2015年高中数学 1.3.2函数的奇偶性教学设计 新人教A版必修1(精选)

时间:2019-05-12 21:00:01下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2015年高中数学 1.3.2函数的奇偶性教学设计 新人教A版必修1(精选)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2015年高中数学 1.3.2函数的奇偶性教学设计 新人教A版必修1(精选)》。

第一篇:2015年高中数学 1.3.2函数的奇偶性教学设计 新人教A版必修1(精选)

1.3.2函数的奇偶性(教学设计)

教学目的:(1)理解函数的奇偶性及其几何意义;

(2)学会运用函数图象理解和研究函数的性质;(3)学会判断函数的奇偶性.

教学重点:函数的奇偶性及其几何意义. 教学难点:判断函数的奇偶性的方法与格式. 教学过程:

一、复习回础,新课引入:

1、函数的单调性

2、函数的最大(小)值。

3、从对称的角度,观察下列函数的图象:

(1)f(x)x21;(2)f(x)x;(3)f(x)x;(4)f(x)1x

二、师生互动,新课讲解:

(一)函数的奇偶性定义

象上面的图象关于y轴对称的函数即是偶函数关于原点对称的函数即是奇函数. 1.偶函数(even function)

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.2.奇函数(odd function)

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.

注意:

(1)具有奇偶性的函数的定义域具有对称性,即关于坐标原点对称,如果一个函数的定义域关于坐标原点不对称,就不具有奇偶性.因此定义域关于原点对称是函数存在奇偶性的一个必要条件。

(2)具有奇偶性的函数的图象具有对称性.偶函数的图象关于y轴对称,奇函数的图象关于坐标原点对称;反之,如果一个函数的图象关于y轴对称,那么,这个函数是偶函数,如果一个函数的图象关于坐标原点对称,那么,这个函数是奇函数.

(3)由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质.

(4)偶函数:f(x)f(x)f(x)f(x)0, 奇函数:f(x)f(x)f(x)f(x)0;

(5)根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。(6)已知函数f(x)是奇函数,且f(0)有定义,则f(0)=0。

(二)典型例题

1.判断函数的奇偶性

例1.如图,已知偶函数y=f(x)在y轴右边的一部分图象,根据偶函数的性质,画出它在y轴左边的图象.

变式训练1:(课本P36练习NO:2)

例2(课本P35例5):判断下列函数的奇偶性(1)f(x)=x;(2)f(x)=x;(3)f(x)=x4

511;(4)f(x)=2 xx归纳:利用定义判断函数奇偶性的格式步骤: 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f(-x)与f(x)的关系; ○3 作出相应结论: ○若f(-x)= f(x)或 f(-x)-f(x)= 0,则f(x)是偶函数; 若f(-x)=-f(x)或 f(-x)+f(x)= 0,则f(x)是奇函数.

变式训练2:(课本P36练习NO:1)

例3:已知f(x)是奇函数,在(0,+∞)上是增函数,证明:f(x)在(-∞,0)上也是增函数 解:任取x1,x2(,0),使得x1x20,则x1x20

由于f(x)在(0,+∞)上是增函数

所以f(x1)f(x2)

又由于f(x)是奇函数

所以f(x1)f(x1)和f(x2)f(x2)

由上得f(x1)f(x2)即f(x1)f(x2)

所以,f(x)在(-∞,0)上也是增函数

结论:偶函数在关于原点对称的区间上单调性相反;

奇函数在关于原点对称的区间上单调性一致.

三、课堂小结,巩固反思:

本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.

