第一篇:(新课程)高中数学 2.1.1《函数》教案 新人教B版必修1
2.1.1函数 教案(2)
教学目标:理解映射的概念;
用映射的观点建立函数的概念.教学重点:用映射的观点建立函数的概念.教学过程:
1.通过对教材上例
4、例
5、例6的研究,引入映射的概念.注:1,补充例子:投掷飞标时,每一支飞标射到盘上时,是射到盘上的唯一点上。于是,如果我们把A看作是飞标组成的集合,B看作是盘上的点组成的集合,那么,刚才的投飞标相当于集合A到集合B的对应,且A中的元素对应B中唯一的元素,是特殊的对应.同样,如果我们把A看作是实数组成的集合,B看作是数轴上的点组成的集合,或把A看作是坐标平面内的点组成的集合,B看作是有序实数对组成的集合,那么,这两个对应也都是集合A到集合B的对应,并且和上述投飞标一样,也都是A中元素对应B中唯一元素的特殊对应.一般地,设A,B是两个集合,如果按照某种对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B.其中与A中的元素a对应的B中的元素b叫做a的象,a叫做b的原象.2,强调象、原象、定义域、值域、一一对应和一一映射等概念 3.映射观点下的函数概念 如果A,B都是非空的数集,那么A到B的映射f:A→B就叫做A到B的函数,记作y=f(x),其中x∈A,y∈B.原象的集合A叫做函数y=f(x)的定义域,象的集合C(CB)叫做函数y=f(x)的值域.函数符号y=f(x)表示“y是x的函数”,有时简记作函数f(x).这种用映射刻划的函数定义我们称之为函数的近代定义.注:新定义更抽象更一般
1(x是有理数)如:f(x)(狄利克雷函数)(0x是无理数) 4.补充例子:
例1.已知下列集合A到B的对应,请判断哪些是A到B的映射?并说明理由:
⑴ A=N,B=Z,对应法则:“取相反数”;
⑵A={-1,0,2},B={-1,0,1/2},对应法则:“取倒数”; ⑶A={1,2,3,4,5},B=R,对应法则:“求平方根”;
00⑷A={|090},B={x|0x1},对应法则:“取正弦”.例2.(1)(x,y)在影射f下的象是(x+y,x-y),则(1,2)在f下的原象是_________。
2(2)已知:f:xy=x是从集合A=R到B=[0,+]的一个映射,则B中的元素1在A中的原象是_________。
(3)已知:A={a,b},B={c,d},则从A到B的映射有几个。
【典例解析】
例⒈下列对应是不是从A到B的映射,为什么?
⑴A=(0,+∞),B=R,对应法则是"求平方根";
x2⑵A={x|-2≤x≤2},B={y|0≤y≤1},对应法则是f:x→y=(其1
中x∈A,y∈B)
2⑶A={x|0≤x≤2},B={y|0≤y≤1},对应法则是f:x→y=(x-2)(其中x∈A,y∈B)
x⑷A={x|x∈N},B={-1,1},对应法则是f:x→y=(-1)(其中x∈A,y∈B).
例⒉设A=B=R,f:x→y=3x+和-3的原象.
6,求⑴集合A中112和-3的象;⑵集合B中22
参考答案:
例⒈解析:⑴不是从A到B的映射.因为任何正数的平方根都有两个,所以对A中的任何一个元素,在B中都有两个元素与之对应.⑵是从A到B的映射.因为A中每个数平方除以4后,都在B中有唯一的数与之对应.⑶不是从A到B的映射.因为A中有的元素在2B中无元素与之对应.如0∈A,而(0-2)=4B.⑷是从A到B的映射.因为-1的奇数次幂是-1,而偶数次幂是1.∴⑴⑶不是,⑵⑷是.
[点评]判断一个对应是否为映射,主要由其定义入手进行分析.
1115和x=-3分别代入y=3x+6,得的象是,-3的象是-3; 222111
1⑵将y=和y=-3,分别代入y=3x+6,得的原象-,-3的原象226例⒉解:⑴将x=是-3.
