 8.while的循环控制条件比do-while的循环控制条件严格。【 v 】 9.if语句中的表达式不限于逻辑表达式,可以是任意的数值类型。【x 】 10.do-while循环的while后的分号可以省略。【x 】 四.程序阅读题 1.写出下面程序运行的结果。main(){ int x,i; for(i=1;i<=100;i++){ 用心 爱心 专心 x=i; if(++x%2==0) if(++x%3==0) if(++x%7==0) printf(“%d ”,x); } } 28 70 2.写出下面程序运行的结果。 下面程序将输入的大写字母改写成小写字母输出,其他字符不变;请判断下面程序的正误,如果错误请改正过来。main(){ char c; c = getchar();c =(c>=’A’ && c<=’Z’)? c+32 : c; printf(“%c”,c);} 3.写出下面程序运行的结果。main(){ int a,b; for(a=1,b=1;a<=100;a++){ if(b>=20)break; if(b%3==1){ b+=3;continue;} b-=5; } printf(“%dn”,a);} 8 4.写出下面程序运行的结果。main(){ int k=1,n=263; do { k*= n%10;n/=10;} while(n); printf(“%dn”,k);} 36 5.写出下面程序运行的结果。main(){ int i,k=0; for(i=1;;i++) 用心 爱心 专心 { k++; while(k k++; if(k%3==0)goto loop; } } loop: printf(“%d,%dn”,i,k);} 2,3 六.编程题 1.输入两个正整数m和n,求其最大公约数和最小公倍数。10 2.输入一行字符,分别统计出其中英文字母,空格,数字和其他字符的个数。10 3.求(即求1!+2!+3!+„+19!+20!)。5 4.任意范围内既能被5整除,又能被7整除的数的和5 5.提高题:打印出所有的“水仙花数”,所谓“水仙花数”是指一个3位数,其各位数字立方之和等于该数本身。5 用心 爱心 专心 6 3.1.2指数函数 (二)教学目标:巩固指数函数的概念和性质 教学重点:指数函数的概念和性质 教学过程: 本节课为习题课,可分以下几个方面加以练习: 备选题如下: 1、关于定义域 x(1)求函数f(x)=11的定义域 9(2)求函数y=1x的定义域 51x1(3)函数f(x)=3-x-1的定义域、值域是……() A.定义域是R,值域是R B.定义域是R,值域是(0,+∞) C.定义域是R,值域是(-1,+∞) D.以上都不对(4)函数y=1x的定义域是______ 5x11(5)求函数y=ax1的定义域(其中a>0且a≠1) 2、关于值域 (1)当x∈[-2,0]时,函数y=3x+1-2的值域是______(2)求函数y=4x+2x+1+1的值域.(3)已知函数y=4x-3·2x+3的值域为[7,43],试确定x的取值范围.(4).函数y=3x3x1的值域是() A.(0,+∞) B.(-∞,1) C.(0,1) D.(1,+∞) (5)函数y=0.25x22x12的值域是______,单调递增区间是______.3、关于图像 用心 爱心 专心 1 (1)要得到函数y=8·2-x的图象,只需将函数y=(12)x的图象() A.向右平移3个单位 B.向左平移3个单位 C.向右平移8个单位 D.向左平移8个单位 (2)函数y=|2x-2|的图象是() (3)当a≠0时,函数y=ax+b和y=bax的图象只可能是() (4)当0 B.第二象限 C.第三象限 D.第四象限 (5)若函数y=a2x+b+1(a>0且a≠1,b为实数)的图象恒过定点(1,2),则b=______.(6)已知函数y=(12)|x+2|. ①画出函数的图象; ②由图象指出函数的单调区间并利用定义证明.(7)设a、b均为大于零且不等于1的常数,下列命题不是真命题的是() 用心 爱心 专心 A.y=a的图象与y=a的图象关于y轴对称 B.若y=a的图象和y=b的图象关于y轴对称,则ab=1 C.