四、作业布置 A组:

1、根据定义判断下列函数的奇偶性:

2x22x(1)f(x);(2)f(x)x32x;(3)f(x)x2(xR);(4)f(x)=0(xR)

x1

2、(课本P39习题1.3 A组NO:6)

3、(tb0109806)若函数f(x)的图象关于原点对称且在x=0处有定义,则f(0)=_______。(答:0)

4、(tb0109803)若函数y=f(x)(xR)为偶函数,则下列坐标表示的点一定在函数y=f(x)的图象上的是(C)。(A)(a,-f(a))(B)(-a,-f(-a))(C)(-a, f(a))(D)(-a,-f(a))B组:

1、(tb0109912)已知函数f(x)的图象关于y轴对称,且与x轴有四个不同的交点,则方程f(x)=0的所有实根的和为(D)。

(A)4(B)2(C)1(D)0

2、(tb0307345)如果奇函数f(x)在区间[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是(B)。(A)增函数且最小值为-5(B)增函数且最大值为-5(C)减函数且最小值为-5(D)减函数且最大值为-5

3、(课本P39习题1.3 B组NO:3)

C组:

1、定义在R上的奇函数f(x)在整个定义域上是减函数,若f(1a)f(1a)0,求实数a的取值范围。

2、已知f(x)是偶函数,当x≥0时,f(x)=x(1+x);求当x <0时,函数f(x)的解析式 解:设x <0,则 -x >0 有f(-x)= -x [1+(-x)] 由f(x)是偶函数,则f(-x)=f(x)所以f(x)= -x [1+(-x)]= x(x-1)f(x) x(1x),x0

x(x1),x0 4

第二篇:高中数学:2.1.4《函数的奇偶性》教案(新人教B必修1)

2.1.4 函数的奇偶性 学案

【预习要点及要求】 1.函数奇偶性的概念;

2.由函数图象研究函数的奇偶性; 3.函数奇偶性的判断;

4.能运用函数奇偶性的定义判断函数的奇偶性; 5.理解函数的奇偶性。【知识再现】

1.轴对称图形:

2中心对称图形: 【概念探究】

1、画出函数f(x)x,与g(x)x的图像;并观察两个函数图像的对称性。

2、求出x3,x2,x

结论:f(x)f(x),g(x)g(x)。

3、奇函数:___________________________________________________

4、偶函数:______________________________________________________ 【概念深化】(1)、强调定义中“任意”二字,奇偶性是函数在定义域上的整体性质。(2)、奇函数偶函数的定义域关于原点对称。

5、奇函数与偶函数图像的对称性:

如果一个函数是奇函数,则这个函数的图像是以坐标原点为对称中心的__________。反之,如果一个函数的图像是以坐标原点为对称中心的中心对称图形,则这个函数是___________。

如果一个函数是偶函数,则这个函数的图像是以y轴为对称轴的__________。反之,如果一个函数的图像是关于y轴对称,则这个函数是___________。

6.根据函数的奇偶性,函数可以分为____________________________________.【例题解析】

例1.已知f(x)是奇函数,且当x0时,f(x)x2x,求当x0时f(x)的表达式

例2.设为实数,函数f(x)x|xa|1,xR,讨论f(x)的奇偶性

参考答案:

例1.解:设x0,则x0,f(x)(x)2(x)x2x,又因为f(x)为奇函数,2222321时的函数值,写出f(x),g(x)。2 f(x)f(x),f(x)(x2x)x2x

当x0时f(x)x2x

评析:在哪个区间上求解析式,x就设在哪个区间上,然后要利用已知区间的解析式进行代入,利用f(x)的奇偶性,把f(x)写成f(x)或f(x),从而解出f(x)

例2.解:当a0时,f(x)(x)|x|1x|x|1f(x),所以f(x)为偶函数

当a0时,f(a)a1,f(a)a2|a|

1此时函数f(x)既不是奇函数,也不是偶函数

评析:对于参数的不同取值函数的奇偶性不同,因而需对参数进行讨论 达标练习:

一、选择题

1、函数f(x)x22222222x的奇偶性是()

A.奇函数 B.偶函数 C.非奇非偶函数 D.既是奇函数又是偶函数

2、函数yf(x)是奇函数,图象上有一点为(a,f(a)),则图象必过点()

A.(a,f(a))B.(a,f(a))C.(a,f(a))D.(a,二、填空题:

1)f(a)

3、f(x)为R上的偶函数,且当x(,0)时,f(x)x(x1),则当x(0,)时,f(x)___________.4、函数f(x)为偶函数,那么f(x)与f(|x|)的大小关系为 __.三、解答题:

5、已知函数f(x)是定义在R上的不恒为0的函数,且对于任意的a,bR,都有f(ab)af(b)bf(a)