[点评]由映射中象与原象的定义以及两者的对应关系求解. 课堂练习:教材第36页 练习A、B。
小结:学习用映射观点理解函数,了解映射的性质。课后作业:第53页习题2-1A第1、2题。
第二篇:(新课程)高中数学 《2.1.4 函数的奇偶性》教案 新人教B版必修1
2.1.4函数的奇偶性
教学目标:理解函数的奇偶性
教学重点:函数奇偶性的概念和判定 教学过程:
1、通过对函数y12,yx的分析,引出函数奇偶性的定义 x2、函数奇偶性的几个性质:
(1)奇偶函数的定义域关于原点对称;
(2)奇偶性是函数的整体性质,对定义域内任意一个x都必须成立;(3)f(x)f(x)f(x)是偶函数,f(x)f(x)f(x)是奇函数;(4)f(x)f(x)f(x)f(x)0, f(x)f(x)f(x)f(x)0;
(5)奇函数的图像关于原点对称,偶函数的图像关于y轴对称;
(6)根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。
3、判断下列命题是否正确
(1)函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分条件。
此命题正确。如果函数的定义域不关于原点对称,那么函数一定是非奇非偶函数,这一点可以由奇偶性定义直接得出。
(2)两个奇函数的和或差仍是奇函数;两个偶函数的和或差仍是偶函数。此命题错误。一方面,如果这两个函数的定义域的交集是空集,那么它们的和或差没有定义;另一方面,两个奇函数的差或两个偶函数的差可能既是奇函数又是偶函数,如,与,可以看出函数都是定义域上的函数,它们的差只在区间[-1,1]上有定义且,而在此区间上函数
既是奇函数又是偶函数。都是偶函数。(3)是任意函数,那么与此命题错误。一方面,对于函数或
;另一方面,对于一个任意函数,不能保证
而言,不能保证它的定义域关于原点对称。如果所给函数的定义域关于原点对称,那么函数是偶函数。
(4)函数是偶函数,函数是奇函数。
此命题正确。由函数奇偶性易证。(5)已知函数是奇函数,且
有定义,则。
此命题正确。由奇函数的定义易证。(6)已知是奇函数或偶函数,方程
有实根,那么方程的有奇数个所有实根之和为零;若实根。
此命题正确。方程偶性的定义可知:若来说,必有
4、补充例子
是定义在实数集上的奇函数,则方程的实数根即为函数,则
。故原命题成立。
与轴的交点的横坐标,由奇
。对于定义在实数集上的奇函数例:定义在(1,1)上的奇函数f(x)在整个定义域上是减函数,若f(1a)f(1a)0,求实数a的取值范围。
课堂练习:教材第53页 练习A、B 小结:本节课学习了函数奇偶性的概念和判定 课后作业:第57页习题2-1A第6、7、8题 2
第三篇:高中数学:2.1.4《函数的奇偶性》教案(新人教B必修1)
2.1.4 函数的奇偶性 学案
【预习要点及要求】 1.函数奇偶性的概念;
2.由函数图象研究函数的奇偶性; 3.函数奇偶性的判断;
4.能运用函数奇偶性的定义判断函数的奇偶性; 5.理解函数的奇偶性。【知识再现】
1.轴对称图形:
2中心对称图形: 【概念探究】
1、画出函数f(x)x,与g(x)x的图像;并观察两个函数图像的对称性。
2、求出x3,x2,x
结论:f(x)f(x),g(x)g(x)。
3、奇函数:___________________________________________________
4、偶函数:______________________________________________________ 【概念深化】(1)、强调定义中“任意”二字,奇偶性是函数在定义域上的整体性质。(2)、奇函数偶函数的定义域关于原点对称。
5、奇函数与偶函数图像的对称性:
如果一个函数是奇函数,则这个函数的图像是以坐标原点为对称中心的__________。反之,如果一个函数的图像是以坐标原点为对称中心的中心对称图形,则这个函数是___________。
如果一个函数是偶函数,则这个函数的图像是以y轴为对称轴的__________。反之,如果一个函数的图像是关于y轴对称,则这个函数是___________。
6.根据函数的奇偶性,函数可以分为____________________________________.【例题解析】
例1.已知f(x)是奇函数,且当x0时,f(x)x2x,求当x0时f(x)的表达式
例2.设为实数,函数f(x)x|xa|1,xR,讨论f(x)的奇偶性
参考答案:
例1.解:设x0,则x0,f(x)(x)2(x)x2x,又因为f(x)为奇函数,2222321时的函数值,写出f(x),g(x)。2 f(x)f(x),f(x)(x2x)x2x
当x0时f(x)x2x
评析:在哪个区间上求解析式,x就设在哪个区间上,然后要利用已知区间的解析式进行代入,利用f(x)的奇偶性,把f(x)写成f(x)或f(x),从而解出f(x)