若a2x-xxx>a22-1,则a>1 ,则a>b D.若a>b 24、关于单调性 (1)若-1 A.5-x<5x<0.5x C.5<5<0.5x-xx B.5x<0.5x<5-x D.0.5<5<5 x-xx(2)下列各不等式中正确的是() A.()3()3()3 252C.()3()3()3 52212121211 B.()3()3()3 225 D.()3()3()3 *** 1211(x+1)(3-x)(3).函数y=(2-1)的单调递增区间是() A.(1,+∞)C.(1,3) B.(-∞,1) D.(-1,1) (4).函数y=()2xxx2为增函数的区间是() (5)函数f(x)=a-3a+2(a>0且a≠1)的最值为______.(6)已知y=(数.(7)比较52x12x12)xx22+1,求其单调区间并说明在每一单调区间上是增函数还是减函与5x22的大小 5、关于奇偶性 (1)已知函数f(x)= m21x2x为奇函数,则m的值等于_____ 11(1)如果82 x2x=4,则x=____ 用心 爱心 专心 3 6阶段检测题: 可以作为课后作业: 1.如果函数y=ax(a>0,a≠1)的图象与函数y=bx(b>0,b≠1)的图象关于y轴对称,则有 A.a>b B.a 3(3x-1)(2x+1) ≥1},则集合M、N的关系是 B.MN D.MN 3.下列说法中,正确的是 ①任取x∈R都有3x>2x ②当a>1时,任取x∈R都有ax>a-x ③y=(3)-x是增函数 ④y=2|x|的最小值为1 ⑤在同一坐标系中,y=2x与y=2-x的图象对称于y轴 A.①②④ C.②③④ B.④⑤ D.①⑤ 4.下列函数中,值域是(0,+∞)的共有 ①y=31 ②y=(A.1个 x1)③y=1()④y=3x B.2个 x11xC.3个 D.4个 5.已知函数f(x)=a1-x(a>0,a≠1),当x>1时恒有f(x)<1,则f(x)在R上是 A.增函数 B.减函数 C.非单调函数 D.以上答案均不对 二、填空题(每小题2分,共10分)6.在同一坐标系下,函数y=ax,y=bx,y=cx,y=dx的图象如下图,则a、b、c、d、1之间从小到大的顺序是__________.用心 爱心 专心 4 7.函数y=ax1的定义域是(-∞,0],则a的取值范围是__________.8.函数y=2x+k-1(a>0,a≠1)的图象不经过第四象限的充要条件是__________.9.若点(2,14)既在函数y=2ax+b的图象上,又在它的反函数的图象上,a=________,b=________.10.已知集合M={x|2x2+x≤(14) x- 2,x∈R},则函数y=2x的值域是__________.三、解答题(共30分)11.(9分)设A=am+a-m,B=an+a-n(m>n>0,a>0且a≠1),判断A,B的大小.12.(10分)已知函数f(x)=a- 22x1(a∈R),求证:对任何a∈R,f(x)为增函数.x1213.(11分)设0≤x≤2,求函数y=42a2xa21的最大值和最小值.课堂练习:(略)小结: 课后作业:(略) 用心 爱心 专心 则 §1.3进位制 教学目标:1了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换。2学习各种进位制转换成十进制的计算方法,研究十进制转换为各种进位制的除k去余法,并理解其中的数学规律。 教学重点:各进位制表示数的方法及各进位制之间的转换 教学难点:除k取余法的理解以及各进位制之间转换的程序框图及其程序的设计 学法:学习各种进位制特点的同时探讨进位制表示数与十进制表示数的区别与联系,熟悉各种进位制表示数的方法,从而理解十进制转换为各种进位制的除k取余法。 教学过程 引入:我们常见的数字都是十进制的,比如一般的数值计算,但是并不是生活中的每一种数字都是十进制的.比如时间和角度的单位用六十进位制,电子计算机用的是二进制,旧式的称是十六进制的,计算一打数值时是12进制的......那么什么是进位制?不同的进位制之间又又什么联系呢? 进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值。