(1)、求f(0),f(1)的值;

(2)、判断函数f(x)的奇偶性,并加以证明。= 参考答案:

1、C;

2、C;

3、x(x+1);

4、相等; 5.(1)f(0)f(00)0f(0)0f(0)0f(1)f(11)f(1)f(1),f(1)0(2)f(1)f[(1)2]f(1)f(1)0f(1)0,f(x)f(1x)f(x)f(1)f(x)f(x)为奇函数.课堂练习:教材第49页 练习A、第50页 练习B 小结:本节课学习了那些内容? 请同学们自己总结一下。课后作业:第52页习题2-1A第6、7题

第三篇:06【数学】1.3.2《函数的奇偶性》教案(新人教A版必修1) 河北专用

知识改变命运,学习成就未来

课题:§1.3.2函数的奇偶性

教学目的:(1)理解函数的奇偶性及其几何意义;

(2)学会运用函数图象理解和研究函数的性质;(3)学会判断函数的奇偶性.

教学重点:函数的奇偶性及其几何意义. 教学难点:判断函数的奇偶性的方法与格式.

教学过程:

一、引入课题

1.实践操作:(也可借助计算机演示)

取一张纸,在其上画出平面直角坐标系,并在

知识改变命运,学习成就未来

偶函数的图象关于y轴对称; 奇函数的图象关于原点对称.

(三)典型例题

1.判断函数的奇偶性 例1(.教材P36例3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性.(本例由学生讨论,师生共同总结具体方法步骤)解:(略)

总结:利用定义判断函数奇偶性的格式步骤: 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f(-x)与f(x)的关系; ○3 作出相应结论: ○若f(-x)= f(x)或 f(-x)-f(x)= 0,则f(x)是偶函数; 若f(-x)=-f(x)或 f(-x)+f(x)= 0,则f(x)是奇函数.

巩固练习:(教材P41例5)例2.(教材P46习题1.3 B组每1题)解:(略)

说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数.

2.利用函数的奇偶性补全函数的图象(教材P41思考题)规律:

偶函数的图象关于y轴对称; 奇函数的图象关于原点对称.

说明:这也可以作为判断函数奇偶性的依据.

巩固练习:(教材P42练习1)3.函数的奇偶性与单调性的关系

(学生活动)举几个简单的奇函数和偶函数的例子,并画出其图象,根据图象判断奇函数和偶函数的单调性具有什么特殊的特征.

例3.已知f(x)是奇函数,在(0,+∞)上是增函数,证明:f(x)在(-∞,0)上也是增函数 解:(由一名学生板演,然后师生共同评析,规范格式与步骤)规律:

偶函数在关于原点对称的区间上单调性相反; 奇函数在关于原点对称的区间上单调性一致.

三、归纳小结,强化思想

本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.

四、作业布置

1. 书面作业:课本P46习题1.3(A组)

知识改变命运,学习成就未来

f(x)x2x; ○3 f(x)a

(xR)○4 f(x)○x(1x)x0,x(1x)x0.3. 课后思考:

已知f(x)是定义在R上的函数,设g(x)f(x)f(x)f(x)f(x),h(x)

221 试判断g(x)与h(x)的奇偶性; ○2 试判断g(x),h(x)与f(x)的关系; ○3 由此你能猜想得出什么样的结论,并说明理由. ○

欢迎各位老师踊跃投稿,稿酬丰厚 邮箱:zxjkw@163.com

第四篇:(新课程)高中数学 《2.1.4 函数的奇偶性》教案 新人教B版必修1

2.1.4函数的奇偶性

教学目标:理解函数的奇偶性

教学重点:函数奇偶性的概念和判定 教学过程:

1、通过对函数y12,yx的分析,引出函数奇偶性的定义 x2、函数奇偶性的几个性质:

(1)奇偶函数的定义域关于原点对称;

(2)奇偶性是函数的整体性质,对定义域内任意一个x都必须成立;(3)f(x)f(x)f(x)是偶函数,f(x)f(x)f(x)是奇函数;(4)f(x)f(x)f(x)f(x)0, f(x)f(x)f(x)f(x)0;