例2.解:当a0时,f(x)(x)|x|1x|x|1f(x),所以f(x)为偶函数
当a0时,f(a)a1,f(a)a2|a|
1此时函数f(x)既不是奇函数,也不是偶函数
评析:对于参数的不同取值函数的奇偶性不同,因而需对参数进行讨论 达标练习:
一、选择题
1、函数f(x)x22222222x的奇偶性是()
A.奇函数 B.偶函数 C.非奇非偶函数 D.既是奇函数又是偶函数
2、函数yf(x)是奇函数,图象上有一点为(a,f(a)),则图象必过点()
A.(a,f(a))B.(a,f(a))C.(a,f(a))D.(a,二、填空题:
1)f(a)
3、f(x)为R上的偶函数,且当x(,0)时,f(x)x(x1),则当x(0,)时,f(x)___________.4、函数f(x)为偶函数,那么f(x)与f(|x|)的大小关系为 __.三、解答题:
5、已知函数f(x)是定义在R上的不恒为0的函数,且对于任意的a,bR,都有f(ab)af(b)bf(a)
(1)、求f(0),f(1)的值;
(2)、判断函数f(x)的奇偶性,并加以证明。= 参考答案:
1、C;
2、C;
3、x(x+1);
4、相等; 5.(1)f(0)f(00)0f(0)0f(0)0f(1)f(11)f(1)f(1),f(1)0(2)f(1)f[(1)2]f(1)f(1)0f(1)0,f(x)f(1x)f(x)f(1)f(x)f(x)为奇函数.课堂练习:教材第49页 练习A、第50页 练习B 小结:本节课学习了那些内容? 请同学们自己总结一下。课后作业:第52页习题2-1A第6、7题
第四篇:(新课程)高中数学 《2.2.2二次函数的性质与图像(一)》教案 新人教B版必修1
2.2.2二次函数的性质与图像(一)
教学目标:研究二次函数的性质与图像
教学重点:进一步巩固研究函数和利用函数的方法 教学过程:
1、函数yaxbxc(a0)叫做二次函数,利用多媒体演示参数a、b、c的变化对函数图像的影响,着重演示a对函数图像的影响
2、通过以下几方面研究函数(1)、配方
(2)、求函数图像与坐标轴的交点(3)、函数的对称性质(4)、函数的单调性
3、例:研究函数f(x)解:(1)配方f(x)212x4x6的图像与性质 21(x4)22 22所以函数f(x)的图像可以看作是由g(x)x经一系列变换得到的,具体地说:先将g(x)上每一点的横坐标变为原来的2倍,再将所得的图像向左移动4个单位,向下移动2个单位得到.(2)函数与x轴的交点是(-6,0)和(-2,0),与y轴的交点是(0,6)(3)函数的对称轴是x=-4,事实上如果一个函数满足:f(ax)f(ax)(f(x)f(2ax)),那么函数f(x)关于xa对称.(4)设x1x24,xx1x20,1212yf(x1)f(x2)=(x1x2)4(x1x2)=(x1x2)(x1x28)
22=x(x1x28)
因为 x0,x1x28x1x280 所以 y0
所以 函数f(x)在(,4]上是减函数 同理函数f(x)在[4,)上是增函数
对于教材上的其他例子可以仿照此例讨论,总结教材上第64页上的几条性质。
4、复习通过配方法求二次函数最小值的方法
课堂练习:教材第65页 练习A、B 小结:通过本节课的学习应明确应该从那几个方面研究二次函数.课后作业:教材第67页7,教材第68页2、4
第五篇:高中数学《指数函数》教案1 新人教A版必修1
3.1.2指数函数
(二)教学目标:巩固指数函数的概念和性质 教学重点:指数函数的概念和性质 教学过程:
本节课为习题课,可分以下几个方面加以练习: 备选题如下:
1、关于定义域
x(1)求函数f(x)=11的定义域
9(2)求函数y=1x的定义域
51x1(3)函数f(x)=3-x-1的定义域、值域是……()
A.定义域是R,值域是R
B.定义域是R,值域是(0,+∞) C.定义域是R,值域是(-1,+∞) D.以上都不对(4)函数y=1x的定义域是______ 5x11(5)求函数y=ax1的定义域(其中a>0且a≠1)
2、关于值域
(1)当x∈[-2,0]时,函数y=3x+1-2的值域是______(2)求函数y=4x+2x+1+1的值域.(3)已知函数y=4x-3·2x+3的值域为[7,43],试确定x的取值范围.(4).函数y=3x3x1的值域是() A.(0,+∞)
B.(-∞,1) C.(0,1)
D.(1,+∞)
(5)函数y=0.25x22x12的值域是______,单调递增区间是______.3、关于图像
用心 爱心 专心 1
(1)要得到函数y=8·2-x的图象,只需将函数y=(12)x的图象()
A.向右平移3个单位
B.向左平移3个单位 C.向右平移8个单位
D.向左平移8个单位
(2)函数y=|2x-2|的图象是()
(3)当a≠0时,函数y=ax+b和y=bax的图象只可能是()