可使用数字符号的个数称为基数,基数为n,即可称n进位制,简称n进制。现在最常用的是十进制,通常使用10个阿拉伯数字0-9进行记数。对于任何一个数,我们可以用不同的进位制来表示。比如:十进数57,可以用二进制表示为111001,也可以用八进制表示为71、用十六进制表示为39,它们所代表的数值都是一样的。 一般地,若k是一个大于一的整数,那么以k为基数的k进制可以表示为: anan1...a1a0(k)(0ank,0an1,...,a1,a0k),而表示各种进位制数一般在数字右下脚加注来表示,如111001(2)表示二进制数,34(5)表示5进制数 543210如:把二进制数110011(2)化为十进制数.110011=1*2+1*2+0*2+0*2+1*2+1*2=32+16+2+1=51 把八进制数7348(8)化为十进制数.7348(8)7*83*84*88*83816 例 4、把二进制数110011(2)化为十进制数.543210解:110011=1*2+1*2+0*2+0*2+1*2+1*2=32+16+2+1=51 例5 把89化为二进制数.解:根据二进制数满二进一的原则,可以用2连续去除89或所得商,然后去余数.具体的计算方法如下: 89=2*44+144=2*22+022=2*11+0 11=2*5+15=2*2+1 所以:89=2*(2*(2*(2*(2*2+1)+1)+0)+0)+1=1*26+0*25+1*24+1*23+0*22+0*21+1*20=1011001(2)这种算法叫做除2取余法,还可以用下面的除法算式表示: 把上式中的各步所得的余数从下到上排列即可得到89=1011001(2) 上述方法也可以推广为把十进制化为k进制数的算法,这种算法成为除k取余法.例6 利用除k取余法把89转换为5进制数 具体的计算方法如把十进制数化为二进制数。 把k进制数a(共有n位)转换为十进制数b的过程可以利用计算机程序来实现,语句为: INPUT a,k,ni=1b=0 WHILE i<=nt=GET a[i]b=b+t*k^(i-1)i=i+1 WENDPRINT bEND 小结: (1)进位制的概念及表示方法(2)十进制与二进制之间转换的方法及程序 (3)图形计算器进一步激发学生在算法方面的潜能,更能体现他们的创造精神。3210 必修3“条件语句”的教学实践与反思 一、教材分析 1、教学内容的地位和作用 算法是设计高中数学课程的一条主线,程序是由若干算法语句组成的有序集合。“算法语句”是继“程序框图”之后学习的内容,是解决某一个(或某一类)问题的算法的程序实现。在此之前,学生已学习了算法的概念、程序框图与算法的基本逻辑结构、输入语句、输出语句和赋值语句,这为过渡到本节的学习起着铺垫作用。对于顺序结构的算法或程序框图,我们可以利用输入语句、输出语句和赋值语句,写出其计算机程序,对于条件结构的算法或程序框图,要转化为计算机能够理解的算法语句,我们必须进一步学习条件语句。条件语句与程序框图中的条件结构相对应,它是五种基本算法语句中的一种,通过本节课的学习,学生将更加了解算法语句,并能用更全面的眼光看待前面学过的语句,并为以后的学习作好必要的准备。本节课对学生算法语言能力、有条理的思考与清晰地表达的能力,逻辑思维能力的综合提升具有重要作用。 学习算法的目的,不是学习程序设计语言,而是体会算法的基本思想以及算法的重要性和有效性,算法学习能够帮助学生清晰思考问题,提高逻辑思维能力;有助于学生全面的理解运算;有助于提高学生的信息素养。《新课标》要求学生“经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句----输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。 2、教学重点和难点 重点:条件语句的基本格式、种类以及应用,与条件结构的关系 难点:条件语句的应用,会编写程序中的条件语句.二、目标分析 1、知识与技能 知识目标:理解基本算法语句---条件语句,以及与条件结构的关系,初步体验如何由程序框图转化为程序语句。 