(5)奇函数的图像关于原点对称,偶函数的图像关于y轴对称;

(6)根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。

3、判断下列命题是否正确

(1)函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分条件。

此命题正确。如果函数的定义域不关于原点对称,那么函数一定是非奇非偶函数,这一点可以由奇偶性定义直接得出。

(2)两个奇函数的和或差仍是奇函数;两个偶函数的和或差仍是偶函数。此命题错误。一方面,如果这两个函数的定义域的交集是空集,那么它们的和或差没有定义;另一方面,两个奇函数的差或两个偶函数的差可能既是奇函数又是偶函数,如,与,可以看出函数都是定义域上的函数,它们的差只在区间[-1,1]上有定义且,而在此区间上函数

既是奇函数又是偶函数。都是偶函数。(3)是任意函数,那么与此命题错误。一方面,对于函数或

;另一方面,对于一个任意函数,不能保证

而言,不能保证它的定义域关于原点对称。如果所给函数的定义域关于原点对称,那么函数是偶函数。

(4)函数是偶函数,函数是奇函数。

此命题正确。由函数奇偶性易证。(5)已知函数是奇函数,且

有定义,则。

此命题正确。由奇函数的定义易证。(6)已知是奇函数或偶函数,方程

有实根,那么方程的有奇数个所有实根之和为零;若实根。

此命题正确。方程偶性的定义可知:若来说,必有

4、补充例子

是定义在实数集上的奇函数,则方程的实数根即为函数,则

。故原命题成立。

与轴的交点的横坐标,由奇

。对于定义在实数集上的奇函数例:定义在(1,1)上的奇函数f(x)在整个定义域上是减函数,若f(1a)f(1a)0,求实数a的取值范围。

课堂练习:教材第53页 练习A、B 小结:本节课学习了函数奇偶性的概念和判定 课后作业:第57页习题2-1A第6、7、8题 2

第五篇:人教版高中数学《函数的奇偶性》教学设计

课题:函数的奇偶性的教学设计

(一)[任务分析]

“函数的奇偶性”是函数的一个重要性质,常伴随着函数的其他性质出现。函数奇偶性揭示的是函数自变量与函数值之间的一种特殊的数量规律,直观反映的是函数图象的对称性。利用数形结合的数学思想来研究此类函数的问题常为我们展示一个新的思考视角。函数的奇偶性也是今后研究三角函数、二次曲线等知识的重要铺垫,而且灵活地应用函数的奇偶性常使复杂的不等式问题、方程问题、作图问题等变得简单明了。[方法简述] 本节课有着丰富的内涵,是继函数单调性以后的又一个重要性质。教法上本着“以教师为主导,学生为主体,问题解决为主线,能力发展为目标”的指导思想,结合我校学生实际,主要采用“问题导引,分析、比较,自主探究,讲练结合”的教学方法。通过复习提问呈上其下的引入,通过观察图像,从具体到抽象的引入,通过与单调性研究方法的的类比的引入,使学生对函数的奇偶性先有了一定的感性认识;通过设置一条问题链,采用多角度的,启发式的,学生积极参与的,有思想交锋的方式,引导学生在自主学习与合作交流中经历知识的形成过程;通过层层深入的例题与习题的配置,引导学生积极思考,灵活掌握知识,使学生从“懂”到“会”到“悟”,提高思维品质,力求把传授知识与培养能力融为一体。[目标定位]

数学教学不仅仅是知识的教学、技能的训练,更应使学生的能力得到提高。本节课应使学生掌握函数奇偶性的定义,会用定义判断简单函数的奇偶性。在学生经历函数奇偶性的探究和应用过程中,体会数形结合、分类讨论等数学思想方法,进一步培养学生归纳、类比、迁移能力,增强学生的数学应用意识和创新意识。注重培养学生积极参与、大胆探索的精神以及合作意识;通过让学生体验成功,培养学生学习数学的信心。在教学中,重点应为理解函数奇偶性概念的本质特征;掌握函数奇偶性的判别方法。对高一学生来说,由于初中代数主要是具体运算,因而代数推理能力较弱,许多学生甚至弄不清代数形式证明的意义和必要性。因此教学难点是有关偶函数问题的证明,与培养驾驭知识、解决问题的能力。突出重点、突破难点的关键是设计有一定思维含量的问题与实例,引导学生思考、分析讨论,加深学生对函数奇偶性的认识与应用。结合直观的图形,充分发挥数形结合思想的功能,使学生的感性认识提高到理性认识。[课堂设计]

一、复习旧知、引入定义

基于学生前面已经学习过函数的单调性,先从复习函数单调性入手。问题1:回顾上一节课如何定义增函数、减函数?试举例说明。由学生回答,学生应该容易得出定义,单调增、减函数(定义略)

并能举出一些常见的单调函数,如一次函数,三次函数。

设计意图:从学生已学过的函数单调性复习引入,因为函数的单调性的定义是学生第一次接触用函数的对应关系的性质来刻画函数的性质,他不同于初中是通过图像看性质。学生在复习中体验用代数手段刻画函数性质的方法, 为后面用函数对应关系来刻画函数的奇偶性做好准备。为突破难点奠定基础。

问题2:判断下列两函数在其定义域内单调性如何?

反比例函数f(x)21 x二次函数f(x)x1 设计意图:让学生注意函数的单调性要分区间讨论。对于同一函数而言,不同的区间上可能会有不同的单调性,为后面研究函数的奇偶性要注意自变量的范围埋下伏笔。

图示学生举出的例子和以上两个例题,(1)f(x)2x(2)f(x)x3(3)f(x)2x1(4)f(x)1(5)f(x)x21 x引导学生观察图像。

思考:除了显示了函数的单调性,是否还有其他特征?

引导学生发现初中就学过的优美的对称性——中心对称、轴对称。问题3:能否用函数的对应关系来刻划其对称性?

让学生先观察、思考、交流讨论,教师再引导。

启发:首先注意到自变量的对称性可以用x与-x来刻画,相应的考察f(x)与f(-x)的关系。

(请5个同学到黑板上板演计算f(x)与f(-x)的,并判断相应函数值的特点。板书课题,引出定义)。函数奇偶性定义:

(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)叫奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)叫偶函数。

设计意图:引导学生通过函数值的特征来描述函数对应关系的性质,实现由形到数的转化,同时为归纳引出定义以及判断函数奇偶性做好准备。

二、定义理解、揭示本质

问题4:定义中那一句话对刻划函数的性质更实质?

学生阅读定义,回答问题。归纳:验证恒等式f(-x)=-f(x)或 f(-x)=f(x)的重要性。让学生根据定义判别以上5个函数的奇偶性,教师作出点评。

设计意图:让学生深刻理解定义,解释函数奇偶性的本质。把探求新知的权利交给学生,为学生提供宽松、广阔的思维空间,让学生主动参与到问题的发现、讨论和解决等活动上来.而且在探究交流过程中学生对函数奇偶性的认识逐步由感性上升到理性。

2x22x问题5:判断函数f(x) 的单调性如何?

x1引发学生思考讨论。学生可能会有两种结论,一是奇函数,二不是奇函数,让学生辨别,引起学生思维的交锋,教师给与宏观的指导,看准火候,及时点拨。引导学生注意定义中定义域的重要性,得出推论。

推论:奇偶函数的的定义域在轴上对应的点集关于原点对称。

设计意图:强调对定义域的考虑,既帮助学生准确理解定义,又对函数奇偶性的概念进行反面理解,同时使学生进一步熟悉判断奇偶性的方法,为引出推论做准备。问题6:有没有既是奇函数又是偶函数的函数? 引导学生共同探究,得到f(x)=0,且定义域关于原点对称。共同归纳得到:函数按照奇偶性可分为四类:

A.是奇函数而不是偶函数 B.是偶函数而不是奇函数 C.既是奇函数而又是偶函数D.既不是奇函数又不是偶函数

设计意图:数学思维中最积极的的成分是问题,不断的提出问题,不断的解决问题,提出具有探究意义的问题,培养学生的探究意识,进一步完善函数奇偶性的概念。

三、手脑并用、概念应用

问题7:能否归纳函数奇偶性的判别方法及步骤:(1)求函数的定义域;(2)计算f(-x)(3)判断f(-x)与-f(x)或(x)是否相等;(4)下结论,指明是四类中的哪一类。在刚才归纳的基础上,学生练习例1:判断下列函数的奇偶性(1)f(x)xx31(2)f(x)2x43x2

(3)f(x)2x(4)f(x)1x2(5)f(x)f(x)a

x21

教师版书第一小题,学生口答第二小题,(3)、(4)(5)请三位学生板演。教师规范、订正版演。

设计意图:在归纳中掌握方法,巩固新知及时反馈,为灵活应用方法打下基础.