条件语句的两种形式如下: IF 条件 THEN IF 条件 THEN 语句体1 ELSE 语句体 语句体2 END IF END IF 能力目标:通过条件语句的学习,了解条件语句在解决问题中的应用,进一步体会算法的基本思想。 2、过程与方法 采用“案例教学“,从具体的学生熟悉的实例出发,在具体的情境中,教师启发引导、讲练结合,螺旋上升的方式,实现教学目标。 3、情感、态度与价值观 通过生活中的一些具体问题的解决,培养学生对设计算法的浓厚兴趣,激发学生的求知欲,锻炼学生解决问题的能力,进而增强学生的成就感。 三、教学过程 1、创设情境,提出问题 问题1:黄岩火车站快要开始营业了 规定:火车托运p(kg)行李时每千米的费用(单位:元)标准为 用心 爱心 专心 0.3pp30kg y0.3300.5(p30)p30kg请设计算法,并画出行李托运费的程序框图 [设计意图]问题是数学的心脏,数学教学应当从问题开始,以实际应用问题作为情境,激发学生的学习热情,引发学生的学习动机,通过问题展开教学活动,引导学生主动进入新知识。 2、解决问题 (1)探讨条件结构的特点 以学生所画的程序框图为例,概括条件结构的特点,并与顺序结构进行比较,得出如下结论:条件结构的特点是有一个判断过程,如果满足条件就执行某种操作,否则执行其他操作,执行到哪一步,需要根据条件作出选择。(2)引入新知识,学习条件语句 算法中的条件结构可以用条件语句来实现,其一般格式与对应的程序框图(书p10)如下: IF 条件 THEN IF 条件 THEN 语句体1 ELSE 语句体 语句体2 END IF END IF [学生活动]:书翻到第10页,把条件结构对应的两种程序框图写出条件语句(运用新知)(3)解决问题1 [学生活动]:根据问题1所画的程序框图以及原先学过的输入、输出、赋值语句,编写程序,同时教师随机让两名学生板演: INPUT p IF p<=30 THEN y=0.3p ELSE y=0.3300.5(p30) END IF PRINT y END [教师小结]在应用条件语句编程时要注意以下几点: ① 条件的判断与执行语句的顺序(首先对IF后的条件进行判断,如果(IF)条件符合,那么(IHEN)执行语句体1,否则(ELSE)执行语句体2。② IF与END IF要配对使用,不能只用其一。 ③ 区分END IF与END的区别,前者是结束条件语句,后者是结束整个程序。 ④ 编写程序时注意不要漏掉一些条件的结束语句,特别是条件语句比较多的时候,因此书写的时候可由里向外将每个条件结构错开位置。 3、简单应用(随堂练习) 练习1:将p11图1.110中的程序框图转化为程序 问题2:阅读下面的程序,你能得出什么结论? ① IF x>0 THEN ② TNPUT x 用心 爱心 专心 y=1 IF x<0 THEN ELSE x=-x y=0 END IF END IF PRINT x END [设计意图]:使学生进一步认识条件语句,熟悉条件结构与条件语句的互化,进一步体会赋值语句、条件语句,而且还能锻炼学生阅读程序的能力。 问题3:编写一个程序,求实数x的绝对值 [设计意图]:不仅是为了应用条件语句,而且再次提供了完整经历算法设计全过程的机会。 3、深入探究,条件语句的深层应用 问题4:将p12图1.111求解一元二次方程axbxc0的算法的程序框图转化为程序 算法分析:观察程序框图可以发现,此题并不简单,原因是框图中包含了两个条件结构,而且内层的条件结构是外层的条件结构的一个分支,属于多层结构的嵌套问题。[设计意图]:本例所设计的算法本质是“公式法”。是给出框图之后,进而用条件语句来编写程序。先给学生留有足够的空间,放手让他们去探索,若有困难,老师加以分析、提醒,如算术平方根的符号为SQR等等,再补充几个比较常见的函数及功能,如ABS是x的绝对值,LOG是x取自然对数,它们都是QBASIC中的标准函数,可以直接应用,另外再补充QBASIC中常用的算术运算符,如,/,,MOD,分别表示乘,除,不等,余数,整除。[教师小结]:对于两个条件结构嵌套的一般格式如下: TF 条件1 THEN 语句体1 IF 条件2 THEN 语句体2 ELSE 语句体3 END IF ELSE 语句体4 END IF 问题5:编写一个程序,输入两个实数,并由大到小输出这两个数。 [设计意图]:进一步认识算法的程序,并学习一些编程的小技巧,进而完成三个数的问题。算法分析:这是一道典型的可用条件结构的算法问题,设计的思路和问题3相似,完整地经历了先用自然语言写出算法步骤,接着画出程序框图,最后把程序框图转化为程序的全过程。本例的程序中使用的“小技巧”是借助一个中间变量“t”来交换两个变量的值 INPUT “a,b=”;a,b IF b>a THEN t=a a=b b=t END IF PRINT a,b END 用心 爱心 专心 2变式:编写程序,使任意输入的3个整数按从大到小的顺序输出。 [教师小结]:这个算法编程时主要是重复用到变量的交换,这是程序的关键之处。基本思想是先将a与b比较,把小者赋给b,大者赋给a;再将a与c比较,把小者赋给c,大者赋给a,此时a已是三者中最大;最后将b与c比较,大者赋给b小者赋给c,a、b、c就按大到小的顺序排列了。 推广:编写程序,使任意输入的n(n是正整数)个整数按从大到小的顺序输出。(生讲思路)[设计意图]:让学生学会思考,理解知识间的联系,学会举一反三。练习2: (1)读程序,说明程序的运行过程: INPUT “Please input an integer:”;x IF 9 (3)闰年是指能被4整除但不能被100整除,或者能被400整除的年份,编写一个程序,判断输入的年份是否为闰年? [设计意图]:体现学习是再创造。学习不再看成是一种被动地吸收知识,通过反复练习强化储存知识的过程,而是用学生原有的知识处理新的任务,并构建他们自己的意义。 4、归纳小结,启发创新 问题6:通过本节课的学习,你学到了什么知识? 课后作业:设置一个含嵌套结构的问题,画出程序框图,编制相应的程序,准备交流。[设计意图]:让学生进一步体验条件结构及条件语句的特征。同时,引导学生把学习的知识与实际问题相结合,体现学以致用的道理。 四、几点反思 1、本节课主要学习了条件语句的结构、特点、作用以及用法,并能解决一些简单的问题。条件语句一般用在对条件进行判断的算法设计中,如判断一个数的正负,确定两个数的大小,解一元二次方程等问题,还有求分段函数的函数值等,往往要用条件语句,有时甚至要用到条件语句的嵌套。 2、本节课算法教学采用“问题教学”,从具体的学生熟悉的实例出发(问题1),创设情境,结合原有的知识,让学生体会条件结构的特征;紧接着通过练习 1、问题 2、问题3,环环相扣,激发学生的兴趣,发挥学生学习的主动性,使学生进一步认识、理解条件语句,熟悉条件结构与条件语句的互化,进一步体会赋值语句、条件语句,而且还能锻炼学生阅读程序的能力;然后通过问题4引出多重结构嵌套,深化对条件结构的认识;最后通过问题5以及变式与推广,进一步认识算法的程序,并学习一些编程的小技巧,让学生学会思考,理解知识间的联系,学会举一反三。 这样的教学路线,使得学生在环环相扣的问题探究过程中,既有行动上的参与,更让学生养成独立思考,积极探索的好习惯。也正因为这样,高中数学课程设立“数学探究”“数 用心 爱心 专心 学建模”等学习活动,为学生形成积极主动的、多样的学习方式进一步创造有利条件,以激发学生的数学学习兴趣。 3、条件语句是算法中的一个知识点,而算法本来属于信息技术的内容,信息技术和数学课程内容的整合成为课程标准制定的一个基本理念。高中数学课程应提倡利用信息技术来呈现以往教学中难以呈现的课程内容,在保证笔算训练的前提下,尽可能使用科学型计算器,各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机、计算器等进行探索和发现。而我们这边的学生使用的都是一般的计算器,只有计算功能,没有绘制功能,所有算法相应的程序语句是否可行、可靠?根本无法验证,仍然是“纸上谈兵”。对程序框图的可行性缺乏验证,会缺乏真实感的信任,会在一定程度上降低学生的兴趣、参与的激情,课堂上如有机会,我们老师尽量通过计算机来验证,不过效果不是很好,这是教学中令人非常遗憾的地方,希望在不久的将来能够得到改善。 用心 爱心 专心 5第三篇:高中数学《指数函数》教案1 新人教A版必修1
第四篇:高中数学 1.3进位制教案 新人教B版必修3
第五篇:高中数学《条件语句》文字素材4 新人教B版必修3