四、沟通联系、深化提高

例2 已知函数f(x)是奇函数,而且在(0,)上是增函数,f(x)在(,0)上是增函数还是减函数?并给出证明。

引导学生分析条件,探索思路,沟通已知与未知 的联系,实现单调性的转化。设计意图:沟通函数奇偶性与单调性的联系,揭示函数奇偶性对函数性质研究的作用。使学生进一步加深对知识的掌握,并体验数学在解决问题中的作用。

五、归纳小结、练习反馈 引导学生归纳小结(1)函数奇偶性的定义(2)判别函数奇偶性的方法(3)函数奇偶性的初步应用 设计意图:学生自己从所学到的数学知识、数学思想方法两方面进行总结,提高学生的概括、归纳能力.同时,学生在回顾、总结、反思的过程中,将所学知识条理化、系统化,使自己的认知结构更趋合理.注重数学思想方法的提炼,可使学生逐渐把经验内化为能力,从而走向一个新的制高点。反馈练习:课本P口答练习

在整个练习过程中,教师做好及时小结,加强对学生的个别指导,设计意图:巩固所学知识,进一步促进认知结构的内化,并且可使学生对自己的学习进行自我评价.也让教师及时了解学生的掌握情况,以便进一步调整自己的教学.

六、布置作业、引导复习

1.书面作业:P89 练习A2,练习B 1、2、3.2.研究与思考:

(1)若f(x)为奇函数,且x=0时与意义,则f(0)=?(2)判别函数的奇偶性

(3)在公共定义域上,函数的和、差、积、商的起偶性如何?

第一层次要求所有学生都要完成,第二层次则只要求学有余力的同学完成.研究思考的(1)(2)(3)不仅开阔了学生的思路,而且提高学生的探究热情。.设计意图:分层次作业既巩固所学,又为学有余力的同学留出自由发展的空间,培养学生的创新意识和探索精神。同时为下节课内容作好准备,将探究的空间由课堂延伸到课外.[教有所思] 这节课本着“课程标准为依据,教师为主导,学生为主体”的原则进行设计与教学,高中学生的思维水平已发展到辩证思维的形成阶段,从能力上讲,他们能通过观察、比较、归纳等方式来认识新知识。结合学生的特点及本节课的内容,在教学中采用了“问题导引,分析比较、自主探究、讲练结合”式的教学方法。通过问题激发学生求知欲,从学生已知问题已知的函数图形入手,使学生对函数的奇偶性有了一定的感性认识,并且形成各自对函数奇偶性概念的了解,再引导学生抓住实质,抛开个性的东西,抽取共性的内容,在相互交流、启发、补充、争论中,概括出定义,经历了知识的形成过程。使学生主动参与数学实践活动,在教师的有效指导下解决问题。应当说在知识的习得、能力的培养二个方面有收获,基本上达到了预期的教学目的。在概念-方法-应用当中,方法是本节课的重点。通过对问题3至问题6的分析、反思、深化,使学生的思维步步深入,在自我发现、自我解决问题的过程中,深刻理解了函数奇偶性的定义的实质。

从本堂课的教学实践中我还深刻体会到。数学教学不只是关心学生 “知道了什么”,而应是更多地关注学生 “怎么样知道的”。因此,在教学中注意引导学生主动参与,自主探究问题,并加强合作交流。

下载2015年高中数学 1.3.2函数的奇偶性教学设计 新人教A版必修1(精选)word格式文档
下载2015年高中数学 1.3.2函数的奇偶性教学设计 新人教A版必修1(精选).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